printed sensor technology: progress towards commercialisation

21
UWE Bristol Printed sensor technology: progress towards commercialisation Prof. Tony Killard Professor of Biomedical Sciences Centre for Research in Biosciences (CRIB) Department of Biological, Biomedical and Analytical Sciences, UWE Adjunct Professor Biomedical Diagnostics Institute, Dublin ACES: The European Dimension NCSR, DCU 21 May 2015

Upload: national-centre-for-sensor-research

Post on 07-Aug-2015

24 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Printed sensor technology: progress towards commercialisation

UWE Bristol

Printed sensor technology: progress towards commercialisationProf. Tony Killard

Professor of Biomedical SciencesCentre for Research in Biosciences (CRIB)Department of Biological, Biomedical and Analytical Sciences, UWE

Adjunct ProfessorBiomedical Diagnostics Institute, Dublin

ACES: The European DimensionNCSR, DCU21 May 2015

Page 2: Printed sensor technology: progress towards commercialisation

UWE Bristol

Page 3: Printed sensor technology: progress towards commercialisation

ESEAC MMXVI16TH INTERNATIONAL CONFERENCE ON ELECTROANALYSIS12TH -16TH JUNE 2016THE ASSEMBLY ROOMS, BATH, UK

Page 4: Printed sensor technology: progress towards commercialisation

Advanced diagnostic device technologies• Combining…

– Advanced functional materials– Print production technology– Polymer MEMS microfabrication– Bioassay systems integration

• To produce…– POC diagnostic devices– High performance– Design for manufacture

[email protected]

LOPE-C, Munich10-13th June 2013

Winner of prototype demonstrator competition

Page 5: Printed sensor technology: progress towards commercialisation

Polyaniline

The technicolour dream

Page 6: Printed sensor technology: progress towards commercialisation

Ink jet printed PANI NP ammonia sensors

Wavelength (nm)

400 600 800 1000

Abs

orba

nce

(a.u

.)In

kjet

Prin

ted

Film

0.10

0.15

0.20

0.25

0.30

0.35

Abs

orba

nce

(a.u

.)A

queo

us D

ispe

rsio

n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Inkjet Printed nanoPANIAqueous dispersion nanoPANI

Potential (V)

0.2 0.4 0.6 0.8 1.0

Cur

rent

(m

A)

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

500 mV s-1

300 mV s-1

200 mV s-1

50 mV s-1

25 mV s-1

Scan Rate (mV s-1)

0 100 200 300 400 500

Pea

k C

urre

nt (

mA

)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

A

B

A'

B'

C

C'

Peak A

Peak A'

No. of Prints

1 5 10 20 30 40

Th

ickn

ess

(n

m)

0

500

1000

1500

2000

2500

3000

3500

4000

Electrochim. Acta. 2008, 53, 5092-5099

Prints/film thickness/current

UV-Vis spectroscopy

Scan rate

Silver ElectrodePolyaniline Layer

13.94 mm

13.9

4 m

m

InterdigitatedElectrode

51 mm

4.44

mm

Silver ElectrodePolyaniline Layer

13.94 mm

13.9

4 m

m

InterdigitatedElectrode

51 mm

4.44

mm

PRECISE CONTROL OF FILM THICKNESS

HIGHLY REPRODUCIBLE FABRICATION PROCESS

NANOPARTICLES FORM CONTINUOUS FILMS WITH BULK POLYMER ELECTROCHEMICAL PROPERTIES

Page 7: Printed sensor technology: progress towards commercialisation

Ammonia breath monitoringSIGNIFICANT OPPORTUNITY FOR POINT OF CARE BREATH MONITORING TECHNOLOGY

•Liver/kidney dysfunction

•Screening, monitoring, treatment support

•Urea cycle defects (HE)

•Ulcer detection (H. pylori)

CHALLENGES

•Low cost sensor system

•Quantitative

•Limit of detection (50 ppb)

•Specific for ammonia

•No interference from temperature and humidity

Page 8: Printed sensor technology: progress towards commercialisation

Breath gasconcentrations

•Typically at parts per billion concentrations

•In the presence of high concentrations of O2, N2, CO2

•In the presence of high concentrations of water vapour

– 91-96% RH@ 37oC

•In the presence of other ‘interferent’ gases from body/mouth/atmosphere

MEASUREMENT OF TRACE GASES IN BREATH REMAINS A SIGNIFICANT ANALYTICAL CHALLENGE

Crit. Rev. Anal. Chem., 2011, 41: 21-35.

Page 9: Printed sensor technology: progress towards commercialisation

-1

1

3

5

7

9

11

13

15

17

19

21

0 50 100 150 200 250 300 350 400 450 500 550 600

Time (s)

Z /

Zo

2,175 ppb

1,919 ppb

1,576 ppb

1,368 ppb

984 ppb

755 ppb

392 ppb

245 ppb

121 ppb

40 ppb

Breath by breath analysis in artificial breath with ammonia

4 s ‘breaths’, 15 s delay

Direct, real time breath by breath responses; Cumulative response to ammonia statistical averaging; Atmospheric subtraction

0

2

4

6

8

10

12

14

16

18

20

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200

[NH3] / ppb

Z/Z

o

Final Reading

Breath 16

Breath 15

Breath 14

Breath 13

Breath 12

Breath 11

Breath 10

Breath 9

Breath 8

Breath 7

Breath 6

Breath 5

Breath 4

Breath 3

Breath 2

Breath 1

Background air sampledBaseline established (Z0){

Page 10: Printed sensor technology: progress towards commercialisation

Prevent bacterial contamination in device (no effect on ammonia conc.)

128 ml (1/4-1/5 average tidal volume)

Atmospheric inflow

Breath overflow – late tidal

110 l/min

Switch between sampling and measurement

Impedance instrumentation now integrated

Single use, disposable printed sensor

AmBeR®

Page 11: Printed sensor technology: progress towards commercialisation

Calibration of AmBeR® with spectroscopy• Calibration with simulated breath samples (n=33; individual

electrodes)• Humidity and temperature interferences eradicated• Breath by breath measurement (8 breaths~ 5 min test time)• LOD <40 ppb; range 0 - >3,000 ppb (full diagnostic range)• R2 = 0.99, Slope = 0.00076 ppbv-1 and Intercept = -0.0354

Page 12: Printed sensor technology: progress towards commercialisation

0

500

1,000

1,500

2,000

2,500

0 5 10 15 20 25 30 35 40

Blood Urea Nitrogen (mmol/L)

Bre

ath

Am

mon

ia (

ppbv

)

Correlations with BUN, RR, Kt/Vr=0.61, p <0.01, n=96

• Haemodialysis patients• Moderate correlations• Patient-specific variables• Not improved by looking at

change or clearance rates

0

20

40

60

80

100

120

40 50 60 70 80 90Blood Urea Nitrogen RR (%)

Bre

ath

Am

mon

ia R

R (

%)

r=0.60, p<0.01, n=45 0

20

40

60

80

100

120

0.00 0.50 1.00 1.50 2.00

Kt/V (A.U.)

Bre

ath

Am

mo

nia

RR

(%

)

r=0.50, p<0.01, n=44

Kidney Int. 1997, 52, 223; r=0.63, p<0.01, n=26, SIFT-MSNephrol. Dial. Trans., 2000, 15, 50; r=0.51, n=10, p<0.01, n=10, HPLC

Page 13: Printed sensor technology: progress towards commercialisation

Intra-individual

• Good correlation between breath ammonia and blood urea nitrogen

• Patient-specific responses• r=0.86 to 0.96

– p=<0.0001 to 0.07

• Potential for patient-specific calibration?

• How stable is this over time?• Stronger correlations with

hepatic patients?• Other applications?

Anal. Chem. (2013) 85: 12158-12165

Page 14: Printed sensor technology: progress towards commercialisation

Giving AmBeR the Green Light

• Revised prototype for clinical evaluation– Fully automated– Improve sensor insertion/removal– Design for manufacture– User interface

• Mass production of sensors– Controlled scale-up of PANI NP production– Scale up of screen and inkjet printing

processes

Page 15: Printed sensor technology: progress towards commercialisation

Fan

Sensor receiver

Valve actuator

Air inlet

Sample inlet

Electromechanical controlImpedance analyserFirmware

AmBeR v2

Page 16: Printed sensor technology: progress towards commercialisation
Page 17: Printed sensor technology: progress towards commercialisation
Page 18: Printed sensor technology: progress towards commercialisation

Screen printingInkjet printingDicing

Page 19: Printed sensor technology: progress towards commercialisation
Page 20: Printed sensor technology: progress towards commercialisation

Clinical evaluations

St. Vincent’s HospitalHelicobacter pyloriStomach ulcer diagnosis

Royal Free HospitalChronic liver diseaseManagement

St. Vincent’s HospitalChronic kidney diseaseManagement

Page 21: Printed sensor technology: progress towards commercialisation

Acknowledgements

• Prof. Malcolm Smyth• Prof. Gordon Wallace• Dr. Aoife Morrin• Dr. Orawan Ngamna• Dr. Troy Hibbard• Dr. Karl Crowley• Brendan Heery• Ms Denise Carthy• Dr. Karen Dawson• Dr. Fadi Hatoum• Dr. Nigel Kent• Mr. Kieran Flynn