présentation powerpoint - ip2014.eap.grip2014.eap.gr/lectures/f_zissis_1.pdf · planon™ dbd...

59
UMR 5213 Georges ZISSIS LAPLACE, Univ. de Toulouse 3 [email protected]

Upload: lamthu

Post on 18-Aug-2019

213 views

Category:

Documents


0 download

TRANSCRIPT

UMR 5213

Georges ZISSIS

LAPLACE, Univ. de Toulouse 3

[email protected]

UMR 5213

Interior Lighting

Industrial Applications

Transport Lighting & Signs

Signalisation &

Displays

Monument Lighting

Urban Lighting

UMR 5213

33 billion lamps operate every day 3 140 TWh electricity consumed per annum (inc. losses) 16%-19% of worldwide electricity production 3% of primary energy used every year for lighting

12% France 9% Germany 21% USA 34% Tunisia 86% Tanzania

(Mils, RL-5, 2003)

Urban 8%

Industrial 16%

Residential 28%

Tertiary 48%

Full production of FR + IT

Sustainable Development

200 billion Euros per annum (Europe)

16 billion new lamps per annum 25 billion of Euros/annum (turnover lamp industry) Turnover increases constantly since 20 years

1 890 million tonnes of CO2 per year 80 tonnes Hg-contaminated wastes

collected in France every week Light pollution of skies

UMR 5213

6.5 billion people live on earth (2006) 1.5 billion without connection to electrical grid (2003)

6.3 k$ average annual GDP / person (2006) 4% annual average GDP growth rate (2006)

5 billion people use 2 650 TWh par year Average energy used for lighting: 430 kWh/person/annum

8.0 billions (2030) 1.0 billion (2030)

1.2% growth/annum

Average 680 kWh/person/annum for 7 billion people in 2030

GDP/person (k$/an)

Ene

rgy

(MW

h/p

ers

on/a

nnum

)

2006 2030

*

UMR 5213

Incand. 35%

Incand. 70%

Is production capacity sufficient ?

Is the consumer ready for the market transformation ?

What is the social impact ?

UMR 5213

Fire Torches Candles Oil lamps Gas lamps

Luminescence

Bio-luminescence Phosphorescence Tribo & Thermo-luminescence Lightning

I need so many fireflies…

Incandescence

UMR 5213

Sir Humphry Davy

Jablochkoff’s candle (1870)

Carbon arc (1813)

Power Lifespan Complexity Reliability

UMR 5213

Thomas A. Edison

Carbon Filament Lamp

1 major inconvenient : low efficacy

2 strong points: easy to produce large lifespan

1 visionary inventor: “system” vision: from

electricity to light

UMR 5213

Incandescence Luminescence SSL

Electrical discharge

Power injection

Operating Pressure

Spectrum

W-Filament

Halogens

Selective filter

Field Emission

L.E.D & O-LED

Cluster lamp

High Efficacy Halogens

UMR 5213

“Hot” way

Hot metallic filament

Dense matter

Strong Interactions

Continuum spectrum

“Cold” way

Atoms & Molecules

Delute matter

Weak Interactions

Line spectrum

UMR 5213

Luminous efficacy=Luminous Flux

Absorbed power

h =

k P(l)V(l)dl360nm

780nm

ò

Pin

Energetic Efficacy=Radiative power

Absorbed power

e =

P(l)dl0

¥

ò

Pin

(lm/W)

Incadescent lamps 12-14

High efficacy halogen lamps 20-25

Compact fluorescent lamp 65

Linear Fluorescent lamp (T5) 110

Ceramic metal halide lamp 70-150

Sodium low-pressure lamp 200

White LED (@ 25°C) 130

Firefly 180

Linear Fluorescent lamp 20-25% Incandescent lamp 2- 5% White LED 30-40%

Photometric quantity (lm/W) Radiometric quantity (%)

UMR 5213

A "warm" light corresponds to a color temperature below 3300 K.

From 5000 K, a light source is referred as "cold” light.

The colour temperature of a source is given by the surface temperature of a black body producing light with similar colour appearance.

UMR 5213

Indicates the ability of a light source to reproduce the colours with fidelity compared to a reference white light.

100 = IRC maximum.

0 = No colour visible.

A variation of 5 points is perceptible by humans

0 < IRC < 100

UMR 5213

UMR 5213

UMR 5213

LCN (l,T) =2hc2

l5exp

hc

kBTl

æ

æ æ

æ

æ æ -1

æ æ æ

æ æ æ

-1

LCN (l,T)dl0

¥

ò = sT4 avec s = 5,674x10-8 Wm-2K-4

Planck’s law

Stefan-Boltzmann’s law

Black body spectrum

dL(l,T)

dl l= lmax

= 0 Þ

5 -hc

kBTlmax

æ æ æ

æ æ æ

exphc

kBTlmax

æ æ æ

æ æ æ

= 5

Wien’s

lmax (mm) T(K) = 2,897

UMR 5213

¦vis

max (TCN ) =

LCN (l,TCN )dl400nm

800nm

ò

LCN (l,TCN )dl0

¥

ò

It is rather hard getting high energetic efficacy from an incandescent lamp…

Fraction of visible light in the spectrum

W melting point

Surface temperature (K)

Fra

ction o

f vis

ible

lig

ht (%

)

UMR 5213

IR Reflector (thin layer)

Filament

Visible light

Halogen lamp

Infrared Selective filter lamp

High e

fficacy

haloge

n lamp

UMR 5213

UMR 5213

Power Radiation (UV, vis, IR)

Heat (other than IR)

Electrical power injected in a plasma…

…is turn into radiation and heat by the plasma

UMR 5213

From Greek « πλαθω »= mold

Plasma is is a collection of charged particles, globally neutral, that

respond strongly and collectively to electromagnetic fields (motion)

Definition:

The word

Lightning in the bottle

UMR 5213

Add energy

cold warm hot Very hot

Solid Liquid Gas

No free Electrical charges

Free Electrical charges

Plasma

4th state of

matter = 99,8% of

Universe !

Some examples:

Dark matter Heart of Stars Ionosphere Lightning Flames

UMR 5213

Neutral atom (He)

noyau Bound

Electrons

Electron orbitals

Energy

Positive ion (He+) (1.6x10-19 Cb)

Bound Electron

Free electron (-1.6x10-19 Cb)

IONISATION

UMR 5213

Empty orbitals

Last occupied orbital

Before: unperturbed atom

electrons

Energy Empty orbital

Occupied orbitals

electrons

After: excited atom

∆E

UMR 5213

t = 0 Unperturbed atom

collides with projectile (energy Eini)

t = t Atom is back to

initial state

(energy Eini)

t = ∆t Excited atom (energy Efin)

TIME

Projectile

Energy is conserved Efin- Eini = hν

The steady state of a system is that corresponding to

minimum energy

Un atome ne peut produire que certaines fréquences

An atom can produce

only some frequencies

Radiation emission (photon @ frequency ν)

UMR 5213

Discharge lamps

With electrodes

Low pressure

Fluorescent CFL

Integral Pin-based

Sodium

High pressure

Mercury (HID)

Sodium Halide

Silica Ceramic

Electrode less

Inductive Dielectric

Barrier Molecular Radiators

UMR 5213

UMR 5213

Positive Column 34 W

Emitting material: Hg (7 mTorr) Buffer gas: Ar (3 Torr)

400 mA 50 Hz

Ballast Losses

Heat

Hea

t 9

.2W

Light

Vis

. 0.8

W

UV

UV 24W

Visible Light 10 W

Heat 30 W

Electrode Losses

Ele

ctro

des

6W

Vis. 9.2 W

Heat 14.8 W Injected power

40 W

Injected Power 40 W

Tube Wall

Phosphor

UMR 5213

T5

Diamètre 16 mm Efficacité lumineuse = 95 à 105 lm/W Ballast Eln Triphosphores Produit en expansion

T12

Diametre 38 mm Luminous Efficacy = 40 - 65 lm/W MagnetBallast EM Hallophosphates Produit en déclin

T8

Diamètre 26 mm Efficacité lumineuse = 80 à 95 lm/W Ballast EM ou Eln Hallophosphates ou triphosphores Produit mature

Forte sensibilité à la température ambiante

UMR 5213

«Cool White» (6000 K)

«Neutral White» (5000 K)

«Warm White» (4000 K)

«Ultra Warm White» (3000 K)

UMR 5213

Most common power values T12: 20, 40, 65 W (1 050 - 4 800 lm) ; 59, 120, 150 cm T8: 18, 36, 58 W (1 350 - 5 200 lm) ; 59, 120, 150 cm T5: 14, 21, 28, 35, 49 W (1 350 - 4 900 lm) ; 55, 85, 115, 145, 145 cm

UMR 5213

•Slow warm-up •Sensitive to ambient temperature •Sensitive to mains voltage variation •Sensitive to ON/OFF cycling •Contains mercury

UMR 5213

Integral Pin-based

UMR 5213

Colours Shapes

Dimming

Luminous efficacy affected

Lifespan affected

Warm-up time affected

Dimming is complex

UMR 5213

Proposed equivalence: 1 : 4 10 W CFL 40 W Incand. 15 W CFL 60 W Incand. 25 W CFL 100 W Incand.

=

Power can’t be used as indicator

Luminous flux is just an indicator

Human eye is sensitive to brightness nor to flux neither to illuminance

Integral

CFL

Look alike

CFL A clear incandescent lamp is 150-200 times brighter than a CFL with the same luminous flux

UMR 5213

Shape and Quality Some mileage left here for innovation

Heliax CFL (GE)

Self-ballasted MicroLynx (Sylvania)

Phosphors (this is a major challenge) How to avoid ~50% phosphor conversion loss?

Quantum splitting phosphors – 2 visible photons for each UV photon – some progress

Generate white light directly in visible region by using high volatility molecules

Power Electronics Enhancing operating conditions Deep dimming Permanent monitoring

Phosphor

tube Cold cathod

wire

Lamps for special applications (backlighting)

UMR 5213

0

5

10

15

20

25

30

35

40

45

50

55

1980 1985 1990 1995 2000 2005

Hg

co

nte

nt

(mg

)

48 mg

41,6 mg

21 mg

11,6 mg

Hg is toxic Hg dose limited by EU-RoHS directive

µ-capsules (2mg Hg and less)

Ti-Hg alloys (2mg Hg and less)

A. Corazza

2,5 µg since 2013

UMR 5213

Power: 18 - 180 W Lum. Efficacy: 98 - 200 lm/W Energetic Effic.: 40% Life span: 12 000 - 14 000 h CRI: N/A Tcp: 1 700 - 1 800 K Warm-up time: 15 min

DECLINING MARKET

SOX 36W

exempt

UMR 5213

exempt

UMR 5213

Power: 50 - 400 W Lum. Efficacy: 25 - 50 lm/W CRI: 15 - 60 Tcp: 3000 - 5500 K Life Span: 7000-20000 h Integrated

reflector (PAR) “black” light Diverses formes

Quartz Burner

Current leaders

Getter

Socket

Bulb

DECLINING MARKET – Forbidden in 2014

UMR 5213

Power: 35 - 1000 W Lum. Efficacy: 55 - 120 lm/W CRI: 30 - 65 Tcp: 2000 - 2300 K Life span: 7000-25000 h Warm-up lag: 3 - 5 min

SON 4

00W

Alumina burner Current

leaders

Getter

Socket

Bulb

UMR 5213

P=1 Pa

P=15 kPa

P=65 kPa

Spectrum broadening increases with pressure

Light turns to “white” and CRI increases

Luminous efficacy decreases

Luminous efficacy (lm/W)

CRI

LPS

Standard HPS

High CRI – HPS

White HPS

Pressure

UMR 5213

Power: 50 - 2000 W Lum. Efficacy: 54 - 120 lm/W CRI: 65-93 Tcp: 3 700 - 6 100 K Life span: 4 000 - 8 000 h Warm-up lag: 5-10 min

Philips: MASTER MHN-SA MASTER MHN-SA 1800W/956 230V

Philips: MASTER MHN-LA

Philips: MASTER White CDO-TT 100W E40

Low Life Span Limited colour stability

Burner Current Leaders

Getter

Socket Bulb

UMR 5213

Power: 20 - 400 W Lum. Efficacy: 70 -150 lm/W CRI: 86 - 95 Tcp: 3000 - 4500 K Life span: 7000-16000 h Warm-up lag: 3-5 min Controlled Dimming possible

GE constantcolor « NumeLiTe »

Alumina Burner

Current leaders

Getter

Socket UV blocking

bulb

UMR 5213

Osr

am:

Pow

erb

al

CE-Lighiting: Constantcolor

Philips: Mastercolour CDM-R111

CE-Lighiting: Constantcolor PAR

Philips: Mastercolour CDM-TD

Philips: Cosmo White

UMR 5213

UMR 5213

MASTER QL 55W/827

Wavelength(nm)

Flu

x (

au)

Coil -Antenna Ferrite

Plasma

Bulb

Power: 55, 85, 165 W CRI > 80 Tcp: 2 700 - 4 000 K Life span > 60 000 h Warm-up lag: 1 min

Mercury

UMR 5213

Power (W) 1385 3400 Intensity (klm) 134 410 Efficacy (lm/W) 97 120 Tcol (K) 5400 6500 CRI 79 86

Heat

28%

IR

1%

UV

10%

Visible

61%Fusion (US)

Sulphur lamp

UMR 5213

High intensity Low UV Abrupt start-up Hot restrike easy Low cost CCT: 6389 K CRI: >95

0

0,05

0,1

0,15

0,2

0,25

0,3

380 480 580 680

Wavelength (nm)

Puis

sanc

e é

mis

e (

W/n

m)

Test lamp Reference

www.ceravision.com

UMR 5213

Planon™ DBD & ballast The larger display worldwide (3 000 m2, 900 PLANON™)

Dutch telecommunications company, KPN, à Rotterdam.

Osram

General lighting Advertisement Backlighting

Gas : Xe (Hg-free) Pressure > 100 Torr Thickness < 10mm Lifetime > 10 000 h

UMR 5213

cavity µ-wave injection

Metallic Grid

reflector

burner

Wall 1000 K centre

4000 K

Clusters

0.24

0.20

0.16

0.12

0.08

0.04

0.00

Flu

x (

W/m

)

15001000500

Longueur d'onde (nm)

Re2O7 / Xe

WO2Br2 / CsBr / Ar

Spectrum

Energy Balance

100 W

Philips (NL)

Gas: Ar or Xe + Metal Halides Volume : 0.25 cm3 µ-wave injected power : 100 W Frequency: 2.45 GHz (TM010) Tc: 3500 K Luminous Efficacy: 62 lm/W (Re) 56 lm/W (W) CRI: 95

UMR 5213

UMR 5213

Discharge lamps (White Light)

Incandescence (White Light)

Low Pressure Sodium lamp (Yellow light)

160 lm/W

Luminous efficacy evolution across the years (classic technologies only)

Year

Rad

iant

Eff

icac

y (l

m/W

)

UMR 5213

750 700 650 600 550 500 450 400

Wavelength (nm)

800

600

400

200

0

0,3

xP B

B (

W/m

2 n

m)

V(

) (l

m/W

)

h =

PCN (li )V(li )r ,v,b

å

Pin

r

v

b

Only 15% of black body radiation at 3 000 K fall within visible limits

UMR 5213

Light Source & Optics

Electrical Network

Power Supply

Control & Monitoring

Receptor & Application

Constraints

Energetic Environmental...

Legal Socio-Economic...

Physiology Ergonomic

Psychology...

Physics Chemistry Materials...

Electrical Engineering Signal treatment Control science...

UMR 5213

This “lumen” is rigorously defined only since 2011…

Mesopic

Avenue Cambetta (Albi, France)

100% of nominal power 50% of nominal power

45% Energy savings proved in a prototype installation in France

UMR 5213

Electronic gear Controllers Lamp

Control Station

A city “service” network

Control

Monitoring

DA

LI P

roto

col

UMR 5213

What

next

?

Innovative Lighting Systems

New Standards & Metrology

Extra Legislation

Inciting Measures

Market knowledge

High Quality Research

Technological Development

Training

Social knowledge

Environmental Friendly

User Friendly

High Quality of life

Energy Effective

UMR 5213

Thank you