présentation orange foncé avec photo - code aster 4 outline 1. modeling of the reinforced concrete...

46
FORMATION ITech Code_Aster et Salomé- Méca module 4 : Génie Civil (ARN3960) Recherche & Développement 24-25 mai 2018 Copyright © EDF 2018 S. Michel-Ponnelle

Upload: dangnhan

Post on 30-May-2019

213 views

Category:

Documents


0 download

TRANSCRIPT

FORMATION ITechCode_Aster et Salomé-

Méca –

module 4 : Génie Civil(ARN3960)

Recherche & Développement

24-25 mai 2018

Copyright © EDF 2018 – S. Michel-Ponnelle

| 2Aster Génie Civil | 24/05/2018

Part 2 –

Modeling of the

prestressed

reinforced

concrete

| 3

OUTLINE

MODELING OF THE REINFORCED CONCRETE

MODELING OF THE PRESTRESSED CONCRETE

Aster Génie Civil | 24/05/2018

| 4

OUTLINE

1. MODELING OF THE REINFORCED CONCRETE

IN A 3D MODEL

IN A 2D MODEL

IN A 1D MODEL

WITH A GLOBAL MODEL

2. MODELING OF THE TENDONS

Aster Génie Civil | 24/05/2018

| 5Aster Génie Civil | 24/05/2018

MODELING THE STEEL IN REINFORCED CONCRETE :

IN A 3D MODEL

Option #1 : use the BARRE model (or if needed POU_D_T)

Mesh steels with SEG2 elements

Behavior is 1D

Steel and concrete nodes must be identical

Perfect bond between steel and concrete

| 6

Option #2 : use the GRILLE_MEMBRANEmodel

Steel is meshed with 2D elements : QUAD4, TRIA3, QUAD8, TRIA6

Steel and concrete nodes must be identical

Perfect bond between steel and concrete

Behavior law 1D (GRILLE_ISOT_LINE, ...)

Overlay meshes for different directions of reinforcement (CREA_MAILLAGE

or duplication in Salomé )

Aster Génie Civil | 24/05/2018

MODELING THE STEEL IN REINFORCED CONCRETE :

IN A 3D MODEL

| 7

Option #3 : use the MEMBRANEmodel

Steel is meshed with 2D elements : QUAD4, TRIA3, QUAD8, TRIA6

Steel and concrete nodes must be identical

Perfect bond between steel and concrete

Orthotropic behavior law : ELAS only

Aster Génie Civil | 24/05/2018

MODELING THE STEEL IN REINFORCED CONCRETE :

IN A 3D MODEL

| 8

Option #4 : use the 3D model

Steel is meshed with 3D elements

Perfect bond between steel and concrete if nodes are identical.

Behavior law : no restriction

Aster Génie Civil | 24/05/2018

MODELING THE STEEL IN REINFORCED CONCRETE :

IN A 3D MODEL

| 9

Modeling the decohesion steel/concrete

introduction of 3D_INTERFACE elements between concrete 3D and steel 3D or

MEMBRANE

the behavior law CZM_LAB_MIX

Aster Génie Civil | 24/05/2018

MODELING THE STEEL IN REINFORCED CONCRETE :

IN A 3D MODEL

INTERFACE

CONCRETE

STEEL

CONCRETE CONCRETE

STEEL

INTERFACE

| 10

MODELING THE STEEL IN REINFORCED CONCRETE :

IN A 2D MODEL (PLAN OR AXIS)

Option #1 : use the 2D_BARRE model Steel meshed with SEG2 elements

Perfect bond between steel and concrete

Behavior is 1D

Option #2 : use the 2D model Steel is meshed with 2D elements

Behavior law : no restriction

Perfect bond between steel and concrete

(decohesion by introducing X_JOINT elements with JOINT_BA law)

Aster Génie Civil | 24/05/2018

2D/2D

| 11Aster Génie Civil | 24/05/2018

MODELING THE STEEL IN REINFORCED CONCRETE :WITH A SHELL MODEL (DKT)

Use GRILLE_EXCENTREE

Steel meshed with linear 2D elements : QUAD4 or TRIA3

Overlay meshes for different directions of reinforcement (CREA_MAILLAGE

or duplication in Salomé )

Perfect bond between steel and concrete

Behavior law 1D (GRILLE_ISOT_LINE, ...)

CONCRETE

Acier V_2

Acier H-2

Acier V-1

Acier H -1

| 12Aster Génie Civil | 24/05/2018

SOME DETAILS FOR MEMBRANE, GRILLE_MEMBRANE,

GRILLE_EXCENTREE : COMPARISON

MEMBRANE GRILLE_MEMBRANE GRILLE_EXCENTREE

unknowns Displacement Displacement Displacement + rotation

rigidity orthotropic 1D 1D

Behavior law ELAS GRILLE_xxxx GRILLE_xxxx

eccentricity No No yes

PropertyDEFI_MATERIAU

ELAS_MEMBRANE ELAS, … ELAS, …

PropertyAFFE_CARA_ELEM

MEMBRANE/

ANGL_REP or

AXE

GRILLE/

SECTION (m2/ml)

ANGL_REP or AXE

GRILLE/

SECTION (m2/ml),

EXCENTREMENT,

ANGL_REP or AXE

COEF_RIGI_DRZ

Be careful : for MEMBRANE elements, RHO: r [kg/m3 ]* S[m2/ml]

ANGL_REP_1 or ANGL_REP_2 or VECT_1 or VECT_22018

| 13

SOME DETAILS FOR MEMBRANE, GRILLE_MEMBRANE,

GRILLE_EXCENTREE : DUPLICATION OF THE MESH

With Salomé :

Modification /

Transformation /

Duplicate Nodes or/and Elements

With Code_Aster :

CREA_MAILLAGE( MODELE=MO,

CREA_MAILLE=(_F(GROUP_MA = ‘CONCRETE',name of the existing face

NOM = ‘AcierH1', name of the new group

PREF_MAILLE=‘H1')) suffix used for the new mesh

_F(GROUP_MA = ‘CONCRETE',

NOM = ‘AcierV1',

PREF_MAILLE=‘V1')

…)Aster Génie Civil | 24/05/2018

Concrete

Acier V2

Acier H2

Acier V1

Acier H1

| 14

SOME DETAILS FOR MEMBRANE, GRILLE_MEMBRANE,

GRILLE_EXCENTREE : LOCAL DIRECTIONS

Definition of the local directions (X1,Y1,Z1) of the elements

in AFFE_CARA_ELEM

Option 1 : ANGL_REP= (a, b) to define X1

Option 2 : AXE= V (vx,vy,vz) to define Y1

Aster Génie Civil | 24/05/2018

For instance :

If X1= X : (0,0)

If X1= Y : (90,0)

For a hemisphere : ZZZZ189

Define X1 : ANGL_REP_1 or VECT_1

Define X2 : ANGL_REP_2 or VECT_22018

| 15

SOME DETAILS FOR MEMBRANE, GRILLE_MEMBRANE,

GRILLE_EXCENTREE : RESULTS

Comparison on a flexural test

(perfect adhesion of the bars)

Excellent results with the membrane model

Satisfactory results with the grid model

Aster Génie Civil | 24/05/2018

Model Displacement Discrepancy

Reference model

(3D)

87.1 µm

Concrete only 119 µm 37 %

Concrete + Grid

model

84 µm 3.6 %

Concrete +

Membrane model

87.3 µm 0.2 %

(900 000 dof)

| 16

Use of multi-fiber beam POU_D_EM/POU_D_TGM

MESH 1D + Definition of the section of the beam : mesh/point by point (DEFI_GEOM_FIBRE)

Aster Génie Civil | 24/05/2018

MODELING THE STEEL IN REINFORCED CONCRETE :

FOR A 1D MODEL

| 17Aster Génie Civil | 24/05/2018

MODELING THE REINFORCED CONCRETE WITH A

GLOBAL MODEL

DKTG elements and a global constitutive law

GLRC_DM (moderate damage, symetrical reinforcements)

DHRC (moderate damage+ cracking)

GLRC_DAMA (damage for impact)

Advantage : more robust (no softening) especially for dynamic analysis

Typical response in tension for GLRC_DM

| 18Aster Génie Civil | 24/05/2018

OUTLINE

Modeling of the reinforced concrete

Modeling of the prestressed concrete

Principles

Modeling the grouted tendon with DEFI_CABLE_BP/CALC_PRECONT

Modeling the ungrouted tendon with DEFI_CABLE_BP/CALC_PRECONT

| 19

MODELING OF THE PRESTRESSED CONCRETE:

PRINCIPLES

Post-tensioning

Tension in the tendon is not a constant, neither in space nor in time :

in space : friction, elastic strains, slip, …

in time : relaxation of steel, delayed strains in the concrete, … The behavior is

different the tendon is grouted or not :

-> perfect bond between steel and concrete or friction model

Aster Génie Civil | 24/05/2018

1 strand = 7 wires

n strands = 1 tendon with n [1;55]

| 20

MODELING OF THE PRESTRESSED CONCRETE:

PRINCIPLES

Mesh of the tendon: With 3D elements

With (GRILLE_)MEMBRANE

(2D)

With 1D element

Tensioning of the tendon: PRE_EPSI

Fictive thermal strain

Sophisticate tools available in

Code_Aster !

Aster Génie Civil | 24/05/2018

| 21

Modeling of THE PRESTRESSED CONCRETE:

principles

If tendons = 1D elements embedded in a 3D or DKT mesh,

specific tools DEFI_CABLE_BP/CALC_PRECONT enable :

- to use a steel mesh independent of the concrete mesh

- to take into account the tension’s losses in the

tendon such as friction

- ...

2 types of elements are available :

BARRE for grouted tendons

CABLE_GAINE for ungrouted tendons

Aster Génie Civil | 24/05/2018

| 22Aster Génie Civil | 24/05/2018

OUTLINE

Modeling of the reinforced concrete

Modeling of the prestressed concrete

Principles

Modeling the grouted tendon with DEFI_CABLE_BP/CALC_PRECONT

Modeling the ungrouted tendon with DEFI_CABLE_BP/CALC_PRECONT

| 23

MODELING OF THE GROUTED TENDON

METHODOLGY

The DEFI_CABLE_BP command creates loads

corresponding to :

The link (assumed perfect) between the tendon and the concrete :

automatic definition of Lagrange multipliers

The calculation of tension in the cables as recommended by

BPEL/ETCC

The CALC_PRECONT command applies the tension

Aster Génie Civil | 24/05/2018

GRI GRFN1 N6N5N4N3N2

cable1[U4.42.04]

| 24Aster Génie Civil | 24/05/2018

MODELING OF THE GROUTED TENDON : PRESCRIBED

FORMULA FOR THE TENSION IN THE TENDONS

tension at any point of the cable as recommended by BPEL91

F (s)= F̃ (s)− {x flu× F 0+ x ret× F 0+ r ( j)×5

100× ρ1000[F̃ (s)

S a× f prg

− μ0]× F̃ (s)}

F c (s)= F 0exp (− f α− ϕs)

F c (s)× F̃ (s)= [F c(d )]2

Taking into account the instantaneous losses by friction and anchor recoil

| 25Aster Génie Civil | 24/05/2018

MODELING OF THE GROUTED TENDON : PRESCRIBED

FORMULA FOR THE TENSION IN THE TENDONS

tension at any point of the cable as recommended by BPEL91

F (s)= F̃ (s)− {x flu× F 0+ x ret× F 0+ r ( j)×5

100× ρ1000[F̃ (s)

S a× σ y

− μ0]× F̃ (s)}

Taking account of losses depending on time

Creep of concrete

Relaxation of steel(ETCC BPEL)

Shrinkage of concrete

| 26

MODELING OF THE GROUTED TENDON :

DATA SETTINGSMBETON=DEFI_MATERIAU(ELAS=_F(E= 30.E9,...),

BPEL_BETON= _F( ◊ PERT_FLUA = 0,

◊ PERT_RETR = 0),);

MCABLE=DEFI_MATERIAU(ELAS=_F(E=200.E9 ),

BPEL_ACIER=_F( ◊ FROT_COURB =3.0E-3,

◊ FROT_LINE =1.5E-3,

◊ F_PRG =1.94E11,

◊ RELAX_1000 = 0,

◊ MU0_RELAX = 0),)

in DEFI_CABLE_BP

in AFFE_CARA_ELEM

ETCC_BETON=_F()

ETCC_ACIER=_F(◊ COEF_FROT

◊ PERT_LIGNE

◊ F_PRG

◊ RELAX_1000

Aster Génie Civil | 24/05/2018

F0, Δ , r ( j)

S a

| 27

GRI GRFN1 N6N5N4N3N2

cable1

Aster Génie Civil | 24/05/2018

MODELING OF THE GROUTED TENDONDEFI_CABLE_BP COMMAND

cabl_pr = DEFI_CABLE_BP (

♦ MODELE = modele,

♦ CHAM_MATER = chmat,

♦ CARA_ELEM = caelem,

♦ GROUP_MA_BETON = grmabe, Required for kinematic links

| 28Aster Génie Civil | 24/05/2018

MODELING OF THE GROUTED TENDONDEFI_CABLE_BP COMMAND

cabl_pr = DEFI_CABLE_BP (

♦ MODELE = modele,

♦ CHAM_MATER = chmat,

♦ CARA_ELEM = caelem,

♦ GROUP_MA_BETON = grmabe,

♦ TENSION_INIT = f0,

♦ RECUL_ANCRAGE = delta,

◊ ADHERANT = ‘OUI’ (‘NON’)

◊ TYPE_RELAX = ‘SANS’/’BPEL’/’ETCC_DIRECT’/’ETCC_REPRISE’

◊ R_J/NBH_RELAX

Characteristics of the tendon for the tension estimation

GRI GRFN1 N6N5N4N3N2

cable1

| 29Aster Génie Civil | 24/05/2018

MODELING OF THE GROUTED TENDONDEFI_CABLE_BP COMMAND

cabl_pr = DEFI_CABLE_BP (

♦ MODELE = modele,

♦ CHAM_MATER = chmat,

♦ CARA_ELEM = caelem,

♦ GROUP_MA_BETON = grmabe,

♦ TENSION_INIT = f0,

♦ RECUL_ANCRAGE = delta,

◊ ADHERANT = ‘OUI’ (‘NON’)

◊ TYPE_RELAX = ‘SANS’/’BPEL’/’ETCC_DIRECT’/’ETCC_REPRISE’

◊ R_J/NBH_RELAX

♦ DEFI_CABLE = _F (

♦ GROUP_MA = cable1,

♦ GROUP_NO_ANCRAGE = (‘GRI’,’GRF’),)

♦ TYPE_ANCRAGE = (‘ACTIF’, ‘PASSIF’),

◊ TENSION_CT

Definition of the tendon(s)

GRI GRFN1 N6N5N4N3N2

cable1

| 30Aster Génie Civil | 24/05/2018

MODELING OF THE GROUTED TENDONDEFI_CABLE_BP COMMAND

cabl_pr = DEFI_CABLE_BP (

♦ MODELE = modele,

♦ CHAM_MATER = chmat,

♦ CARA_ELEM = caelem,

♦ GROUP_MA_BETON = grmabe,

♦ TENSION_INIT = f0,

♦ RECUL_ANCRAGE = delta,

◊ ADHERANT = ‘OUI’ (‘NON’)

◊ TYPE_RELAX = ‘SANS’/’BPEL’/’ETCC_DIRECT’/’ETCC_REPRISE’

◊ R_J/NBH_RELAX

♦ DEFI_CABLE = _F (

♦ GROUP_MA = cable1,

♦ GROUP_NO_ANCRAGE = (‘GRI’,’GRF’),

♦ TYPE_ANCRAGE = (‘ACTIF’, ‘PASSIF’),

◊ TENSION_CT

◊ CONE = _F ( ♦ RAYON = rayon,

♦ LONGUEUR = long,

♦ PRESENT = ('OUI','NON'))

]

Definition of the « diffusion cone »

GRI GRFN1 N6N5N4N3N2

cable1

[U4.42.04]

| 31Aster Génie Civil | 24/05/2018

MODELING OF THE GROUTED TENDON:

POTENTIAL DIFFICULTIES

| 32Aster Génie Civil | 24/05/2018

MODELING OF THE GROUTED TENDON:

“DIFFUSION CONE”

Possibility of introducing a diffusion cone

Real situation Without modelling the shaft With modeling of the

effect of shaft vanishing

mesh size required

management of redundant boundary conditions

[U4.42.04]

| 33Aster Génie Civil | 24/05/2018

MODELING OF THE GROUTED TENDON

METHODOLGY

The AFFE_CHAR_MECA command defines the effective loads

CAB1 = DEFI_CABLE_BP (...)

CMCAB=AFFE_CHAR_MECA(

MODELE=MO,

RELA_CINE_BP=_F(CABLE_BP=CAB1,

SIGM_BPEL=‘OUI' or 'NON',

RELA_CINE='OUI' or 'NON'))

Dependant on the strategy used

| 34Aster Génie Civil | 24/05/2018

MODELING OF THE GROUTED TENDON :

TWO STRATEGIES

Strategy #1

chcab=AFFE_CHAR_MECA(...

RELA_CINE_BP=_F(

CABLE_BP=cable,

SIGM_BPEL=‘OUI',

RELA_CINE='OUI'))

RES1 = STAT_NON_LINE(...

EXCIT=(_F(CHARGE = CLIM,),

_F(CHARGE = chcab)),

...,)

Strategy #2

chcab =AFFE_CHAR_MECA(...

RELA_CINE_BP=_F(

CABLE_BP=cable,

SIGM_BPEL=‘NON',

RELA_CINE='OUI',),);

RES1 = CALC_PRECONT(...

EXCIT=(_F(CHARGE =CLIM,),),

CABLE_BP=cable,

...,)

| 35Aster Génie Civil | 24/05/2018

MODELING OF THE GROUTED TENDON :

TWO STRATEGIES

STAT_NON_LINE

Loss of tension due to the

instantaneous strain of the concrete

No stages for the prestress loading

Easier implementation

Tensions le long du câble

0,E+00

1,E+06

2,E+06

3,E+06

4,E+06

5,E+06

6,E+06

1 11 21 31 41 51 61 71 81 91 101 111 121 131

Elément

Tensio

n (

N)

BPEL DCBP sans correction DCBP après correction

CALC_PRECONT

Final tension in cables =

BPEL/ETCC

Allows prestress loading stages

A little more complex

Strategy #1 :

STAT_NON_LINE

Strategy #2 :

CALC_PRECONT

| 36Aster Génie Civil | 24/05/2018

MODELING OF THE GROUTED TENDON : CALC_PRECONT COMMAND

statnl [evol_noli] = CALC_PRECONT(

◊ reuse = statnl, ◊ ETAT_INIT = _F(…)

♦ MODELE = mo ,

♦ CHAM_MATER = chmat ,

♦ CARA_ELEM = carac ,

♦ COMP_INCR = _F()

♦ INCREMENT =_F( ♦ LIST_INST = litps ,

◊ INST_FIN = instfin,),

♦ EXCIT =(_F( ♦ CHARGE = chi ), ),

♦ CABLE_BP = cabl_pr ,

◊ CABLE_BP_INACTIF = cabl_pr ,

+ mot-clé facteur STAT_NON_LINE)

The tendons that will be prestressedbetween instini and instfin

Inactive tendons (no stiffness)

Boundary conditions, instant loads,

kinematic links related to tendons

already prestressed

[U4.42.05]

| 37Aster Génie Civil | 24/05/2018

MODELING OF THE GROUTED TENDON :

EXAMPLE

CAB_BP=DEFI_CABLE_BP(...)

CH_L=AFFE_CHAR_MECA(MODELE=MO,

RELA_CINE_BP=_F(CABLE_BP=CAB_BP,

SIGM_BPEL=‘NON', RELA_CINE='OUI'));

EVOL = CALC_PRECONT(CABLE_BP = CAB_BP,

EXCIT = _F(CHARGE = CL),

INCREMENT =_F(LIST_INST=L,

INST_FIN = 1.,

…)

EVOL = STAT_NON_LINE(reuse =EVOL,

ETAT_INIT =_F(EVOL_NOLI= EVOL)

EXCIT=(_F(CHARGE= CL),

F(CHARGE=CH_L),

Define the tendon

Define the load :CH_L contains the

kinematic links

| 38Aster Génie Civil | 24/05/2018

MODELING OF THE GROUTED TENDON :

EXAMPLE

CAB_BP=DEFI_CABLE_BP(...)

CH_L=AFFE_CHAR_MECA(MODELE=MO, RELA_CINE_BP=_F(CABLE_BP=CAB_BPi,

SIGM_BPEL=‘NON', RELA_CINE='OUI',),);

EVOL = CALC_PRECONT(CABLE_BP = CAB_BP,

EXCIT = _F(CHARGE = CL),

INCREMENT =_F(LIST_INST=L,

INST_FIN = 1.,

…)

EVOL = STAT_NON_LINE(reuse =EVOL,

ETAT_INIT =_F(EVOL_NOLI= EVOL)

EXCIT=(_F(CHARGE= CL),

F(CHARGE=CH_L),

….

Tensioning of tendons defined in CAB_BP, from t= 0 to 1

Loads : only boundary conditions + instant loads

| 39Aster Génie Civil | 24/05/2018

MODELING OF THE GROUTED TENDON :

EXAMPLE

CAB_BP=DEFI_CABLE_BP(...)

CH_L=AFFE_CHAR_MECA(MODELE=MO, RELA_CINE_BP=_F(CABLE_BP=CAB_BPi,

SIGM_BPEL=‘NON', RELA_CINE='OUI',),);

EVOL = CALC_PRECONT(CABLE_BP = CAB_BP,

EXCIT = _F(CHARGE = CL),

INCREMENT =_F(LIST_INST=L,

INST_FIN = 1.,

…)

EVOL = STAT_NON_LINE(reuse =EVOL,

ETAT_INIT =_F(EVOL_NOLI= EVOL)

EXCIT=(_F(CHARGE= CL),

F(CHARGE=CH_L),

….Continuation of the calculation

Load : boundary conditions + kinematiclinks related to the tendons + other loads

| 40

MODELING OF THE TENDON :

TIPS

The discretization of the concrete and the steel should be similar (one node of

steel in every cell of concrete)

Combine a maximum tendons in DEFI_CABLE_BP

Option CONE : Pay attention to redundant connections (not factorable matrix) +

size of elements

If TYPE_ANCRAGE = ('PASSIF', 'PASSIF'), there is no tension in the cable !

For strategy#1, in case of a continuation calculation (POURSUITE), define a new

load without tension, otherwise the two tensions will be added

In case of non-linear simulation, pay attention to the loss you want to take into account with DEFI_CABLE_BP

For prestress loading stages, you can alternate STAT_NON_LINE and

CALC_PRECONT, but pay attention to the loads to be taken into account !

see documentation U2.03.06 or practical session or test FORMA42Aster Génie Civil | 24/05/2018

| 41Aster Génie Civil | 24/05/2018

OUTLINE

Modeling of the reinforced concrete

Modeling of the prestressed concrete

Principles

Modeling the grouted tendon with DEFI_CABLE_BP/CALC_PRECONT

Modeling the ungrouted tendon with DEFI_CABLE_BP/CALC_PRECONT

| 42

MODELING OF THE UNGROUTED TENDON /

GROUTED TENDON : MAIN DIFFERENCES

Aster Génie Civil | 24/05/2018

GROUTED UNGROUTED

MESH SEG2 SEG3

MODELING BARRE CABLE_GAINE

Behavior law ELAS, VMIS_ISOT_LINE, … KIT_DDI : a law for the

tendon + CABLE_GAINE_FROT

Prestressing STAT_NON_LINE orCALC_PRECONT

CALC_PRECONT only

Tension Prescribed formula Obtained by the

calculation

| 43

MODELING OF THE UNGROUTED TENDON

SPECIFICITIES (1/2)

DEFI_MATERIAU (CABLE_GAINE_FROT =

_F(TYPE= ‘FROTTANT’,

FROT_COURBE = xx,

FROT_LINE = xxx,

PENA_LAGR = XXX))

Choice of PENA_LAGR is important. It can be estimated by : 2𝜋𝑟𝑐𝑎𝑏𝑙𝑒𝜎𝑟𝑒𝑓

𝑢𝑟𝑒𝑓

AFFE_CHAR_MECA()

You have to think to enforce a condition on the anchorage nodes (GLIS)

Aster Génie Civil | 24/05/2018

U

GLIS

l

U

GLIS

l

U

GLIS

| 44

MODELING OF THE UNGROUTED TENDON

SPECIFICITIES (2/2)

EVOL=CALC_PRECONT (

CABLE_BP= CABLE1,

COMPORTEMENT =( _F(RELATION = ‘KIT_GC’,

KIT_DDI =(‘ELAS’,

‘CABLE_GAINE_FROT’),

GROUP_MA = CABLE),

_F(RELATION=‘ELAS’,

GROUP_MA=‘BETON’)),

CONVERGENCE = _F(RESI_REFE_RELA= 1.E-6,

EFFORT_REFE = 1.E5,

MOMENT_REFE = 1.0,

SIGM_REFE = 1.E6,

DEPL_REFE = 1.E-1)

The convergence could be difficult : the displacement is enforced with

only one step time + one for each slip at the anchorage.

Use RESI_REFE_RELA for the convergence criterion

Aster Génie Civil | 24/05/2018

| 45Aster Génie Civil | 24/05/2018

THANKS

| 46Aster Génie Civil | 24/05/2018

End of presentation

Is something missing or unclear in this document?

Or feeling happy to have read such a clear tutorial?

Please, we welcome any feedbacks about Code_Aster training materials.

Do not hesitate to share with us your comments on the Code_Aster forum

dedicated thread.