presentation on german renewable energy on 23

91
A BRIEF JOURNEY ON RENEWABLE ENERGY IN GERMANY JS Arora

Upload: jasbir-arora

Post on 05-Dec-2014

1.559 views

Category:

Documents


0 download

DESCRIPTION

Indian policy makers will take lessons from this exhaustive presentation.

TRANSCRIPT

Page 1: Presentation On German Renewable Energy On 23

A BRIEF JOURNEYON

RENEWABLE ENERGYIN

GERMANY

JS Arora

Page 2: Presentation On German Renewable Energy On 23

MAP OF GERMANY

JS Arora

Page 3: Presentation On German Renewable Energy On 23

GERMANY AT A GLANCE

� Location:Central Europe

� Area:357,104 km² (about 1/9 of India) 3,287,263 km²

� Neighboring countries:Austria, Belgium, Czech Republic, Denmark, France, Luxemburg, Netherlands, Poland, Switzerland

� Climate:Average annual temperature: 9 °C

� Rivers are navigable:Rhine 865 km, Elbe 700 km, Danube 647 km

JS Arora

Page 4: Presentation On German Renewable Energy On 23

GERMANY AT A GLANCE

� Population

� 2008: 82.2 million (India 1150 million)� Population density: 230 per km² ( India 336 per km² )

� Political SystemState system: Democratic-parliamentary federal state

� Capital city: Berlin

� Head of state: Prof. Dr. Horst Köhler

JS Arora

Page 5: Presentation On German Renewable Energy On 23

GERMANY AT A GLANCE

� Currency: 1 euro = 100 cents (~ Rs. 80)

� Gross domestic product (GDP) 2008: EUR 2,489.40 billion (India 762.5 billion euro)

� GDP growth 2008: +1.3 %

� GDP per person (2008):EUR 30,310

� Shares in the GDP: Services 50.9 %, industry and construction 30.4 %, trade 17.9 %, agriculture 0.9 %

JS Arora

Page 6: Presentation On German Renewable Energy On 23

World Electricity

Growth Projections

JS Arora

Page 7: Presentation On German Renewable Energy On 23

World Electric Power Generation Growth

JS Arora

Page 8: Presentation On German Renewable Energy On 23

World Electricity Data

JS Arora

Page 9: Presentation On German Renewable Energy On 23

JS Arora

Page 10: Presentation On German Renewable Energy On 23

Power Generation

in

Germany

JS Arora

Page 11: Presentation On German Renewable Energy On 23

Germany 2009 : Total Generation=616 BKwH

JS Arora

Page 12: Presentation On German Renewable Energy On 23

Germany Electricity Data

2005 2006 2007 2008 2009

Install

capacity MW120400 120800 120800 126700 130000

Generation

(Billon Kwh)579.7 594.8 594.8 594.6 616

Consumption

(Billon Kwh)545.8 549.1 549.1 551 551

JS Arora

Page 13: Presentation On German Renewable Energy On 23

Germany Electricity Policy

�The 1935 Energy Industry Act amended in 1996, provided for an immediate and full market opening without transitional arrangements.

JS Arora

Page 14: Presentation On German Renewable Energy On 23

Germany Electricity Policy

� The 1991 Act on Feeding Electricity from Renewable Energies into the Public Grid which sought to promote the production of electricity from renewable energy sources had to be adapted to the liberalized electricity market.

� Adequate measures had not been taken to achieve the government's climate protection goals: namely, a 25% reduction of CO2 in the period 1990 to 2005.

JS Arora

Page 15: Presentation On German Renewable Energy On 23

Germany Electricity Policy

The focus of energy policy 1998 to 2002

� Ending the use of nuclear energy– On June 11, 2001, the federal government and the

operators of nuclear power plants signed the agreement that serves as a basis for the orderly termination of the use of nuclear power in Germany.

JS Arora

Page 16: Presentation On German Renewable Energy On 23

Germany Electricity Policy

The focus of energy policy 1998 to 2002� Renewable energies

– EU directive on the promotion of electricity from renewable energies in the internal market for electricity. For Germany, a doubling to 12.5% by the year 2010 is aimed, and for the EU as a whole to 22%.

– The law on renewable sources on energy (Erneuerbare Energien Gesetz, EEG) requires grid operators to purchase electricity from renewable sources at fixed prices. Covering, wind, geothermal, photovoltaics, small hydro (below 5 MW), biomass and certain forms of waste

– Purchase from Co-generation plants at pre-determined prices.

JS Arora

Page 17: Presentation On German Renewable Energy On 23

Germany Electricity Policy

The focus of energy policy 1998 to 2002� Climate protection

– In October 2000 the German government adopted a climate protection program to achieve the national target of a 25% lowering of CO2 emissions by 2005 from 1990 levels.

– On November 9, 2000 German industry and the federal government concluded a voluntary commitment agreement for climate protection. By 2005, CO2 emissions are to be lowered by 28% and by 2012 the greenhouse gases named in the Kyoto Protocol are to be lowered by 35% (each relative to 1990 levels).

JS Arora

Page 18: Presentation On German Renewable Energy On 23

Germany Electricity PolicySummary

� Pre-liberalisation (over 1000 mixed private and state-owned companies, 9 large vertically integrated firms, regional/local monopolies)

� 1996 Directive 96/92/EC (market opening, accounting unbundling, different options for network access)

� 1998 Erneuerbare Energien Gesetz, EEG(100% market opening),

� 2003 Directive 2003/54/EC (legal unbundling, regulator required)

� 2005 Bundesnetzagentur (regulator for electricity and gas)

JS Arora

Page 19: Presentation On German Renewable Energy On 23

Renewable Electricity Generation

in

Germany

JS Arora

Page 20: Presentation On German Renewable Energy On 23

Renewable Energy Sources Act

� 1991: Energy Feed-In Law (StrEG)

� 2000: Renewable Energy Sources Act (EEG)

� 2004: Optimised new EEG (Amended)

� 2009: Optimised new EEG (Amended)

JS Arora

Page 21: Presentation On German Renewable Energy On 23

What is a Feed-In Tariff?

� Feed-in Tariff s (FITs) aim to support the market development of renewable energy technologies, specifically for electricity generation. Fits put a legal obligation on utilities and energy companies to purchase electricity from renewable energy producers at a favourable price per unit, and this price is usually guaranteed over a certain time period.

� Tariff rates are usually determined for each renewable technology in order to take account of their differing generation costs, and to ensure profitability. Therefore, the FIT rate set by a particular government for solar, wind or geothermal generated electricity may vary depending on the costs associated with each of thesetechnologies.

� The guaranteed access to the grid, favorable rate per unit and the tariff term.

JS Arora

Page 22: Presentation On German Renewable Energy On 23

The Feed-in- Tariff : German Success story

� The German FIT has been a huge success – and is generally regarded as the best example of an effective FIT law.

� The first real Feed-In Law in Germany was the Stromeinspeisungsgesetz (StrEG) introduced in 1991, otherwise known as the Electricity Feed-In-Law.

� This took the form of a simple one-page bill for assisting producers of electricity from small hydro stations and wind energy installations.

JS Arora

Page 23: Presentation On German Renewable Energy On 23

Renewable Energy Sources Act, main features

� Term of the contracts: maximum 20 years

� Planning and investment reliability by guaranteed fixed

prices for RE-power

� Returns of 7% taken as the basis for the calculations

� Annual decrease of the tariffs

� RE-priority for grid access, transmission and distribution

� Equalization of additional costs for electricity from RES

between all grid operators and electricity suppliers; Costs paid by all consumers

� All different types of RES are considered

JS Arora

Page 24: Presentation On German Renewable Energy On 23

The German Success story

� The StrEG was modified in several ways in April 1998 with the adoption of the Energy Supply Industry Act, and in 2000, the Erneuerbare-Energien-Gesetz (EEG), otherwise known as the 2000 Renewable Energy Sources Act, was introduced in response to deregulation of the German electricity market in 1998, and a number of other problems with the StrEG. The EEG represented an update, refinement and replacement of German renewable energy policy.

JS Arora

Page 25: Presentation On German Renewable Energy On 23

The German Success story

� The EEG Amendment in 2004 committed Germany to increase the share of renewable energy in the country’s total electricity supply to 12.5% by 2010, and to at least 20% by 2020. The tariff rates in the 2004 Amendment ranged from €0.0539 per kWh for electricity generated from wind, to €0.5953 for solar electricity from small facade systems.

� The rates at which the guaranteed tariff would reduce each year (annual digression rates) were also set fairly high in the amendment, ranging from 1%-6.5% annually

depending on the technology.

JS Arora

Page 26: Presentation On German Renewable Energy On 23

Success of the German Renewable Energy Sources Act

� Creation of a large internal market

� Creation of more than 250,000 new jobs in Germany

� Series of innovative developments in RE technologies

� Costs for market introduction of RE considerably lower than in other countries

� Renewable Energy Sources Act is a cost effective stimulus package

JS Arora

Page 27: Presentation On German Renewable Energy On 23

The German Success story

� As of 2009, feed-in tariff policies have been enacted in 63 countries around the world, including in Australia, Austria, Brazil, Canada, China, the Czech Republic, Denmark, France, Germany, Greece, Hungary, Iran, Israel, Italy, the Republic of Korea, the Netherlands, Portugal, Singapore, South Africa, Spain, Sweden, Switzerland, and in some states in the United States.

JS Arora

Page 28: Presentation On German Renewable Energy On 23

History of the Renewable Energy Sources Act

JS Arora

Page 29: Presentation On German Renewable Energy On 23

Germany Renewable Energy

JS Arora

Page 30: Presentation On German Renewable Energy On 23

R.E. sources as a share of gross electricity consumption in Germany

JS Arora

Page 31: Presentation On German Renewable Energy On 23

JS Arora

Page 32: Presentation On German Renewable Energy On 23

Wind Energy

in Germany

JS Arora

Page 33: Presentation On German Renewable Energy On 23

JS Arora

Page 34: Presentation On German Renewable Energy On 23

JS Arora

Page 35: Presentation On German Renewable Energy On 23

The EEG – basis of success for German wind energy

� For wind energy an ‘initial tariff’ is fixed for at least 5 and up to 20 years.

� It is reduced to a ‘basic tariff’ depending on how local wind conditions compare to a so called ‘reference yield’.

� Wind installations on very good sites (reference yield of 150 %) receive the initial tariff for example for five years, while for turbines on lesser sites this period can be extended.

� The tariffs are altogether paid for 20 years.

JS Arora

Page 36: Presentation On German Renewable Energy On 23

The EEG – basis of success for German wind energy

� As of 1 January 2009 the initial tariff for onshore wind energy was increased to 9.2 cent/kWh.

� The basic tariff is set at 5.02 cent/kWh. There will be an annual degression of 1 % for new installations every year.

� The tariff for offshore wind energy got increased to 13 cent/kWh plus an additional ‘sprinter bonus’ of 2 cents/kWh for projects which will come into operation before the end of 2015.

� The initial 15 cents/kWh will be paid for a period of 12 years. After that, the tariff will decrease to 3.5 cents/kWh.

� Offshore tariffs will annually decrease at 5 % for new installations starting from 2015. JS Arora

Page 37: Presentation On German Renewable Energy On 23

The EEG – basis of success for German wind energy

� Grid operators are obliged to feed in electricity produced from renewable energy and buy it at a minimum price within their supply area.

� Furthermore, the new EEG requires of grid operators not only that they extend the grid, but also that they optimise and enhance the existing grid.

� Failure to comply with this can lead to claims for damages by anyone willing (but unable) to feed in.

JS Arora

Page 38: Presentation On German Renewable Energy On 23

JS Arora

Page 39: Presentation On German Renewable Energy On 23

JS Arora

Page 40: Presentation On German Renewable Energy On 23

JS Arora

Page 41: Presentation On German Renewable Energy On 23

Wind Energy Technology

What works & what doesnWhat works & what doesn’’tt

JS Arora

Page 42: Presentation On German Renewable Energy On 23

FUTURE DEVELOPMENTS Wind Energy in Germany by 2020

� The domestic market has been very stable in recent years and will even rise again once the administrative hurdles such as general distance regulations and height limits have been overcome and construction can continue. This is mainly a political issue. National and Federal State targets for renewable electricity require a growing contribution of wind energy in Germany.

� According to calculations from BWE the overall German onshore capacity could be at 45,000 MW, with an additional 10,000 MW offshore wind. With a generation of approximately 150 TWh/year wind energy could deliver 25 % of the German electricity consumption by this time.

� Future challenges include a speedy grid expansion with also using underground cable in critical areas.

JS Arora

Page 43: Presentation On German Renewable Energy On 23

JS Arora

Page 44: Presentation On German Renewable Energy On 23

Wind industry gears up for high level participation in Copenhagen climate talks

“Wind power will play a key role in combating climate change, but we need a clear framework and a price on carbon for the sector to reach its full potential,”

“All analyses show that the largest contribution to solving the climate issue must come from the private sector, and we stand ready to contribute, but we need a clear, robust and legally binding international framework to do so.”

� Industry scenarios demonstrate that wind energy can save as much as 10 bn tons of CO2 by 2020.

� Steve Sawyer, GWEC Secretary General.

JS Arora

Page 45: Presentation On German Renewable Energy On 23

� Solar Energy

JS Arora

Page 46: Presentation On German Renewable Energy On 23

46

PV is the most fascinating way to produce electricity

Advantages

� PV can be used everywhere worldwide

� PV can be used grid connected and off-grid

� PV can be used in every size

� PV needs only one initial investment

� PV does not harm the environment

� PV has the biggest potential among all RES

So

urc

e:

Ale

o

Source: Solarwatt

Source: Phönix

Source: SMA

Why do we need Photovoltaics?

Solar Markets Germany, September 15, 2009, AthensJS Arora

Page 47: Presentation On German Renewable Energy On 23

Why do we need Photovoltaics?

Challenge: Today, PV is often the most expensive way to produce electricity using RES

However: PV has the highest cost reduction potential

PV has to be developed today in order to have (1) enough solar capacity available in one decade (2) at a competitive price

JS Arora

Page 48: Presentation On German Renewable Energy On 23

Solar Photo Voltaic

� Solar photovoltaics (PVs) are arrays of cells containing a material that converts solar radiation into direct currentelectricity. Materials presently used for photovoltaics include amorphous silicon, polycrystalline silicon, microcrystalline silicon, cadmium telluride,

� Photovoltaic production has been doubling every 2 years, increasing by an average of 48 percent each year since 2002, making it the world’s fastest-growing energy technology. Solar PV power stations today have capacities ranging from 10-60 MW although proposed solar PV power stations will have a capacity of 150 MW or more

JS Arora

Page 49: Presentation On German Renewable Energy On 23

Solar PVAdvantages

� The 89 petawatts of sunlight reaching the Earth's surface is plentiful -almost 6,000 times more than the 15 terawatts of average electrical power consumed by humans. This natural resource can be utilised by by using Solar PV

� Solar power is pollution-free during use. Production end-wastes and emissions are manageable using existing pollution controls. End-of-use recycling technologies are under development.

� PV installations can operate for many years with little maintenance or intervention after their initial set-up, so after the initial capital cost of building any solar power plant, operating costs are extremely low compared to existing power technologies.

� Solar electric generation is economically superior where grid connection or fuel transport is difficult, costly or impossible. Long-standing examples include satellites, island communities, remotelocations and ocean vessels. JS Arora

Page 50: Presentation On German Renewable Energy On 23

Solar PV

Advantages

� When grid-connected, solar electric generation replaces some or all of the highest-cost electricity used during times of peak demand (in most climatic regions). This can reduce grid loading, and can eliminate the need for local battery power to provide for use in times of darkness. These features are enabled by net metering. Time-of-use net metering can be highly favorable, but requires newer electronic metering, which may still be impractical for some users.

� Grid-connected solar electricity can be used locally thus reducing transmission/distribution losses (transmission losses in the US were approximately 7.2% in 1995).

� Compared to fossil and nuclear energy sources, very little research money has been invested in the development of solar cells, so there is considerable room for improvement. Nevertheless, experimentalhigh efficiency solar cells already have efficiencies of over 40% and efficiencies are rapidly rising while mass-production costs are rapidly falling.

JS Arora

Page 51: Presentation On German Renewable Energy On 23

Solar PV

Disadvantages

� Photovoltaics are costly to install. While the modules are oftenwarranted for upwards of 20 years, much of the investment in a home-mounted system may be lost if the home-owner moves and the buyer puts less value on the system than the seller.

� Solar electricity is not available at night and is less available in cloudy weather conditions from conventional silicon based-technologies. Therefore, a storage or complementary power systemis required.

� Apart from their own efficiency figures, PV systems work within the limited power density of their location's insolation.

� Solar cells produce DC which must be converted to AC (using a grid tie inverter) when used in current existing distribution grids. This incurs an energy loss of 4-12%

JS Arora

Page 52: Presentation On German Renewable Energy On 23

Solar power in Germany

� Germany is the world's top photovoltaics (PV) installer, accounting for almost half of the global solar powermarket in 2007.

� Out of the 20 biggest photovoltaic plants, 15 are in Germany,

� Germans installed about 1,300 megawatts of new PV capacity in 2007, up from 850 megawatts in 2006, for a cumulative total exceeding 3,830 megawatts.

JS Arora

Page 53: Presentation On German Renewable Energy On 23

Solar power in Germany

� Germany added a further 2 GW in 2008 and 2.5 GW in 2009 taking the total to 8.3 GW by end of 2009.

� As capacity has risen, installed PV system costs have been cut in half between 1997 and 2007.

� Solar power now meets about 1 percent of Germany's electricity demand, a share that some market analysts expect could reach 25 percent by 2050.

� The country has a feed-in tariff for renewable electricity, which requires utilities to pay customers a guaranteed rate for any solar power they feed into the grid.

JS Arora

Page 54: Presentation On German Renewable Energy On 23

Germany's largest photovoltaic (PV) power plants

DC Peak

Power

Location Description MW Hr per

year

40 MW Muldentalkreis 550,000 thin-film modules

40,000

12 MW Arnstein 1408 SOLON mover 14,000

10 MW Pocking 57,912 Solar madules 11,500

6.3 MW Muenhausen 57,600 solar modules 6,750

5 MW Buerstadt 30,000 BP Solar modules

4,200

5 MW Espenhain 33,500 Shell Solar Modules

5,000

JS Arora

Page 55: Presentation On German Renewable Energy On 23

Germany's largest photovoltaic (PV) power plants

DC Peak

Power

Location Description MW Hr per year

4 MW Merseburg 25,000 BP Solar modules 3,400

4 MW Gottleborn 50,000 solar modules 8,200

4 MW Hemaau 32,740 solar modules 3,900

3.3 MW Dingolfing Solara Sharp solar modules 3,050

1.9 MW Guenching Sharp solar modules -

1.9 MW Minihof Sharp solar modules -JS Arora

Page 56: Presentation On German Renewable Energy On 23

Why Germany is adding large Solar Power capacities

� The reason is not a breakthrough in the economics or technology

of solar power but a law adopted in 2000. It requires the country's huge old-line utility companies to subsidize the solar upstarts by buying their electricity at marked-up rates that make it easy for the newcomers to turn a profit. Their cleanly created power enters the utilities' grids for sale to consumers.

� The law was part of a broader measure adopted by the German government to boost production of renewable energy sources,

including wind power and biofuels. As the world's sixth-biggest producer of carbon-dioxide emissions, Germany is trying to slash its output of greenhouse gases and wants renewable sources to supply a quarter of its energy needs by 2020.

JS Arora

Page 57: Presentation On German Renewable Energy On 23

Solar Energy : Installed capacity

In the Year 2000 Install Capacity was 44 MW In 2003 Some 20,000 solar electricity systems yielding an output of about 145 Megawatts (MW) were installed. Germany saw slow growth in 2006, but still remains by far the largest PV market in the world. 968 MW of PV were installed in Germany in 2006. In 2008 total Capacity is 5351 MW.

JS Arora

Page 58: Presentation On German Renewable Energy On 23

German Solar Energy

� Germans installed about 1,300 megawatts of new PV capacity in 2007, up from 968 megawatts in 2006, for a cumulative total exceeding 3,830 megawatts.

� Germany added a further 1.5 GW in 2008 and 2.5 GW in 2009 taking the total to 8.0 GW by end of 2009.

� As capacity has risen, installed PV system costs have been cut in half between 1997 and 2007.

� Solar power now meets about 1 percent of Germany's electricity demand, a share that some market analysts expect could reach 25 percent by 2050.

JS Arora

Page 59: Presentation On German Renewable Energy On 23

© BSW-Solar 2009 59

Japan

230 MWp; 4%

China

50 MWp; 0.8%

South Korea

290 MWp; 5%

India

70 MWp; 1.2%

Australia

40 MWp; 0.7%RO World

195 MWp; 3%

Canada

20 MWp; 0.3%

USA

500 MWp; 8%

RO Europe

53 MWp; 0.9%

Portugal

42 MWp; 0.7%

Belgium

20 MWp; 0.3%

France

150 MWp; 3%

Czech Republic

20 MWp; 0.3%

Italy

220 MWp; 4%

Spain

2600 MWp; 43%

Germany

1500 MWp; 25%

New installed PV Power

2006: 1600 MWp

2007: 2650 MWp(+66%)

2008: 6000 MWp

(+126%)

Photovoltaic World Market addition during 2008

Source: Preliminary figures ofNational PV Associations, Stryi-Hipp, Feb 26th 2009

Red Letters:

Countries with Feed-in tariff

schemes

USA342 MW

Solar Markets Germany, September 15, 2009, AthensJS Arora

Page 60: Presentation On German Renewable Energy On 23

World Largest Thin-Film PV

� Waldpolenz Solar Park, which is the world’s largest thin-film photovoltaic (PV) power system, was built by German developer and operator at a former military air base to the east of Leipzig in Germany. The power plant is a 40 MW solar powersystem using state-of-the-art thin film technology, and was fully operational by the end of 2008. 550,000 First Solar thin-film modules are being used, which supply about 40,000 MWh of electricity per year.

� The installation is located in the Muldentalkreis district in the state of Saxony in eastern Germany, built on half of the location’s 220 hectares in the townships of Brandis and Bennewitz. The investment costs for the Waldpolenz solar park amount to some Euro 130 million.

JS Arora

Page 61: Presentation On German Renewable Energy On 23

World Largest Thin-Film PV

JS Arora

Page 62: Presentation On German Renewable Energy On 23

© BSW-Solar 2009 62

1500

1100

850850

600

3 3 3 3

150

80784012101274

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

annually installed PV power in MWp total installed PV power in MWp

Development of the German PV market

Milestones

1991: First Feed-in Law (FIT with low tariffs)

1991-1995: 1 000 roofs program (grants)

1999-2003: 100 000 roofs program (loans)

2000: Renewable Energy Sources Act (EEG) (FIT)

2004: Amendment of EEG (FIT)

PV Market Data 2008

Newly installed power 1 500 MWp

Total installed power 5 334 MWp

No. of total systems installed 500 000

Turnover 2008 6 Bln € / 8.1 Bln $

Employees 45 000

To

tal in

sta

lled

PV

po

wer

in M

Wp

esti

mati

on

Solar Markets Germany, September 15, 2009, AthensJS Arora

Page 63: Presentation On German Renewable Energy On 23

63Solar Markets Germany, September 15, 2009, Athens

The differentiation of tariffs create different market segmentsin Germany.

1.

Lo

ca

tio

n o

f

PV

in

sta

lla

tio

n

2. Size of PV installation

3 main PV market segments

2. Project market

1. Retail market

3. BIPV market

Feed-in tariff

< 30 kWp

> 30 kWp

> 100 kWp

> 1000 kWp

On buildings

€46.75

ct

€44.48

ct€ 43.99 ct

-8% -10% -25%

€43.01

ct

€40.91

ct

€39.58

ct

€33.00

ct

Free land / ground mounted

€ 35.49ct -10% € 31.94ct

JS Arora

Page 64: Presentation On German Renewable Energy On 23

© BSW-Solar 2009 64

Germany: Market Segments of on-grid PV SystemsImage: Sharp

Size of the system

Gro

un

d

Ro

of

top

B

IPV

mo

un

ted

Effort

of m

ounting

Image: Solarwatt

residential homes 1-10 kWpmulti family houses, public + social buildings, farms, commercial plants

10-100 kWp

Image: Solarwatt

Image: Sharp

Image: BP

Large and very large commercial > 100 kWp

Image: Schüco

Image: Geosol Image: Geosol

Image: Grammer

55%37%

8%Est. market shares in 2010

<1%

Solar Markets Germany, September 15, 2009, AthensJS Arora

Page 65: Presentation On German Renewable Energy On 23

65

80150

600

850 850

1100

1350

1500

1700

1900

10001100

1200

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

an

nu

ally

in

sta

lle

d P

V p

ow

er

in M

Wp

annually installed PV power in MWp upper limit lower limit

Amendment of the EEG from June 2008:Feed-in Tariffs for PV will be reduced faster as of 2009

8%/

10%

8%/

10%

9%9%

Degression rate of feed-in tariffs

Up to 2008: 5% / 6.5% (roof top/ground)2009/2010: 8% / 10% (< / >100 kWp)2011/2012: 9%Below/above corridor: -1%/+1%

-1%-1%

-1%

+1%

+1%

+1%

Degression rate 5%/6.5%

est

© BSW-Solar 2009 Solar Markets Germany, September 15, 2009, AthensJS Arora

Page 66: Presentation On German Renewable Energy On 23

PV Solar in Some EU

Country Consumption

W/capita (2008)

2005

PV(MW)

2006

PV(MW)

2007

PV(MW)

2008

PV(MW)

Germany 65 1910 3063 3846 5351

Spain 75 58 118 733 3405

Luxexbourg

50 24 24 24 24

Belgium 6.7 2 4 22 71

France 1.4 26 33 47 91

UK 0.4 11 14 19 22JS Arora

Page 67: Presentation On German Renewable Energy On 23

67

Solar PV

� Photovoltaics has a great potential worldwide– but it is necessary to build up market and industry today

� The German PV market is growing continously

� Driver of the market is the feed-in tariff system (EEG)

� There are already more than 40.000 jobs created in the PV sector in Germany

� Prices for PV modules were reduced significantly in the last 6 months, therefore investments in PV systems are much more attractive today

Solar Markets Germany, September 15, 2009, AthensJS Arora

Page 68: Presentation On German Renewable Energy On 23

Solar Thermal

� Solar heating is the usage of solar energy to provide space or water heating.

� Worldwide the use was 88 GW thermal (2005). Growth potential is enormous.

� At present the EU is second after China in the installations. If all EU countries used solar thermal as enthusiastically as the Austrians, the EU’s installed capacity would already be 91 GWth

� In 2005 solar heating in the EU was equivalent to more than 686,000 tons of oil.

JS Arora

Page 69: Presentation On German Renewable Energy On 23

Solar Thermal

Solar thermal applications cover 0.6 % of the total heating demand in Germany in 2010 and 2.6 % in 2020.

In 2008, the solar thermal share was 0.4 %.

The forecast predicts an increase in the installed collector area per year to more than 6 million m2 by 2020 - three times the amount of 2008.

JS Arora

Page 70: Presentation On German Renewable Energy On 23

Functions of Solar Thermal

� In the simplest solar thermal application, a discrete solar collector gathers solar radiation to heat air or water for domestic, commercial or industrial use. The solar panel is usually a flat plate collector that consists of a metal box with a glass or plastic cover and a black absorber plate at the bottom.

� Absorber plates are usually painted with selective coatings that absorb and retain heat better than ordinary black paint. They are normally made of metal, typically copper or aluminium, because it is a good conductor of heat. Copper is more expensive, but it is a better conductor and is less prone to corrosion than aluminium. The sides and bottom of the collector are usually insulated to minimize heat loss.

� In locations with average available solar energy, flat plate collectors are sized at approximately 0.5 to 1 square foot per gallon of daily hot water use. Evacuated tube collectors have absorber plates that are metal strips running down the center of each tube.

� Convective heat losses are reduced by virtue of the vacuum in the tube. For swimming pool heating, plastic or rubber are used to make low-temperature absorber plates.

�JS Arora

Page 71: Presentation On German Renewable Energy On 23

When will solar power become competitive?

� From 2018, solar power will be cheaper than conventional power� The German renewable energy sources act envisages a reduction of 5-6.5% per annum in� refunds for solar power fed into the grid. The average price of one kilowatt-hour (kWh) of

solar� power will decrease nominally at 5% per annum from 49 cents today to 23 cents in 2020.� Conventional power on the other hand will become dearer. At a minor increase of 2.5% per� annum, the price of power will rise for the private consumer from 19.6 cents/kWh today to

28� cents/kWh in 2020. This way, solar power for the private customer will be cheaper from

2018� than obtaining conventional power.� Solar power systems today are more than 60% cheaper than 1990� The theory of the learning curve shows that every doubling of photovoltaic output leads to a� 20% fall in price. This has also been confirmed in Germany: since 1990 the price of� photovoltaic systems has fallen over 60% from EUR 13,500 to about EUR 5,000 today.� Between 1999 and 2003, the fall in price was 25% in the 100,000-roofs scheme.� By way of international comparison, prices of solar power modules show a continual

downward

JS Arora

Page 72: Presentation On German Renewable Energy On 23

Solid Biomass

� Solid biomass as energy source:

– long tradition in Germany

– German companies are the world leaders

a) Heating systems

b) Combined Heat & Power plants (CHP): Heat and Electricity

� Solid biomass:

– agricultural and forestry produce

– in Germany: wood pellet

– Potential in EAGA: residues from agriculture / forestry !

� Market facts Germany:

– 160 electricity plants (960 MW)

– 1.000 biomass heating plants

– 70.000 pallet boilers and ovens in homes

JS Arora

Page 73: Presentation On German Renewable Energy On 23

Biogas

� Biogas industry in Germany

– Power generation from gaseous biomass is greatly expanding in Germany

– clear trend towards larger, high-capacity systems

– German companies offer a wide range of building, operating and maintaining services/products

Facts:650 new systems installed Electrical capacity: 1.100 MWagricultural residues and energy plants applicable

JS Arora

Page 74: Presentation On German Renewable Energy On 23

Geothermic Power

“Geothermal sources could supply

Germany's electricity needs 600

times over”

� Construction boom of GP plants due to a new energy law in Germany

– geothermic electricity is supported by the government

– heat and electricity generation

– 2007: 130.000 heat pumps and 4 geothermal electricity plants installed

– investments of 4 BN Euro in 150 geothermal power projects

JS Arora

Page 75: Presentation On German Renewable Energy On 23

Emissions for Electricity Generation in Germany (Grams per MWh)

Generation type SO2 NOx Particulates CO2

Nuclear 32 70 7 19,700

Coal 326 560 182 815,000

Gas 3 277 18 362,000

Oil 1,611 985 67 935,000

Wind 15 20 4.6 6,460

PV (Home Application) 104 99 6.1 53,300

JS Arora

Page 76: Presentation On German Renewable Energy On 23

No. of Players in the Market

Contribution to Total Electricity Generation (%)

10%

80%

10%

850 Municipal Utilities 6 Supra regional companies

80 Regional companiesJS Arora

Page 77: Presentation On German Renewable Energy On 23

No. of Players in the Market (cont)

6 Largest co. % of 80% of market

37%

34%

13%

9%4%3%

E.on (VIAG &VEBA)

REW AG (RWE &

VEW)

EnBW/EdF

VEAG

HEW

BEWAG

JS Arora

Page 78: Presentation On German Renewable Energy On 23

OrientationTurbines can be categorized into two overarching classes based on the orientation of the rotor

Vertical Axis Horizontal Axis

JS Arora

Page 79: Presentation On German Renewable Energy On 23

Vertical Axis Turbines

Advantages� Omnidirectional

– Accepts wind from any angle

� Components can be mounted at ground level

– Ease of service– Lighter weight towers

� Can theoretically use less materials to capture the same amount of wind

Disadvantages� Rotors generally near ground

where wind poorer� Centrifugal force stresses

blades� Poor self-starting capabilities� Requires support at top of

turbine rotor� Requires entire rotor to be

removed to replace bearings� Overall poor performance and

reliability� Have never been commercially

successful

JS Arora

Page 80: Presentation On German Renewable Energy On 23

Horizontal Axis Wind Turbines

� Rotors are usually Up-wind of tower

� Some machines have down-wind rotors, but only commercially available ones are small turbines

JS Arora

Page 81: Presentation On German Renewable Energy On 23

JS Arora

Page 82: Presentation On German Renewable Energy On 23

Active vs. Passive Yaw

� Active Yaw (all medium & large turbines produced today, & some small turbines from Europe)

– Anemometer on nacelle tells controller which way to point rotor into the wind

– Yaw drive turns gears to point rotor into wind

� Passive Yaw (Most small turbines)

– Wind forces alone direct rotor� Tail vanes

� Downwind turbines

JS Arora

Page 83: Presentation On German Renewable Energy On 23

Number of Blades – One

� Rotor must move more rapidly to capture same amount of wind

– Gearbox ratio reduced– Added weight of counterbalance

negates some benefits of lighter design

– Higher speed means more noise, visual, and wildlife impacts

� Blades easier to install because entire rotor can be assembled on ground

� Captures 10% less energy than two blade design

� Ultimately provide no cost savings

JS Arora

Page 84: Presentation On German Renewable Energy On 23

Number of Blades - Two

� Advantages & disadvantages similar to one blade

� Need teetering hub and or shock absorbers because of gyroscopic imbalances

� Capture 5% less energy than three blade designs

JS Arora

Page 85: Presentation On German Renewable Energy On 23

Number of Blades - Three

� Balance of gyroscopic forces

� Slower rotation– increases gearbox &

transmission costs

– More aesthetic, less noise, fewer bird strikes

JS Arora

Page 86: Presentation On German Renewable Energy On 23

Blade Composition Wood

Wood– Strong, light weight,

cheap, abundant, flexible

– Popular on do-it yourself turbines

� Solid plank� Laminates� Veneers� Composites

JS Arora

Page 87: Presentation On German Renewable Energy On 23

Blade CompositionMetal

� Steel

– Heavy & expensive

� Aluminum

– Lighter-weight and easy to work with

– Expensive

– Subject to metal fatigue

JS Arora

Page 88: Presentation On German Renewable Energy On 23

Blade ConstructionFiberglass

� Lightweight, strong, inexpensive, good fatigue characteristics

� Variety of manufacturing processes

– Cloth over frame

– Pultrusion

– Filament winding to produce spars

� Most modern large turbines use fiberglass

JS Arora

Page 89: Presentation On German Renewable Energy On 23

Hubs

The hub holds the rotor together and transmits motion to nacelleThree important aspects

� How blades are attached– Nearly all have cantilevered

hubs (supported only at hub)

– Struts & Stays haven’t proved worthwhile

� Fixed or Variable Pitch?� Flexible or Rigid Attachment

– Most are rigid– Some two bladed designs

use teetering hubs

JS Arora

Page 90: Presentation On German Renewable Energy On 23

Towers

� Monopole (Nearly all large turbines)

– Tubular Steel or Concrete

� Lattice (many Medium turbines)

– 20 ft. sections

� Guyed– Lattice or monopole

� 3 guys minimum

– Tilt-up� 4 guys

� Tilt-up monopole

JS Arora

Page 91: Presentation On German Renewable Energy On 23

THANK YOUEx Director HRD

Damodar Valley Coporation (DVC)

JS Arora