presentation drying parameters(1)

Upload: pravaatparhi

Post on 06-Apr-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 Presentation Drying Parameters(1)

    1/19

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T1

    Drying by desorption: a toolto determine spray-drying parameters

    Pierre SCHUCK1*, Eric BLANCHARD2,Evelyne ONILLON2, Anne DOLIVET1, Serge

    MJEAN1, Radwan JALAM1 & Romain JEANTET1

    1: UMR 1253 Joint Research Unit on Science and Technologyof Milk and Egg (INRA, Agrocampus Rennes),

    65 rue de Saint-Brieuc, 35042 Rennes Cedex, France.2: Laiterie de Montaigu, 85600 Montaigu, France.3: Food Technology, AgrocampusRennes, France.

    *: [email protected]

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T2

    Introduction (1) Spray drying is useful a technique for water evaporation using hot air, butvery black box in nature

    The only way to determine a priori& precisely the parameters of spray drying

    for food products consists in pilot / plant experiments

    expensive, timeconsuming, empirical & sometimes unreliable

    ?

    To date, there are no available method in order to determine precisely theparameters of spray drying for food products before drying

    Why ?

  • 8/2/2019 Presentation Drying Parameters(1)

    2/19

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T3

    Air in contact with thedroplet T=45C ; p=9 583 Pa

    Drying airT=200C ; p=1554 Pa

    Introduction (2)

    DROPLET

    ENERGY TRANSFER

    WATER TRANSFER

    POWDERAIR

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T4

    Introduction (3)

    DROPLET

    ENERGY TRANSFER

    WATER TRANSFER

    AIR

    2500 kJ.kg-1 DA

    Free water

    n x 2500 kJ.kg-1 DA

    Bound water

    Inlet air

  • 8/2/2019 Presentation Drying Parameters(1)

    3/19

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T5

    ?

    Why?

    Water availability &drying behavior needsextra energy to overcomebinding of water

    Kinetic of mass / heattransfer phenomena determination of boundary /local conditions ( & watercontent)

    Introduction (4)

    Watertransfer

    Boundary

    layer

    Droplet

    Drying hot air = 200C; P e = 1554 Pa

    Heattransfer

    Surface of the dropleth = 45C; P e = 9853 Pa

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T6

    Alternative spray drying modeling, based on drying physics (mass & heattransfer laws / balance). 2 levels :

    Overall mass and energy balanceestablished over the entire spraydryer

    Running (settings) and control ofthe drying plant for (weatherconditions) Schuck et al. IFCET (2005), Schuck et al. DairySci. &Technol. (2008)

    Air inlet, H2O

    Air outlet, H2O

    Global level INRA

    Local mass (drying rate) and energybalance established at the droplet

    Management and control of theproduct quality / functionality Chen & Lin AIChEJournal (2005)

    dropletd, H2O = (t)

    Micro level REA / Monash

    One difficulty remaining taking into account water availability = (product)

    Introduction (5)

    Droplet

  • 8/2/2019 Presentation Drying Parameters(1)

    4/19

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T7

    Inlet air

    Fluid bed

    Chamber

    CyclonesConcentrate

    Powder

    0

    AH

    RH

    210

    2

    Outlet air

    2 AH

    Hot air 1

    1

    AH2 : Dryer capacity / free water evaporation

    RH2 aw x 100

    ?

    ?

    Isenthalpic drying 1 & RH1

    No energy losses and only free water

    Spray drying water New method

    Introduction (6)

    0

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T8

    PRODUCT

    PRODUCT

    H2o H2o

    9600 Pa

    Step: Concentrate desorption

    by aw-metry

    ZEOLITE

    ZEOLITESENSORmRH (%) T (C)

    SENSOR

    96 Pa96 Pa

  • 8/2/2019 Presentation Drying Parameters(1)

    5/19

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T9

    1 2 3 4 5 6 7

    0

    5

    10

    15

    20

    25

    30

    35

    40

    0

    Time (h)

    mRH(%)

    Step: Desorption curve vs. time

    WATER

    CONCENTRATE

    Drying

    kinetics

    Constant rate :

    free water

    Falling rate :

    bounded water

    Energy = Lev + E

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T10

    1

    2

    1

    0

    1 2 3 4 5 6 70

    5

    10

    15

    20

    25

    30

    35

    40

    0

    Time (h)

    Dryingkinetics

    E

    Plotting temperature / humidity

    pathway considering non

    isenthalpic behavior

    Step

    : Desorptioncurve vs. time

  • 8/2/2019 Presentation Drying Parameters(1)

    6/19

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T11

    Step : Calculation by INRA Software

    integrating the ratio of bound andunbound water.

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T12

    Concentrate

    Powder

    Step : View of certain

    drying parameters onthe Enthalpic MollierDiagram

    Inlet air afterheating1

    1

    Inlet air beforeheating0

    0

    InletAirOutlet air

    after drying

    22

    Outlet Air

  • 8/2/2019 Presentation Drying Parameters(1)

    7/19

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T13

    Step : Spray drying parameterscalculated with INRA Software

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T14

    Materials

    BB

    II

    OO

    NN

    OOVV

    Pilot workshop : Researchand development forevaporation / drying

    MSD type drying tower80 kg of water evaporated

    per hour

  • 8/2/2019 Presentation Drying Parameters(1)

    8/19

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T15

    y = 0.9917x

    R2

    = 0.97

    100

    140

    180

    220

    260

    300

    100 120 140 160 180 200 220 240 260 280 300

    Measured inlet air temperature (C)

    Calculatedinletairtemperature(C

    )

    Results (1)

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T16

    10

    100

    1000

    10000

    100000

    10 100 1000 10000 100000

    Measured parameters

    Calculatedparameters

    [C] and Powder flow rate

    Air TC

    Outlet air AH

    r2 0.99

    r2 0.95

    r2 0.93

    Results (2)

  • 8/2/2019 Presentation Drying Parameters(1)

    9/19

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T17

    Conclusions (1)

    ? With this method, it is possible to predict

    optimal drying air temperatures ( 1 -5%) for food products in relation to theirdesorption behavior

    (, TS, , Cp) [C]

    kWh

    Air (chamber, FB)m

    H2OPowder (RH2)

    % drying FB

    Current weather conditions (0)

    Desorptioncurve analysis

    (, H, RH) air 1 (chamber, FB)

    ESC

    Yield

    Cost ($ . t-1 water / powder)

    Powder, [C]m

    OutputsInputs

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T18

    Conclusions (2)

    Validation tests (> 30 products) indicate that this method could be applied to a largerange of food products & spray dryer types.

    For reasons of calculation speed and reliability, the method has been computerizedand can already be used in the determination of parameters of spray drying for foodproducts. Spray Drying Parameters Simulation & Determination Software(SD2P)

    NIDDN.FR.001.480002.002.R.P.2005.000.30100

    ? With this method, it is possible to predict

    optimal drying air temperatures ( 1 -5%) for food products in relation to theirdesorption behavior

    The experimental device differs from drying installation in term of duration of drying,temperature of drying, ratio surface / volume etc. We have developed somecomputational tool by taking it into account to improve the method.

  • 8/2/2019 Presentation Drying Parameters(1)

    10/19

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T19

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    220

    240

    260

    280

    300

    0 0,01 0,02 0,03 0,04 0,05 0,06

    0

    2

    10

    1

    2

    Concentrate

    InletAir

    Powder

    Outlet Air

    Inlet air afterheating

    Inlet air beforeheating

    Outlet airafter drying

    Prospects

    1

    Particletemperature

    Glass transitiontemperature

    (T-Tg)

    Temps / Position

    Axe Z

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T20

    Demonstration

    SD2P

  • 8/2/2019 Presentation Drying Parameters(1)

    11/19

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T21

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T22

  • 8/2/2019 Presentation Drying Parameters(1)

    12/19

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T23

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T24

  • 8/2/2019 Presentation Drying Parameters(1)

    13/19

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T25

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T26

  • 8/2/2019 Presentation Drying Parameters(1)

    14/19

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T27

    15 210 24 2Whey

    40 230 220 2MPC/I WPC/I

    20 215 28 2Skimmilk

    Multi stagespray-dryer

    Compactspray-dryer

    Pilot plantspray-dryer

    Powders

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T28

  • 8/2/2019 Presentation Drying Parameters(1)

    15/19

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T29

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T30

  • 8/2/2019 Presentation Drying Parameters(1)

    16/19

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T31

    Humid Air Chart of Inlet Air

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T32

    Humid Air Chart of Integrated Fluid Bed Inlet Air

  • 8/2/2019 Presentation Drying Parameters(1)

    17/19

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T33

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T34

    Desorption curves analysis

    Kind of bound water

    Approaching Tg

    Couchman-Karasz equation extended in tertiary mixtures

    332211

    g333g222g111g

    CpWCpWCpW

    TCpWTCpWTCpWT

    ++

    ++=

    Critical outlet air Tg + (40) C

    tightly bound to constituents, solvent

    Whey, UF/MF permeate, mono & disaccharides,

    polyols, hydrolyzed compounds, minerals

    Low Tg / stickiness

    High Tg / High outlet compatible

    trapped in a hydrophobic network, capillary

    Micellar casein, maltodextrins

    Inlet & flow rate

    Outlet air & AH

    Droplet & PowderSD2P AH2

    Tg DSC

    Critical powder Tg + (20) C

  • 8/2/2019 Presentation Drying Parameters(1)

    18/19

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T35

    Examples (1)

    MDDE 33

    MDDE 7

    InletC

    OutletC

    AHg.kg-1DA

    [C]kg.h-1

    /ton Water

    /ton Powder

    Powderkg.h-1

    215 4,646 74.9 38.789 41 3,146

    237 4,646 86.7 44.589 41 3,146

    UFPC

    UFPNC (1)

    213 3,204 88. 3 69.489 41 1,835

    237 3,204 94.9 74.589 41 1,835

    Bound and free waterSD

    2

    P

    INRA

    UFPNC (2) 153 1,751 116.0 91.180 27 1,003

    Spray Drying Parameters Simulation & Determination Software

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T36

    Standardization

    SMP 1

    SMP 2

    InletC

    OutletC

    AHg.kg-1DA

    [C]kg.h-1

    /ton Water

    /ton Powder

    Powderkg.h-1

    209.4 4,083 68.2 65.678.7 50.3 2,547

    218.8 4,083 71.2 69.577.3 50.3 2,547

    Examples (2)

    SD2PINRA

    Spray Drying Parameters Simulation & Determination Software

  • 8/2/2019 Presentation Drying Parameters(1)

    19/19

    D I E T

    A G R I C U L T U R E

    E N V I R O N M E N T37

    MERCI THANKYOU