presentation aquafit4use end-congress 8th of may 2012 conference presentations... · presentation...

12
1 End-congress in Brugge, 8 th /9 th of May 2012 Presentation Aquafit4Use end-congress 8 th of May 2012 Retort for refining of acetic acid 1884

Upload: nguyenngoc

Post on 08-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

1

End-congress in Brugge, 8th/9th of May 2012

Presentation

Aquafit4Use end-congress 8th of May 2012

Retort for refining of acetic acid 1884

2

Damms

Electricity

Steam

Waste gas tr.

WWTPWTP

El. distribution

Typical fresh water use on the Perstorp Industrial Estate

� Possible effects on product quality

� Possible effects on equipment & piping

� Possiple effects on working environment

Issues to consider when planning water reuse "low" "high"

Parameter Effluent Cooling Water Process Water Newater RO-permeate unit

pH 7,9 6,5-9,0 7,6 7,0-8,5 7,1 ---

conductivity 3800 (< 200) 170 < 250 5,3 µS/cm

alkalinity (M) (CaCO3) 20-100 mg/l

alkalinity (HCO3-) 270 21 5,5 mg/l

hardness (CaCO3) < 30 < 30 mg/l

ammonia nitrogen (NH4-N) 0,16 (< 10) 0,1 < 0,5 < 0,01 mg/l

nitrate nitrogen (NO3-N) 32 (< 60) 0,21 < 0,1 mg/l

TDS 2,59 < 1000 < 180 0,06 mg/l

turbidity 2,1 0,34 < 5 < 0,1 NTU

color, 405 nm 28 9 < 5 mg Pt/l

BOD7 < 3 mg/l

COD(Cr) 198 mg/l

TOC 60 < 10 1,0-2,0 < 2 mg/l

total nitrogen 22 mg/l

total phosphorous 0,12 mg/l

chloride (Cl-) 800 < 60 (90) 33 < 30 12 mg/l

sulphate (SO42-) 960 240 10 < 5 1,4 mg/l

Ca 12,5 < 24 8,4 < 30 < 0,2 mg/l

Fe 0,046 < 0,6 0,061 < 0,05 < 0,02 mg/l

K 7,95 1,5 < 1 mg/l

Mg 3,32 2,2 < 0,5 mg/l

Na 1110 20 < 20 12 mg/l

Al 0,097 0,6 < 0,1 < 0,01 µg/l

Mn 0,018 < 0,02 0,02 < 0,05 < 0,01 µg/l

2008-11-01 make-up, 5 *conc 2008-10-29 Singapore 2009-12-22

Target values for “high” and “low” water quality for reuse

3

� If central can produce good enough water quality, more capacity from one installation (more infrastructure needed)

� Local can be more specific to reach a certain water quality and might be combined with product recovery (less need for new infrastructure)

� If possible, work on both ends !

Central vs local reuse optionsBackground to examples

Overview AquaFit WP 5.2.2, technologies

Existing

WWTP

Pilot

MBR

Coolin

g to

wer m

ake-u

p

”Hig

her q

uality

”use

Pro

cess w

aste

wate

r ( x p

lants )

Coolin

g to

wer

1 Treat

ment

A

Treat

ment

B

AA

1

Treat

ment

C

AB

1

AC

1

AC

2

Treat

ment

A

Treat

ment

B

MA

1

Treat

ment

C

MB

1

MC

1

MC

2

A B C

AS1 Denutritor RO + AOP retentate

AS2 AOP Denutritor ROAS3 ROMBR1 Denutritor RO + AOP retentate

MBR2 AOP Denutritor ROMBR3 RO

Overview AquaFit WP 5.2.3, technologies

Plant A

Plant B

Process d

Process c

Process b

Process a

Cooling tower

Process z

Process y

Process x

Com

mon se

wer to

WW

TP

Treatment

A

Treatment

B

Treatment

C

Treatment

D

RO AOP MBR Denutritor

case 1a A B

case 1b A B ?

case 1c A B ?

case 2 Dcase 3 Dcase 4 D

case 5 D

4

Effect of pilot technologies, examples

Combination #5, AS2 ( AS>AOP>DeN>RO )

basic treatment of organics reduce biofouling/biofilm down stream

reduce patogenes, biofouling/biofilm down stream; reduce organic content ( increase biodegradeability )

reduce scale, salts & metals ( and patogenes & biofouling/biofilm down stream )

D1 D2

RO

D3

D1= feed ROD2= permeate ROD3= concentrate RO

C1

C4

Denutritor

C2 C3

C1= influent Denutri torC2= after column 1C3= after column 2C4= effluent Denutri tor

A3

WWTP

A1= clarifier l ine 1A2= clarifier l ine 2A3= to tal effluent WWTP E2E1

ozone/AOP

E1= influent ozone/AOPE2= effluent ozone/AOP

Perstorp Specialty Chemicals AB, WWTP

Design data Removal 2011

TOC 94,8 %BOD7 99,7 %COD 95,4 %

Q 3 600 m3/dTOC 6 200 kg/dBOD7 8 500 kg/dCOD 14 000 kg/d

Effluent 2011

Q 2 007m3/dTOC 108 kg/dBOD7 7 kg/dCOD 309 kg/d P-tot 0,19 mg/l

Influent 2011

Q 2 220 m3/dTOC 2 100 kg/dBOD7 2 421 kg/dCOD 6 654 kg/d

Sampling point,

influent

Sedimentering 1100 m2

Sedimentering 2150 m2

Flotation

50 m2

Sampling point,

effluent

Equalisation

tank 1

3000 m3

Aeration

tank 2

3000 m3

Aeration

tank 1

1500 m3

Clarifier 1

100 m2

Clarifier 2

150 m2

Flotation

50 m2Pre-

treatment

Equalisation

tank 2

2000 m3

Cooling dam

Logisticon Water Treatment

Schematic overview of MBR pilot unit Logisticon Wate Treatment

5

Interior of Logisticon MBR pilot

PC

VVV

BM = Biofouling monitor

P = Pressure gauge

WM = Water meter

V = Valve

Setup Denutritor biofilter with pre-filter

V

P P P

[Effluent]

WM

Influent

buffer 1

AS / MBR / AOP

Redox O2

Data loggerTemp.

BM BM BMBM

pH

Prefilter

Influent

buffer 2

aeration

Denutritor biofilter, filler/filter

� Three biofilters in series (each 12.5 L)

� Filler: Polyurethane (PUR) foams

� course � medium � fine

� 200 � 400 � 700 m2/m3

� Upflow operation (0.3 – 0.4 m3/hr)

Filling material (course foam) Biofilms on filling material

Flow Scheme ozone/AOP

6

Ozone/AOP pilot for AquaFit4Use

Lay out of the RO membrane filtration pilot at Perstorp

RO concentrate tank

RO membrane

concentrate

bleed

pressure pumpprefilter 10 µm

permeatedP

TP

Q

Q

Q

wash tank

feed

RO pilot for AquaFit4Use

RO pilot by

Perstorp Specialty Chemicals AB

Operational parameters of the RO system

Flux ( lmh ) 15 - 20

Pressure ( bar ) 10 - 20

Temperature ( °C ) 25 - 30

Flow, feed ( L/min ) 35

Flow, perm ( L/min ) 2,5

Flow, bleed ( L/min ) 2,5

Flow, recirc ( L/min ) 30

Recovery, water ( % ) 50

VCF 2

Difficult to compare results and draw generic conclusions when testing

on “real” process waste water/effluent due to variations in the feed.

7

Development of normalized permeability

AS1

0,00

0,20

0,40

0,60

0,80

1,00

1,20

0 10000 20000 30000 40000 50000 60000

Vacc,perm

Kw/K

w,o

blocked prefilter

As an indication of the performance of the RO system, the development of

Rtot as a function of produced RO permeate volume was investigated

J = (dP – dPo) / η * Rtot

Development of normalized total resistance of the RO membrane(WWTP effluent after biofiltration as feed to RO)

AS1

0,00

0,50

1,00

1,50

2,00

0 10000 20000 30000 40000 50000 60000

Vacc,perm ( L )

Rto

t/R

tot,

o

blocked

prefilter

Development of normalized total resistance of the RO membrane(MBR effluent without further treatment as feed to RO)

0,00

0,50

1,00

1,50

2,00

0 20000 40000 60000 80000 100000 120000 140000

Rto

t/R

tot,

o

Vacc,perm ( L )

MBR3

high VCF

8

The resistance-in-series model is correlated to the flux and permeability:

J = (dP – dPo) / η * (Rmem + Rfo)

=> J = (dP – dPo) / η * Rtot

Kw = J / (dP – dPo)

J = flux; m3/m2/s or in practice l/m2/h (lmh)

Kw = permeability; l/m2/h/Pa

dP = pressure difference between feed and permeate; Pa

dPo = osmotic pressure difference at membrane surface and permeate; Pa

η = viscosity of water; Ns/m

Rmem = hydraulic resistance of the membrane; 1/m

Rfo = fouling resistance of the fouling component; 1/m

Total normalized fouling resistance of the RO membrane

at different permeate volume produced

0

0,5

1

1,5

2

2,5

AS1 MBR3 MBR1 MBR2 AS2

set up

Rfo

ul *

E+

14 start train

20 m3

40 m3

60 m3

80 m3

The resistance-in-series model can be used to explain the effect of biofouling from

EfOM on the permeability/flux decline.

It is assumed that the resistance of these different EfOM fractions can be added together as:

Rtot = Rmem + Rcoll,fo + RHMW,fo + RMMW,fo + RLMW,fo + Rrr,fo + Rirr,fo

Rtot = total resistance of the membrane including all types of fouling; 1/m

Rmem = hydraulic resistance of the membrane; 1/m

Rcoll,fo = fouling resistance of colloids and weak interaction with the membrane; 1/m

RHMW,fo = fouling resistance of HMW fractions with weak interaction to the membrane; 1/m

RMMW,fo = fouling resistance of MMW fractions with weak interaction to the membrane; 1/m

RLMW,fo = fouling resistance of LMW fractions with weak interaction to the membrane; 1/m

Rrr,fo = fouling resistance of reversible adsorption with the used cleaning routine; 1/m

Rirr,fo = fouling resistance of irreversible adsorption with the used cleaning routine; 1/m

Hypothesis regarding anticipated fouling model

membrane

fouling/scaling

biofouling

crossflow

9

Composition of active sludge (EfOM) by size (from Jiang Tao)

Organic substancesfrom biological treatment processes

Reduction of EfOM organic carbonby MBR (UF) filtration

www.doc-labor.de

-20

0

20

40

60

80

100

120

140

rel sig

nal

ret time ( min )

LC-OCD

MBR feed

MBR effluent

Reduction the HMW fraction of EfOMorganic carbon by MBR (UF) filtration

Conseptual Full Scale Unit for Reuse of WWTP effluent

EqualisationTank

Flotation

Unit

WWTP

Disc

RO Membrane

UFMembrane

Buffer

Tank

100 m3/h 100 m3/h

100 m3/h

50 m3/h

25-50 m3/h0-25 m3/h

Back W

ash W

ate

r

Back Wash Water

Retentate

Permeate

to Steam

Permeate

(Cleaning)

Overflow

To Recipient

Biological

Filter

(Cleaning)

(Cleaning)

100 m3/h

50 m3/h

To Recipient

Generation

Plant

10

Investment costs:

RO unit of 2500 m2, 200 €/m2; 50 m3/h 500 k€

MF/UF unit of 4400 m2, 160 €/m2; 100 m3/h 700 k€

Fine screen drum filter; 105 m3/h 100 k€

Housing ( included above ) 0 k€

Tanks 100 k€

Connections 50 k€

Electricity & Instrumentation 100 k€

Extras 50 k€

Sum 1 600 k€

Pumping station & piping 200 k€

Total sum 1 800 k€

Operational costs on yearly basis:

Energy, RO; 2000 kWh/day 73 k€Energy, MF/UF 200 kWh/day 7,3 k€

Energy, fine screen drum filter; 6 kWh/day 0,2 k€Energy, pumping; 15 kWh/day 0,5 k€

Chemicals, RO unit 12 k€

Chemicals, MF/UF unit 8 k€Membranes, RO unit; new every 5 years 30 k€

Membranes, MF/UF unit; new every 5 years 25 k€Sum 156 k€

Operational cost, specific 0,36 €/m3The cost for energy was set to 0,1 €/kWh.

Assuming a depreciation of investment costs around 10% and an interest rate of 10 %, the total yearly cost including investment can be estimated to 516 k€/year, corresponding to 1,18 €/m3.

tank 1

(collectingtank)

evaporator

wash. column

tank 2

(reusedinternally)

to WWTP

4 m3/h

13 m3/h3 m3/h

6 m3/h>10 m3/h

%-conc.

xxx mg /l

prod.

stream

Example local loop,Neo plant case(today)

RO tank 1

(collectingtank)

evaporator

wash. column

tank 2

(reusedinternally)

Make Up

Cooling Tower

permeate

retentate

4 m3/h

13 m3/h

3 m3/h

6 m3/h

10 m3/h

>10 m3/h

%-conc.

min. conc.

xxx mg /l

yyy mg /l

� recovered product

� reuse of water� less hydraulic & organic load on WWTP

Example local loop,Neo plant case(reuse & recovery)

AOP

prod.

stream

11

Thank You for Your Attention !Thank You for Your Attention !Thank You for Your Attention !Thank You for Your Attention !

…and Thank You to our partners in AquaFit4Use WP 5.2.2/3

European Commission

Fouling mechanism of MBR membranes Fouling mechanism of MBR membranes

12

Fouling mechanism of MBR membranes

(From Jiang Tao)

The resistance-in-series model can be used to explain the effect of biofouling from

EfOM on the permeability/flux decline. It is assumed that the resistance of these different EfOM fractions can be added together as:

Rtot = Rmem + Rcoll,fo + RHMW,fo + RMMW,fo + RLMW,fo + Rrr,fo + Rirr,fo

Rtot = total resistance of the membrane including all types of fouling; 1/m

Rmem = hydraulic resistance of the membrane; 1/m

Rcoll,fo = fouling resistance of colloids and weak interaction with the membrane; 1/m

RHMW,fo = fouling resistance of HMW fractions with weak interaction to the membrane; 1/m

RMMW,fo = fouling resistance of MMW fractions with weak interaction to the membrane; 1/m

RLMW,fo = fouling resistance of LMW fractions with weak interaction to the membrane; 1/m

Rrr,fo = fouling resistance of reversible adsorption with the used cleaning routine; 1/m

Rirr,fo = fouling resistance of irreversible adsorption with the used cleaning routine; 1/m

Flux and pressure vs produced permeate volume in WP 5.2.2

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

0 10648 25472 45919 60065 80858 97423 104082 143830 179800 186015 220192 256413 329985 365173 402144 416161 437989 480576

Vacc (L)

J (

lmh

)

0

10

20

30

40

50

60

70

80

P (

bar)

J P

AS1 MBR2

AS2

MBR1MBR3

The Pilots !!!!