presentation analytical hplc

Download Presentation Analytical HPLC

If you can't read please download the document

Upload: miguel-rocha

Post on 09-Apr-2016

17 views

Category:

Documents


0 download

DESCRIPTION

Química Analítica - HPLC

TRANSCRIPT

  • !!"#

    $ $

    %

    $&

  • $ (

    $!)*+

    $", $

    -"",$! -"",$!,

    "!,"$!

  • .

    !

    Column L Particle size Flow rate Rel. time Rel. R s Rel. P

    250 mm 10 m 0.5 ml/min 1 1 1

    125 mm 5 m 1.0 ml/min 0.25 1 4

    87.5 mm 3.5 m 1.43 ml/min 0.125 1 8

    62.5 mm 2.5 m 2.0 ml/min 0.0625 1 16

    45 mm 1.8 m 2.8 ml/min 0.0321 1 32

  • /

    )0+

    *"*)+ 123425

    .606

    77)87+ --9 -79:79--

    )9-+ )9-+ $

    9

    (()77! 8 --9:79

  • 1

    )+

    -;%-;?>>

  • 4

    !" #$%&

    069$ /02@8

    069$ $$2/2@ 8

    /02@8 ( $ 2/2@8 ) $ 2/2@8 3%#3 $

    2/2@82/2@8 69$ /02@8 * 7 $

    02@8 +

  • 6

    !" #$%&

    $ /02@8 3% 3#3"$

    00@8 * $ /02@8 + 3% 3#3"$

    B@8 %$ /02@8 3"$ /02@8 % !$02@8 % ! % !

    $02@8 ( 3" !%

    %1@8 ) #"! !022

    /222)$%+ !3$8$ #!%)$% +!$8

    C$ /02@8 2/2@8 * ! 022D$

    $$!)+ ""68

    + E"!$ $!3$$/@! 62D8

  • B

    !" #$%&

    ;$02@8

    3%3$%68/ @"222D "$3#!/ /5"$8"$8

    3%#33%"

    3333 ( 3/3$

    /A2A 3333

    ) 3/3$3 /02A

    333

  • 02

    ()C+

    $

    "

    $

    9F!,

    $

  • 00

    *

    t0

    tR

    h

    Retention time t R: Time between sampleInjection and analyte reaching the detector

    Void time t 0: time between sample injection andunretained substance reaching the detector void volume x flow rate

    Peak height h : the height of a peak is proportional to the injected amount of the

    twb

    proportional to the injected amount of theparticular component (within linear part ofadsorption isotherm)

    Peak width w b: the peak width depends upon the column efficiency (within linear part ofadsorption isotherm)

    Retention times are used for peak identification

  • 0

    k = 2,331,5 min

    5 min

    t

    Column A: 4.6 x 200 mm

    ][0

    0 --

    =t

    ttk R

    *!

    #G"!

    t

    Column B: 4.6 x 100 mm

    0,75 min

    2,5 min

    t

    k = 2,33

  • 0

    "H

    t0

    tR (1)

    tR (2)

    )1()2(

    kk

    =a

    0

    )1()2(

    ttttR

    --

    =a

    "

    " )880667+$

    t 0)1( ttR -=a

  • 0.

    7

    $ 8$$! $II 8"!$ $$%8

    ) $+

  • 0/

    7

    ( )22

    16 RwtRtN =

    =s

    t

    h1/2

    h

    w1/2

    tR

    wb

    2

    54.5

    =t

    N R

    C$$ ) "+E#$!

    $)+" "#!8

    ( )16bw

    N =

    =s 2/1

    54.5

    =w

    N

  • 01

    *

    !$# N = 10 000

    Rs = 8.33

    tR(2)ttR(1)

    sR2

    11

    4 kkN

    Rs +

    -=

    aa

    N = 2 500Rs = 4.16

    tR(2)t

    tR(1)

    tR(2)tR(1)

    214 kRs +

    =a

    ,-

    * J#G0 J0#G J

    J J

  • 04

    #,(

    !

    .""""/ 0

    1.0

    1.010 a

    bAs =

    /1/2#2

    K>F %

    "

    $$

    1.0a

    K>F #

  • 06

    L;

    C

    uCuB

    AH ++=

    F

    F ,""

    V1 V2 V3

    CF# "" M

    F " particle size pore uniformity

    v1

    v2

    v3

  • 0B

    $

    9""

    C

    $

    -3

    $

    9

  • 2

    "5

    "$$!! )*+

    28/

    281THF

    ACN

    9"

    2

    280

    28

    28

    28.

    28/

    2 2 .2 12 62 022

    % organic

    elut

    ion

    stre

    ngth

    ACN

    MeOH

  • 0

    -""

    32

    "

    "

    !#

    "$

    ,

    $#

    "$

    452"2" #56

    !$#

    %""

    $$

    9

    "$ $#

    ""

    $$

  • ;%$F

    $%

    2#2

    7 6

    8

  • 0

    0 5

    ;%F#

    0)

    0

    (0 22

    0

  • .

    C

    -$-

    -$ $

    C$

  • /

    C;%F73

    7! $ " !

    7

    7

    7

    **"! !

  • 1

    "" 9 $: "";

    !2

    #

    "

    #!%%

    Q

    $

    #G7"

    %%

    !

    $88

    %##N"$

  • 0

    9"F$

    E EF!$

    !"F"$!%$

    E

    "$!%$

    #F %$# !* J0)R E,!$+8 F022322 F/23022

  • 6525

    5?

    5

    32

    5

    32

    @25(

    62

    22?

    "

    32

    2

    5

    :

  • 3""

    9$Q" E "

    "

    3-F

    $,$& )7 *?L-* +

  • .

    *"-

    $8

    $Q- -)$ %"8$$02 3258$$02 325

  • /

    EF9 !"$$

    42#

    %

    "##$##%"! & "(!( )#*(+)

    42#

    ."" 0#0""A2

  • 1

    3 /

    ."F

    02 7 . ,7S2805( 8/02 7 . ,7S282/5 .86 3 6 A

    %

    02 7 . ,7S282/5 .8602 7 . ,7 48202 )7 . + 9 ,7 B82

    %$ F$,7B/,/)","+

    CF$,70/,6/)","+

    *23 0225C,2

    3 6 AA2

  • 4

    9$$$

    -#%-

    $

  • 6

    2

    >

    #0

    "

    0

    ""

    0

    !

    -

    382

    3 6 " 3 2#2 3 3 6 " 7

    9

    >

    #0

    "

    0

    ""

    0

    !

    -

    42826 6 6 A

    3 6 " 7

  • B

    !"3 Q"$

    !"

    3 $!$ "!"

    3 $!$#$

    3 $!$#$

    *3 ?"

    3 ".3/

  • .2

    Q"Q 282/5"$

    "-$ !#!##

  • .0

    $$!"$)+ T3$)+

    Development lab QC lab

    Planning

    Method dev.

    ("

    Final methodevaluation

    Method evaluation

    Method dev.

    PerformanceFeedback

    Method transfer

    Performance testing

  • .

    "

    #

    (#

    *"# ! *"# !"$

    -"$

    *"-$"$

  • .

    QA regulatoryfunctions

    developmentQC

    Planning

    MDRD (method d efinition r equirement d ocument):

    All stakeholders agree prior to final method development onthe critical attributes of the method

  • ..

    - 0

    *U.2

    $"

    #!*V82

    #!*V82

    - 4/5

    !

    -$!

    W88/X

  • ./

    =

    -Q$

    CU/2 )# +

    3%$

    -V/5)","+

    E$"$

  • .1

    58"5A2

    #3..

    4=65"2

    325

    "

    .5 QC

  • .4

    ") 3"+

    $F

    $

    $YY$$

    $Z )%!88 !)%!88 !$8+

    "

  • .6

    Process of collecting documentedevidence that the method performsaccording to the intended purpose1

    Classical analytical method validation considers:

    ("

    "

    B "#

    1 ICH Guidelines Q2A

  • .B

    *$

    E#

    C$

    $

    -

  • /2

    Observed problem

    =$[

    Chemistry

    Stationary phase Mobile phase Analyte

    Column

    Void formation Uneven packing Clogged frits Corrosion

    Instrument

    Pump Injector Detector Temperature control Integration

  • /0

    08C)$+#

    Initial or expected performance observed performance

    Either monitor the efficiency of one specific peak of the analysis or perform dedicatedcolumn performance tests periodically

  • /

    $ 5.2

    ;%$ 7C5 A# Dead volumes

    C

    A# .5

    Observed bandwidth is the sum of column (col) and e xtra column (ec) contributions

    ec2

    col2

    tot2 s+s=s

    Dead volumes

  • /

    Q" ""

    Recommendations:

    -Q"

    Peak front remains constant, flat topand retarded peak tail.

    Injection volume < 10% of flow rate (mL /min)

    Sample solvent should not contain moreorganic modifier (RP) than the mobile phase

  • /.

    $ -88$!\

    $

    Using longer capillaries is OK, wider ones will imp air the efficiency!

  • //

    #\

    Fittings from different manufacturers must not be m ixed. They differ e.g. in stop depth.

    Pay attention to different threads (British vs. met ric system)

    Avoid over-tightening

    Missmatch

    Stop depth

  • /1

    !"$ $

    The flow cell is characterized by volume and path l ength and needs to have the right dimensionscompared to the column:

    !"

    -88 L L %

    (0 0D D

    (0 0)D 0)D

    0 0)D 0)D

    < 10% peak volume

  • /4

    8#

    Initial or expected performance Observed performance

  • /6

    1. Inject less (mass)

    Reduction of retention time Improved peak symmetry

    column overloading

    2nd component resolves 2 components

    Tailing remains

    -#

    Tailing remains

    2. Inject neutral compound(toluene, acetophenone)

    Symmetrical peak secondary interactions

    adjust mobile phase pH

    Tailing remains irregularities in column packing

    radial temperature gradient

  • /B

    08 "#26 "# 2

    cS

    *

    cM

    Peak appears with tailingand with shorter retentiontime (front side of the peak)

  • 12

    8!"

    N = 5000

    Use smaller particle size

    *

    N = 20000

    Use smaller particle size increase N

  • 10

    8! -;

  • 1

    $F3 $3 3

    F

    *$

    F3 ;$3 !063 $3 -"$

  • 1

    !$ $

    $

    V. Meyer, Pitfalls and errors of HPLC in pictures, Hrthig Verlag Heidelberg, 1997

  • 1.

    $! $8

    0,4

    0,6

    0,8

    1

    Abs

    orba

    nce

    [Au]

    18C 26C

    10.23 min

    9.53 min6.68 min

    7.09 min

    0

    0,2

    0,4

    0 2 4 6 8 10 12 14

    Elution time [min]

    Abs

    orba

    nce

    [Au]

    10.23 min7.09 min

    Kromasil 100-5m-C18 (4.6x250 mm) 1. NaNO 2 4. TolueneMeCN / water 70/30 (v/v) 2. Benzamide 5. Propylbenzene1 mL/min 3. Methylbenzoate 6. Butylbenzene

  • 1/

    $ "8

    280$ 025

    25

    30

    35

    25

    30

    Acidic analyte Basic analyte

    0

    5

    10

    15

    20

    25

    0 2 4 6 8 10 12

    pH

    k (

    aci

    d)

    0

    5

    10

    15

    20

    0 2 4 6 8 10 12

    pH

    k (b

    ase)

    +/- 1 pH unit retention changes by a factor of 5 - 6

  • 11

    !02"$ 2)*+

    ($!$$ !$,"$

    -"$ !$

    ;$

    702%$ *3

    C#$ !$

  • 14

    $% $

    0,5

    1,0

    1,5

    2,0

    2,5

    3,0

    mA

    U

    KR100-5-C18 (4.6 x 250 mm) 100% water 1 mL/min

    !

    -0,5

    0,0

    0 2 4 6 8 10 12 14 16 18 20

    t / min

    -0,50,00,51,01,52,02,53,03,5

    0 2 4 6 8 10 12 14 16 18 20

    t / min

    mA

    U co-elution of voidmarker (NaNO 2) and uracil

    reduced void volume

  • 16

    -$ $

    -"$$$#

    $Z

    -"$$$#

  • 1B

    Peaks that make an unexpected appearance in the chr omatogram

    Most frequent causes for ghost peaks:

    Impurities in the eluent, e.g. excess of ion-pairin g agent Flush the column with HPLC-grade solvents in order to remove the contaminants

    Late eluting substances (cross contamination from p revious run) Add a rinsing step with high elution strength after every separation

    Memory effect through desorption of a substance fro m injector seal, fitting or frit

    E#

    Memory effect through desorption of a substance fro m injector seal, fitting or frit Passivate the system (without column) with conc. NH 3, 6M HNO3, DMSO,

    acetone, THF

    Air bubbles in the detector Purge with high flow rate (without column), then ad d a restricting capillary

    at the outlet for further use.

    Degradation products from an unstable component Test with another sample, investigate the stability of the original sample

    in the mobile phase

  • 42

    Instrumental cause: - weak or dirty detection lamp- leaks- gas in mobile phase or detector cell- electronic noise- too high sensitivity

    Chemical cause: - eluting contaminants

    Noisy baseline

    C$

    Synchronous baseline Instrumental cause: - almost always caused by the pu mp(air in pump head, valve problems,broken plunger)

    Asynchronous baseline Instrumental cause: - mixing problems- leaks- gas in mobile phase or detector cell- electronic noise- plugged lines

  • 40

    Instrumental cause: - gradient elution- solvent change- backpressure changes

    Chemical cause: - contaminated solvents- compounds eluting from the column

    Drifting baseline

    C$

    Spikes Instrumental cause: - bubbles- loose wiring- electrical noise- malfunctioning lamp relay

    Asynchronous baseline Instrumental cause: - temperature fluctuations- mixing problems- gas in mobile phase- electrical problems- erratic pump

  • 4

    Darcys Law, adjusted for non-compressible solvents

    2

    21

    P

    P

    P

    P

    d

    KLuP

    Kd

    LP

    u

    =D

    D

    =

    hhhh

    hhhh P: Pressure drop [Pa]L: Column length [m] : dynamic viscosity [Pa.s]dP: mean particle diameter [m]KP: permeability constant [-]

    C#$

    Pd

    KP = f( ) fi Karman - Cozeny Equation

    ( ) 1801

    1

    12

    3

    -

    =i

    i

    PK eeee

    eeee i: Interstitial porosity [-]

  • 4

    FlowViscosity

    Column length

    x1

    x2

    Pressure drop increases linearlywith flow, viscosity and column length

    =[

    Mean particle diameter

    Interstitial porosity

    x2

    x3

    Pressure drop increaseswith 1/d 2

    Pressure dropincreases with 1/ i3

  • 4.

    08 #\3 $ 3 $)625 $#

    $$8+ =!$" 9$

    8 #\3 ?".%$ #

    -F

    3 ?".%$ #

    8 #\3 3 ).82"8.81+

    !$#

    .8 #!\

    /8 #" \3 $3

  • 4/

    $$Y $$

    Solubility issues complicate real assays of low sol ubility drugs and formulations

    Many common problems such as lack of mass balance, low recovery and

    Many common problems such as lack of mass balance, low recovery andout of specification results are often based on sol ubility problems

    ($"

    Suitable choice of mobile and stationary phase for the analysis in question

  • 41

    $

    While the stationary phase provides retention and i nfluences the separationmechanism, it is the mobile phase that controls the overall separation.

    HPLC method development efforts should focus on fin ding the most adequatemobile phase

    G

    $$

    The analyte should be prepared in the mobile phase or in a weaker analogueof the mobile phase

    Many chromatographic anomalies such as splitted pea ks or peak fronting are caused by injecting the analyte dissolved in a stro ng solvent

  • 44

    $#$O L1$8Q 8 =8O;"O22/

    L8 O O]=0BB6

    **

    8&O $" O22/O=3LLE$O=

  • 46

    $&,#7$

    (!# ;$!$

    F ;$!$ ;$!$

    ;"

    "

    $#

  • 4B

    $"

    $&$

    ;D

  • 62

    T

    -9B220F2223 L

    T

    -"

    """

  • 60

    ;"

    -90.220

    *$

    ;

    7

    *# *#

    ;

  • 6

    9 ", &E

    $ "$ "$

    # # #

    =#

  • 6

    $C

    *F.606

    7F-77-9--

    F CCC

    (F--977

    F;06% F;06%

    -F80Y /2)+

    F8/A)?+O8/A/A)+O/4020/)*;+

  • 6.

    !#!#