predictive models for drillin-g thrust and torque - a comparison of three flank

Upload: nguyen-danh-tuyen

Post on 03-Jun-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 Predictive Models for Drillin-g Thrust and Torque - A Comparison of Three Flank

    1/6

    Predictive Models for Drilling Thrust and Torque - a comparison of three Flank

    Configurations

    E. J. A. Armarego

    (1).

    University of Melbourne/Australia; J. D. Wright, Engineer, Government Aircraft Factory,

    Melbourne/Australia

    Pred ic t i v e model s fo r d r i l l i ng t h rus t and to rque a r e p re sen t ed and compared fo r t h ree d r i l l f l ank

    The models a re based on the mechanics of cu t t i ng a na ly si s , fundamenta l machining data

    The th ree f l an k shapes i nves t i ga t ed a r e

    The e f f ec t s o f f eed , speed and prominen t d r i l l po i n t geome t ri ca l f ea tu re s on t he p red i c t ed t h r us t

    The di fferences in

    coni ca l f l ank ' and the oth er two f la nk models has

    also

    been shown to be small

    c o n f i g u r a t i o n s .

    such a s

    t h e s h e a r s t r e s s a nd c hi p l e n g t h r a t i o a s w e l l a s t h e f l a n k c o n f i g u r a t i o n w hi ch a f f e c t s t h e

    bas i c t oo l ang l e s l i k e normal r:ke a t t he ch i s e l edge reg ion .

    the 'Plane Flan k ' , the popular Conica l Flank , and the C lea rance p l anes f l ank

    .

    and to rque re su l t ed i n p )aus ib l e and comparab le t r ends fo r t he t h ree f l a nk shapes .

    predic t ions be tween the

    fo r t he work ma te r i a l t e s t ed . In add i t i o n , good cor re l a t i o n between p red i c t ed and expe r imen ta l l y meas-

    ured th ru st s and torques has been found fo r a wide range of cond i t io ns.

    I t i s shown th a t p rov ided the ba s i c geomet ry a t t he d r i l l cu t t i n g edges can be e s t ima ted , t he more

    complex d r i l l f l ank ana lyse s a re no t e ss en t i a l fo r adequa t e t h ru s t and to rque p red i c t i ons when us ing

    t h e d r i l l i n g a n a l y s i s p r e s e nt e d .

    INTRODUCTION

    The th r us t , t o rque and power i n d r i l l i n g are

    impor tan t mach in ing pe r fo rmance ch a ra c t e r i s t i c s

    re-

    qu i red f o r improvement s i n mach ine t oo l and d r i l l

    designs as

    w e l l

    as f o r t he se l ec t i on o f op timum cu t t -

    i n g c o n d i t i o n s .

    With the expected larg e r i ses i n t h e

    p r o p o r ti o n o f t h e t o t a l a v a i l a b l e p r o d uc t io n t i m e

    s p e n t i n

    metal

    rem oval when u s in g CNCJDNC mac hin e

    tooLs

    l ]

    t h e r e i s cons ide rab l e scope fo r r educ t ions

    i n m ac hi ni ng c o s t s t o o f f s e t t h e h i gh c a p i t a l i n v e s t -

    ment of modern manu fac turi ng syst ems. Thus the need

    fo r machining performance da ta has become in crea sin gly

    more important i n manufactur ing.

    The development of methods fo r o bt ain in g machin-

    ing performance data

    i s

    complic ated by th e numerous

    var ia ble s to be considered. These inc l ude the many

    t o o l a nd c u t g e o m e tr i c a l v a r i a b l e s , t h e r e s u l t a n t

    c u t t i n g v e l o c i t y a nd t h e msterial p r o p e r t i e s o f t h e

    to ol and workpiece . The popular empir ica l approach

    o f o b t a i n i n g t h e r e q u i r e d d a t a d i r e c t l y f ro m e x p e r i-

    ments usual ly allows f o r

    a

    few of th e more obvious

    va r i ab l e s ( e .g . f e ed , speed) fo r e ach work

    material

    and machining opera t ion tested.

    r e s u l t s f o r d r i l l i n g a nd o t h e r o p e r a t i o n s h av e b e en

    compi led ove r yea r s o f t e s t i ng L2 ,3] , t he se r iou s

    s h o r t a g e o f d a t a

    i s

    e vi de nt i n t h e l i t e r a t u r e .

    Based on a ser ies o f i n v e s t i g a t i o n s , a mechanics

    o f c u t t i ng approach fo r p red i c t i ng t he fo rce s and

    power i n d r i l l in g and oth er common opera t io ns has been

    proposed

    [ 4 ] .

    This approach involves the development

    o f o r thogonal and ob l ique cu t t i n g ana lyse s fo r t he

    machining ope ra t io n consider ed. The fo rce and power

    equa t ions de r ived inc lude t he t oo l and cu t geome t r i ca l

    v a r i a b l e s , t h e r e s u l t a n t c u t t i n g s pe e d a nd b a s i c p ar a -

    meters

    of t h e cu t t i n g mode ls . For p red i c t i on purposes

    t h e b a s i c c u t t i n g pa ra m et er v a l u e s , s u ch a s t h e s h e a r

    s t r e s s I

    a nd c h i p l e n g t h r a t i o r , ar e found from

    ' c l a s s i c a l ' o r th o go n al c u t t i n g e i p e ri m e n t s w h i l e t h e

    norma l r ake ang le and ang le o f i n c l i n a t i o n are obtained

    from an ana ly sis of the to ol geometry and

    i t s

    s t a n d a r d

    s p e c i f i c a t i o n .

    The u s e of t h i s a p pr o ac h f o r d r i l l i n g f o r c e s

    i s

    dependent on a knowledge o f t he d r i l l p o in t geome try

    and i t s spe c i f i c a t i on . Although the r e i s cons ide rab l e

    agreement about th e genera l appearance and spe ci f ica t -

    i on o f t he d r i l l po in t [2-91 t he p rec i se geome try i s

    unknown [9 ,10 ]. The geometry

    a t

    t h e d r i l l l i p s p r e-

    sen t s no d i f f i c u l t i e s , howeve r, t h e f l ank geome try

    w hi ch a f f e c t s t h e c h i s e l e d ge r e g io n i s e s s e n t i a l l y

    unsp eci f ied and dependent on th e sharpening method

    used.

    The

    s i m p l e s t

    f l a n k s h a p e , c o n s i s t i n g of

    a

    s in g l e p l ane , ha s been used wi th cons ide rab l e success

    f o r f o r c e p r e d i c t i o n s

    [ll].

    From s tud i e s o f po in t

    sharpening methods th is 'Plane Flank ' shape has been

    shown t o b e u n ac c ep t ab l e f o r g e n e r a l pu r po s e d r i l l

    produ ct ion whereas th e popular con ica l g r indin g method

    seems most s ui ta bl e and i s commonly used i n pr ac ti ce

    [ l o ] . Never the l e ss , o the r g r ind ing methods and f l ank

    s h ap e s a r e a l s o u se d i n p r a c t i c e [ 9 , 10 ], w h i l e

    a t t empt s t o develop f l ank shapes f o r improved d r i l l -

    l i f e h a v e b e en r e p o r t e d 1 1 2 3 . I t

    i s

    t he re fo re impor t -

    a n t t o s t u d y t h e e f f e c t s o f d i f f e r e n t f l a n k s h ap e s o n

    the t h rus t and to rque.

    I n t h i s p a pe r p r e d i c t i v e mo de ls f o r d r i l l i n g

    th ru st and to rque based on th e above approach are pre -

    sen t ed and compared fo r t h r ee f l an k conf igura t i on s .

    These

    shapes i nc lude t he y rev ious ly r epor t ed 'P l ane

    f l a n k '

    Ell],

    t he popu lar

    Although many us ef ul

    Conical Flank' and a

    Clea rance P l anes F l ank ' .

    THRUST

    AND

    TORQUE

    ANALYSES

    The t h r u s t a nd t o r q u e a n a l y s es f o r t h e t h r e e d r i l l

    f lan k shapes can be developed by consid er ing t he two

    d i s t i n c t r e g i o ns of t h e d r i l l , na me ly ; t h e l i p r e g-

    ion and the ch i se l edge reg ion .

    f i g u r a t i o n doe s n o t a f f e c t t h e l i p r e g io n t h e a n a l y s i s

    a t t h e l i ps w i l l be common fo r a l l t he d r i l l f l a nks

    cons ide red .

    On

    t h e o t h e r h an d s e p a r a t e a n a l y se s f o r

    the ch i se l edge reg ion w i l l be necessa ry fo r e ach

    f l a n k s ha p e t o c a t e r f o r d i f f e r e n t c h i s e l e dg e

    geometry.

    t o t h a t r e p o rt e d e a r l i e r [4.115.

    Thus as shown in

    Fig.

    1 ,

    the deformat ion process

    a t

    t h e l i p s

    i s

    t r e a t e d

    as

    a number o f c l a s s i c a l o b l ique cu t t i n g e l ement s ,

    each wi th d i f f e re n t normal r ake ang le y , i n c l i n a t i o n

    ang le

    x

    and re su l t an t cu t t in g ve1ocity"V depending

    on th e hean rad ius a t e ach e l ement .

    The

    glementa l

    deformation fo rce components AF AF and AF as w e l l

    as th e elemental edge for ce com%&enes a r e cgnverted

    in to the elementa l th ru st ATh and torque

    AT

    . By

    summing th e e lemen ta l forc es &he to ta l thrus h

    Th

    and

    to rque

    T

    a t t h e l i p s a r e es t ab l is h e d. I n th e l f p

    reg ion t i e s t a t i c o r ' t o o l ' g eo me tr y pr o vi d es a s u f f -

    i c i en t ly accura t e r ep re sen t a t i on o f t he dynamic o r

    'working' geometry.

    Since the f lank con-

    The gen era l an al yt ic a l a proach used i s s i m i l a r

    The ch is e l edge region i s al so analysed by consid-

    e r i n g

    a

    number of elements, however the deformation

    process may be cons ide red a s c l a s s i ca l o r thogonal cu t t -

    ing wi th hig hly ne gat ive normal rake a ngle and low

    r e s u l t a n t c u t t i n g s pe ed ( i . e . t h e i n c l i n a t i o n a ng l e x s

    can be shown to be ze ro o r very

    small

    f o r t h e f l a n k s

    s tu d i ed ) . In t h i s r eg ion the dynamic ang le s canno t be

    ignored . Fur the r t he e l ementa l fo rce s

    are

    found from

    empi r i ca l fo rce /wid th da t a ob t a ined f rom nega t ive r ake

    or thogona l cu t t i ng t e s t s where d iscon t inuous ch ip

    format ion occurs.

    c o n f i g u r a t i o n

    i s

    fou nd by summing th e common th r u s t

    a nd t o r q u e a t t h e l i p s t o t h e c h i s e l e dg e t h r u s t a nd

    t o r q u e o f t h e r e l e v a n t d r i l l f l a n k s h ap e .

    The Lip Region

    The s a l i e n t g e o m e t r ic a l f e a t u r e s , e l e m en t a l f o r c e

    components and ve lo ci t y vecto r f or a s e le c te d e lement

    are shown in Fig. 1 . For s impl i c i t y t he fu l l de fo rm-

    a t i on geome try and a ssoc i a t e d cu t t i n g ana lys i s vec to r s

    ( e . g . s h e a r f o r c e , s h e a r an d c h i p v e l o c i t i e s ) a t ea ch

    e l ement a re omi t t ed .

    The t o t a l t h r u s t a n d t o r q u e f o r e a c h d r i l l f l a n k

    These de t ai ls may be found i n

    [ill.

    For any e lement , say the

    j t h

    element f rom the

    ou te r cor ner , th e e lementa l thr us t ATh and torqu e AT

    due to th e deformat ion proces s and the 'edge for ces ark

    given by:

    AThtj

    =

    2[(AF +AF )c os cs in p - (PFR+BFRE) c o ~ A ~ C O S ~

    Q QE

    + s inX s in p s in c )

    AT

    =

    2r(AFp

    +

    aFpE)

    .ej

    where the symbols re le vant to th e e lement consi dered

    a re de sc r ibed in t he nomencla tu re .

    l i ps a re equa l and expre ssed by

    The wid th o f cu t Ab fo r a l l t he ML e l em e nt s a t t h e

    Ab

    =

    [Dcosw~-D'cosu']cosAs/(~M~sinp)

    3)

    where w

    =

    sin-l(ZW/D) 4 )

    (5)

    6)

    * ' =

    7

    - = 1

    D

    =

    Lc

    =

    2W/sin(n-p)

    =

    2WJsinly'

    The radius

    r

    a t

    t he mid-po int o f t he cu t t i ng edge

    o f

    t h e j t h e le m en t i s t h e r e f o r e :

    r

    = t[Dcoswo/2 - ( j -%)AbI2 + W2)

    ( 7 )

    Annals

    of

    the CIRP Vol. 33/1/1984

    5

  • 8/11/2019 Predictive Models for Drillin-g Thrust and Torque - A Comparison of Three Flank

    2/6

    Tr ue v i ew

    of

    VW and

    A2

    A S

    FIG 1. Sal i ent Feat ures

    for j tn El ement at

    t he Li p

    Sect i on XX

    AFp, AFpE

    The cor r espondi ng equati ons f or t he geometr i cal quant -

    i t i es of t he j t h el ement r equi r ed befor e usi ng equat-

    i ons (1) and (2) can be shown to be

    w = s in - l (Wr)

    (8)

    5 =

    t an- ' [ t anwcosp]

    10)

    (12)

    6 = t an- 1[2rt an60/ D] (9)

    asD

    = s si n- l [si np si nw] (11)

    yref

    = tan-1[tan6cosw/(sinp-cosp si nw t an61

    'nD

    t

    =

    f s i np cosc/ 2

    =

    'n = ' ref -

    A L = Ab/ cosi (15)

    AA = t Ab (16)

    Fr omt he si ngl e edge obl i que cut t i ng anal ysi s [ 4. 13]

    appl i ed to each el ement t he def or mat i on f or ce compon-

    ent s and basi c cutt i ng par ameter s ar e r el at ed by t he

    expressi ons

    A F ~ TAA[ COS A~- Y~) COSA~+ t anncsi nhssi nl n] / B (17)

    AFQ

    =

    TAA si n(An- yn) / B

    (18)

    A F ~ T AA[ c o s ( A~- Y ~) s ~~X~t annccoshscosXn]/ B (19)

    tan+ =

    r ~ ( c o s ~ C / c o s ~ s ) c o s ~ n / [ l - r ~ ( c o s n c / c o s ~ s ) s i ~

    ta

    =

    t anAcosnc (20)

    tan(++An)

    =

    tanascosyn/(tannc-sinyntanis) (22)

    ( 21

    r'

    wher e

    B =

    [ cos2( $n+hn

    -yn) + tan2ncsin2hn]4sin ncoshs

    (23)

    The el emental edge f orce components ar e f ound f r om

    AFpE = KIP Ab

    AFQE =

    KIQ

    Ab

    AFm

    and

    =

    KI R Ab

    *

    o

    The t hrust Th and t orque T

    f or t he whol e l i p r egi on

    i s f ound fromthe summati on' of al l t he el ement s, 1. e.

    Combi ni ng t he above equat i ons suggest s t hat t he t otal

    l i p thrust ThI Land t orque TIL may be expressed as

    Th, and

    T,

    = f uncti ons (D, 2W, 2p ,

    d o ,

    4 f ,

    M,

    'I,

    r I L ,

    .

    K l p8

    K l Q )

    (29)

    For quant i t ati ve f orce predi cti ons al l the above var -

    i abl es must be known or f ound. The fi r st si x quant i t -

    i es r epresent t he known speci f i ed dri l l poi nt f eat ur es

    and t he f eed f , whi l e M i s sel ected to adequatel y

    al l ow f or t he vari at i on4 i n cut t i ng geomet ry w t h rad-

    i us al ong the l i ps. The r emai ni ng f i ve basi c quant i t -

    i es are f ound f r omt he cl assi cal ort hogonal data at t he

    appropr i ate condi t i ons f or each el ement deri ved f r om

    t he f i r st seven var i abl es i n equat i on (29). For any

    gi ven work mater i al , t he basi c cut t i ng quant i t i es,

    e. g. r , wi l l depend on t he nor mal r ake angl e y =

    a r esuf t ant cutt i ng speed V

    .

    For exampl e, wheR

    ynD

    cut t i ng

    1020

    St eel [ l l ] t heef ol l ow ng equati ons have

    been f ound f r ommul t i - var i abl e r egr essi on anal ysi s of

    ort hogonal cut t i ng t est data:

    r =

    0. 3427

    . 00292

    y

    + . 00315 V (30)

    T

    = 5 1 2 . 9 ~1 0 ~1. 319

    xnD106y ( N/ m2y (31)

    = 32. 84 + , 559 Y - (de@e) (32)

    = 8 4

    280

    -

    1, 397 (N;) . (33j

    El p

    =

    631100

    -

    716 ynD (N/ m ( 3 4 )

    1Q

    The Chi sel Edge Regi on f or t he Pl ane Fl ank Dr i l l

    consi st s of a st r ai ght chi sel edge perpendi cul ar t o

    t he dri l l axi s bounded by the t wo pl ane f l anks as

    shown i n Fi g.

    2.

    The st ati c normal r ake angl e

    y

    i s

    negat i ve, const ant and numeri cal l y equal to hal f nt he

    wedge angl e y at the chi sel edge for a l l radi i .

    Si m l arl y thewst ati c nor mal cl ear ance angl e a

    const ant and equal to t he compl ement of y

    r adi i .

    f or al l radi i as evi dent i n F i g. 2. Froma geometr i c

    anal ysi s

    of

    t he Pl ane Fl ank dr i l l t he wedge angl e 2y

    i s r el ated t o the speci f i ed poi nt angl e 2p and chi sey

    edge angl e onl y [10,11] s o t hat when t he r esul t ant

    cutt i ng speed angl e n i s al l owed f or, t he dynam c

    angl es y and a can be f ound and wi l l var y w t h t he

    radi us w%le &hen8ynam c i ncl i nati on angl e

    s D

    i s

    const ant at 0

    .

    The r el evant equat i ons ar e

    For t he Pl ane Fl ank dr i l l t he chi sel edge regi on

    i s

    f o p al l

    The stat i c angl e of i ncl i nat i on

    w

    i s zero

    YnD

    = n

    -

    Yw

    (35)

    anD = 90

    - yw

    - n

    (36)

    yw = tan- ' [ tanpsi n(n-$)] = tan- ' [t anpsi n$' ]( 37)

    n - tan- l [Vf/ Vw] = tan- ' [f / 2nr] (38)

    wher e

    Fi g. 2. Chi sel Edge Geomet r y - Pl ane Fl ank Dri l l

    ( i . e. i n the regi on r O

    d8kat i on process when u 1 . e . Ocr zr . However

    si nce r i s a ver y smal l "1roport i on of t ge cki sel edge

    l engt h L[ll] t he l att er pr ocess can be negl ected.

    For any kt h el ement f r omt he chi sel edge corner

    as shown i n Fi g.

    2,

    t he el ement al chi sel edge t hr ust

    AThPt and tor que T^^ are expr essed as

    where AF and AF ar e t he ei emental f orce components

    consi st i & of t heQEombi ned def or mat i on and edge f or ce

    component s. The wi dt h of cut Ab f or al l t he M el em

    ent s wher e or t hogonal cut t i ng occur s ar e equa 'and

    gi ven by

    wher e r t he r adi us r and cut thi ckness t at t he

    m dpoi nk' of el ement k are f ound f r om

    Ab

    =

    [Lc

    -

    2rL] / 2Mc = [D

    -

    2rL] / 2Mc

    41 )

    r L = f t anp si n$' / Zn (42)

    6

  • 8/11/2019 Predictive Models for Drillin-g Thrust and Torque - A Comparison of Three Flank

    3/6

    r L / 2

    -

    (k - &)&b

    t

    -

    fCcosrl/2

    (43)

    (44)

    From orthogonal cut t ing considera t ions

    A F ~ ~[FpC/b]Ab = ClpAb (45)

    A F ~ ~[ F / b ] ~ b

    =

    CIQPb (46)

    Q

    The to t a l ch i se l edge t h rus t Th

    the o r thogona l cu t t i ng reg ion i g t h e r e f o r e :

    k=Mc k=Mc

    and torque T c due to

    ThC k AThck ; Tc =

    kil

    ATck

    4 7 ) I(48)

    Combining the above equat ions the c hi se l edge thr us t

    and torque fo r the Plane Flank d r i l l become

    =

    ThC and

    Tc

    functions (2W, 2p,

    w

    f ,

    M c , Clp .

    1Q

    (49)

    For quan t i t a t i v e p red i c t i on purposes t he t h r ee spec i f -

    i ed d r i l l po in t f e a tu re s 2W, 2p and

    ,

    the feed f and

    M are known or se l ec te d whi le

    C

    and C are found

    f fom cu t t i ng da t a a t t he cond i t i hks r e l e@nt t o each

    elemen t. For 1020 s t e e l [ll] C and C

    are

    r e l a t e d

    to t he cu t s i z e and rake ang le &ord in iQto t he

    equat ions

    :

    ClP - [FpC/b] = 1 .188x106t'651(90+)0 D) ' 06

    CIQ = [FQC/b]

    =

    19.14x106t '635(90+f' D )- '6 20

    (50)

    (51)

    The Chisel Edge Region for the Clearance Planes Flank

    The t h r u s t a nd t o rq u e a n a l y s is f o r t h i s d r i l l

    f l ank conf igura t i on

    i s

    e s s e n t i a l l y s imi lar t o t h a t f o r

    t h e P l an e F la nk d r i l l e x ce p t t h a t t h e r e l e v a n t a n g l es

    e . g . y y should be used. The s a li en t geometry i s

    shown f n r i g . 3 . The chi se l edge region i s r ep re sen t -

    e d by a s t r a i g h t c h i s e l ed ge p e r pe n d i cu l a r t o t h e d r i l l

    axi s bounded by two planes i n the v ic in i t y of the

    ch i s e l edge . The f l ank ad j acen t t o each l i p is a l s o a

    p l ane i nc l i ned by t he l i p c l ea rance angle

    CL

    a t t he

    out er corner . The corresponding planes a t t8e

    l i p

    and

    c h i s e l ed ge f o r e a ch d r i l l f l a n k i n t e r s e c t a t a l i n e

    through the ch is e l edge corner and perpendicular to

    t h e c h i s e l e dg e as shown i n Fig. 3 . Hence the l i p

    c l ea rance ang le CL and the ch i s e l edge s t a t i c norma l

    c l ea rance ang le an a t t he c h i se l edge co rne r a re

    equa l .

    ang le

    a

    as w e l l as the wed

    e

    angle"2y

    are

    cons t an t

    for a1l"points on the chi sef edge .

    Bovh s ta t i c and

    dynamic inc l in a t i on angles and X D , r e s p e c t i v e l y ,

    a r e Oo so t h a t t h e c u t t i n g a g t i o n i 8 orthogonal wi th

    highly negat ive rake angles when

    a

    >O. From the

    g e o me t ri c al a n a l y s i s o f t h e d r i l l @ Tn t t h e l i p c l e a r -

    ance angle

    C L

    a t a ny r a d i u s r on t he l i p

    i s

    given by

    tanC . = cotpsinw+coswsecwo[tanCeo-(2W/D)cotp] (52)

    A t t he c h i se l edge co rne r w=w'=n-) a nd t h e l i p c l e a r -

    ance angle C a equals an hence from equation (52)

    tanan = cotpsiny-cos dsecwo [tanCao- (2WID) cot p]

    and from Fig. 3 the wedge ang le 2yw and st a t i c normal

    rake

    y,

    are given by

    The st a t i c normal rake angle

    a

    and c learance

    (53)

    2yw

    =

    n - 2an (54)

    Y

    = -rw (55)

    The l im i t i n g rad ius

    rL

    when anD = 0 i s expre ssed a s

    (56)

    coso

    rL = ~n~cotpsin coswo-cos~~tanCeo-2Wcotp/D]

    The ch is e l edge th rus t and torque can be predic ted

    from the previous equat io ns (35) t o

    (51)

    provided yw

    and

    r

    from equat ions (53) 5 4 ) and (56) are used

    ins tek d of those f rom equat ions (37) and (42) .

    genera l expression fo r ThC and

    Tc

    comparable to

    equa t ion (49) a r e

    Thc and Tc

    =

    func t ions

    (2W.2p,~,CLo,f,Mc,Clp,ClQ)

    57)

    By adding the t ot a l c hi se l edge thr us t and torque to

    t h e c o r r es p o nd i n g v a lu e s a t t h e l i p s t h e t h r u s t a nd

    t o r q u e f o r

    the

    Clea rance P lanes F l ank d r i l l a s a whole

    i s ob ta ined .

    The Chisel Edge Region for the Conical Flank D r i l l

    The ch i s e l edge t h r us t and to rque ana lys i s fo r

    t h e c on i ca l f l a nk d r i l l i s a l s o

    s im i l a r

    t o t h a t f o r

    t h e

    Plane

    F l an k d r i l l a l th o u gh

    the

    geometr ica l anal -

    ys is fo r the c learan ce , rake and wedge angles a t each

    element i s more in t r i c a t e t han fo r t he P l ane Fl ank

    d r i l l . A s shown i n Fig .

    4

    and d iscussed i n [9.10]

    the ch i s e l edge on ly approx ima te s a s t r a i gh t l i ne . The

    i nc l i na t i on ang le s and

    a

    a re ve ry

    small

    f o r a l l

    points on the chise lsedge sb th at the proc ess may be

    cons ide red t o be o rthogona l cu t t i n g i n t he r eg ion

    a

    20. Therefore the s t a t i c normal rake and normal

    c%.rance an gl es may be approximated by th e re le va nt

    ang le s i n t he sec t i o n ing p l anes such a s AA i n F i g .

    4 .

    S in ce t h e c o n i ca l f l a n k s i n t h e v i c i n i t y o f t h e c h i s e l

    edge may ac t as

    f ace s o r f l anks , t he ang le be tween the

    t angen t t o t h e cone 2 f la nk and the plane normal t o

    The

    SECTION

    AA

    SECTION B B

    FIG.3. Chisel Edge Geometry -

    Clearance Planes Flank Vw

    SECTION

    AA

    Cone 2 Apex

    2.

    FIG .4. Ch is el Ed e Geometry

    -

    Cone 1

    Apex

    t h e d r i l l a x i s i n F i g. 4 r ep re s en t s a whi l e t he

    cor re spond ing ang le wi th r e spe c t t o c8ne 1 i s the

    complement of I y 1 ( i .e . 9O-ly I ) . Both a and a

    w i l l vary alo ng Phe ch is el edgg as do y, a8d

    Y

    FBI.

    C o n i c a l d a n k

    .I

    From the con ica l gr indin g analy sis [9] th e equat -

    i o n s

    of

    t he ch i se l edge and the two d r i l l l i p s

    are

    given by

    sinecose 2 sinecose 1,

    Y[-CxCy(sinxcosx)2 '(cxcy)

    (

    ~ , 2 ( c o s 2 e - cos2x)cos2e

    (59)

    (60)

    x = -W/cosXg - y ta n a f o r l i p

    1

    x = ~ / c o s h - ytanXg for l i p 2

    where

    B , x . X

    C and

    C

    are the conica l gr inding method

    parameters .g'ByXnumerieally sol ving equat ion (58) and

    (59) or (60) tho ch is e l edge corner radi us rc- L c / 2

    and i t s x,y co -ordina tes can be found.

    c l ea rance ang le

    a n

    on the fl an k produced by cone

    2 i s

    given by:

    tanan =

    - C O S Y "

    tank z+tan$ (cos2

    x

    - s in2

    x

    tan28 )

    - tanv2 tany" sinxcosxsec2e]

    + [ a m 2 ( s i n 2

    - cos2xtan2e)+sin~cosxsec2e

    (61)

    g g

    A t

    a rad ius

    r

    a s i n F i g .

    4

    t h e s t a t i c n o rm al

    where

    tan$" = x/y (62)

    tanhz

    =

    (63)

    and sin%osXsec20 - Jsec*x2(cos2Xsec2e-l)+sin2xsec2e

    tanvz

    =

    By symmetry the ang le correspon ding t o

    a

    (61) fo r th e cone 1 fla nk rep re se nt s thencomplement

    of

    I y

    1

    i . e .

    90

    -

    l y n ( .

    cX + (x2+y2)'sin*"

    c - (x2+yz)%osy"

    cX +

    r sin*"

    C~ -

    r

    cosq'l

    -

    Y

    (64)

    -

    cos2x sec2e

    i n e q u at i o n

    Hence by replacing ( 9 0 - ( y

    1

    an8 u 1 f o r a n , a z and V P i n equa t ions (61) and ( 4 )

    7

  • 8/11/2019 Predictive Models for Drillin-g Thrust and Torque - A Comparison of Three Flank

    4/6

    where i s given by

    t anh l =

    Cx -

    r

    cosv"

    I.

    r

    s in , "

    Y

    e x p r e s s io n s f o r t h e c a l c u l a t i o n o f i ar e found. The

    dynamic normal rake and clearance angles, and the

    wedge angle

    2vw

    a r e

    Y n D

    = n - i Y n / (66)

    anD

    =

    a n - (67)

    2vw

    =

    n / 2

    -

    u n j Y n /

    (68)

    Because of th e complexity of t he above equ atio ns

    t h e l i m i t i n g r a d i u s r

    ,

    where a

    i s

    ze ro i n equa t ion

    ( 6 7 ) i . e .

    a

    equat io n. fn st ead , numerica l methods must be used

    invo lv ing equa t ions (58) (61) t o (64) t o ob t a in

    r

    and

    a a s

    w e l l

    as equat ion (38) for

    I

    i n e a ch i n t e r a t i o n .

    FP%m equat i on (58) t o (67) t he above an aly si s toget her

    wi th equa t ions (38) t o (41) , (43) t o

    (51)

    from the

    Plane F l ank ana lys i s t he e l emental and to t a l ch i s e l

    edge thru st and torqu e can be evaluate d.

    I t i s

    i n t e r -

    e s t i n g t o n o t e t h a t f o r t h e c o n i c a l f l a n k t h e e q u a ti o n

    comparable to equat i on (49) i s

    Thc and T c = func t ions ( 2 W , 2 p , ~ , C r , , D , 6 , f , M ~ ~ ~ , C ~ ~ )

    Fo r p r e d i c t i o n p ur p os es t h e d r i l l s p e c i f i c a t i o n f e a t -

    ures 2W,2p,w,Ce

    ,

    D as w e l l a s t h e c o n i c a l g r i n d i n g

    parameter

    e

    muse be known.

    rep or t s [9 .10] t he usua l method o f spec i f y ing t he d r i l l

    p o i n t i n v ol v in g t h e f i r s t f i v e v a r i a b l e s i n e q u at i on

    (69) a re no t s u f f i c i en t t o un ique ly de t ermine t he con-

    i c a l g r i n d i n g p a r am e te r s s o th a t one of th ese parameters

    0

    must be p re se l ec t ed . The feed f , M a n d b a s i c c u t t -

    i ng da t a C and C need to be known'as fo r the oth er

    f lan k shap& consih?red.

    Again by summing the c hi se l edge and l i p t hr us ts

    and to rque t he va lues fo r t he d r i l l a s a who le can be

    ob ta ined .

    COMPARISON OF MODELS AND PREDICTIONS

    =

    q ,

    cankot be exp@ssed by a si ng le

    (69)

    A s no ted i n p rev ious

    A

    qu a l i t a t i ve compari son of t he t h re e f l ank con-

    f ig ura t i on s ha s been made f rom cons ide r a t i ons o f t he

    above ana lyse s and the p red i c t ed t h ru s t and to rque

    t ren ds. For qu an t i t a t i ve comparisons the magni tude

    of t he p red i c t ed and expe r imen tal t h r us t and to rque

    have been obta ined for a 1020 s t ee l workp iece wi th t h e

    cha rac t e r i s t i c s given in equa t ions (30) t o (34) and

    (50) (51) .

    Due to the complexity o f t h e d r i l l i n g p r o ce s s

    geome try t he t h re e mode ls ne ces s i t a t e compute r a ss i s t -

    ance fo r t h ru s t and to rque p red i c t i on s . I t

    i s

    a l s o

    e v i d e n t t h a t a l l th e models all ow f or th e many geomet-

    r i c a l d r i l l p o i nt f e a t u r e s , t h e f ee d a nd t h e c u t t i n g

    speed V (when the ba s i c c u t t i ng pa rame ter s i n equa t -

    ion (307 ar e use d). Combining equ ati ons (29) and (49)

    the t o t a l t h r us t and to rque fo r t he P l ane Fl ank mode l

    can be expressed by:

    Th, and

    T t =

    func t ions

    ( D ,

    2W, 2p , 6 0 , c , f , MQ, M

    T I

    r Q ,

    Kip.

    KlO.

    C l p . Clo)

    P i O )

    Thus fo r t he P l ane F lank d r i l l

    da

    i s n o t ' i n c l u d e d i n

    th e model. For th i s d r i l l flan k Zhape the common

    d r i l l s p e c i f i c a t i o n g i ve n by D , 2

    w,

    2p,

    6

    4 and C r

    i nc ludes a r edundan t f ea tu re ( i . e . t h e d r i ' i i shape

    i s o

    ove r - spec i f i ed ) and

    C P

    i s dependent on the oth er

    fe at ur es 2p, 2W, D andow [ 1 0, 1 1] . F u r t h e r t h i s d r i l l

    shape has unacceptably high C t val ues (230 to 35O)

    when a l l th e ot he r fea tu re s l ie 'within the recommended

    v a l u e s f o r g e n e r a l p u rp o se d r i l l s [ l o ] .

    The co r re sponding to t a l t h rus t and to rque func t -

    i o n s f o r t h e ' C l e ar a nc e P la n es F l an k ' d r i l l

    i s :

    Tht and T t

    =

    funct ions (D, 2W, 2p , 6

    T hi s d r i l l f l a n k sh ap e al lo w s f o r a l l t h e s i x s p e c if i ed

    d r i l l p o i n t f e a t u r e s so tha t the geometry i s uniquely

    d e s cr i b ed i n t h e v i c i n i t y o f t h e l i p s a nd c h i s e l e d g e.

    Th i s approx ima te r ep re sen t a t i on o f t he d r i l l geome try

    can apply for a v ar ie t y of f lan k shapes away from the

    c u t t i n g e d g e w i t h o u t a f f e c t i n g t h e

    f o r c e p r e d i c t i o n s .

    F or t h e c o n i c al f l a n k d r i l l t h e t o t a l t h r u s t a nd

    torque functions become

    :

    Th, and T t

    =

    fu nc ti on s (D, 2W. 2p, S o $,Ce , e

    Although a l l t h e s i x p r om in en t d r i l l p o i n t f e a t u r e s

    are

    i n c l u de d t h e s e do n o t u n iq u el y d e s c r i b e t h e d r i l l

    po in t geomet ry gene ra t ed by t he con ica l g r ind ing

    method 191. Thus one of t he grin din g paramet ers such

    as the semicone angle a must be known o r s el ec te d and

    c ou ld a f f e c t t h e t h r u s t a nd t o r q ue as no ted i n equa t -

    i on (72) . This model i s a u s e f u l r e p r e s e n t a t i o n

    o f

    many popu lar d r i l l po in t g r inde r s when the se a re s e t

    a c c o r di n t o t h e s t r a i g h t l i p de s ig n co n ce p ts r e p o r te d

    i n C9.147.

    d r i l l and cu t geometry have been compared f or th e

    w C ro , f ,

    M I , Mc, , r r , A , Kip,

    tiQ,

    l p , C I Q (71)

    f , M a . Mc, T , r rBA,KIP,

    K I P ,

    Cyp.blQ) (73

    The th ru s t and to rque t r ends wi th va r i a t i on s i n

    t h r e e f la n k m od el s. U si ng a t y p i c a l d r i l l s p e c i f i c a t -

    io n (D 12. 78 m W / D

    =

    .14, 2p

    =

    120, p

    =

    1300,

    1 = 300 and C r = 120) each var ia ble was independent-

    18

    al te re d over 'a wide range (e .g . 2p from

    1100

    t o

    1400,

    6

    f rom 200 to 350) and th e th ru st and torq ue

    when d r i l l i n g 1020 s t e e l we re no t ed .

    The th re e models

    gave very sim i lar t ren ds f or a l l the common va r i abl es

    i n t h e a n a l y s e s . F or a l l t h e f l a n k s h ap e s t h e t o t a l

    t h r us t Th inc rea sed wi th i nc rea se s i n

    D . 2W/D.

    and

    (except f& r the Plane Flank where

    'r'

    had l i t t l e e f f e ct )

    and dec rea se s i n he l i x ang le 6

    .

    For t he c l ea ran ce

    p lanes f l ank and con ica l f l ank ' d r i l l s , ve ry sma l l i n -

    c r e a s e s i n t h r u s t o c c ur r ed a s t h e l i p c l e a r a n c e a ng l e

    Cr

    dec rea sed whi l e i nc rea se s i n

    e

    (35O -

    500)

    only

    maggina lly i nc rea sed t he t h ru s t (

  • 8/11/2019 Predictive Models for Drillin-g Thrust and Torque - A Comparison of Three Flank

    5/6

    ._

    - - -

    30

    r

    2or

    0

    f

    =

    5 . 4

    i

    m d

    I I

    h

    10

    1 4 2 - 6 - 2 2 6

    10

    1 4 1 8

    Plane Flank-Conica l Flank Clearance Planes Flank -

    7. obs

    Conical Flank

    Je

    = 1 . 4

    J E

    0 . 7

    30

    r

    10

    2ol

    0

    - 1 0 1 2 3 %

    - 1 0 1

    2 3

    FIG.5. Comparison of Pre dic tio ns based on Conica l

    t o t he con i ca l f l ank a r e a low

    3 . 3

    and

    5.4 .

    r e s n e c t -

    Flank Model.

    i v e l y .

    15%. The torque comparisons show even smaller

    d i f f e r e n c e s w i t h

    E

    of 1.4 and .7 f o r t h e P l a n e

    Flank and Clearance Planes Flank d r i l l s comparisons

    r e s p e c t i v e l y , w i t h a l l - E v a l u e s

    less

    than 3 . The

    s l i g h t l y h i g h e r E and E v a l u e s f o r t h e t h r u s t t h an

    the t o rque a r e r easonab le s ince t he ch i se l edge and

    i t s

    geometry contr ibutes

    a

    h ighe r p ropor t i on o f t he

    t o t a l t h r u s t t h an t h e t o t a l t o r q u e . N e v e r t he l e s s ,

    the th re e f lank models give comparable predic t ions

    when app l i ed t o gene ra l pu rpose d r i l l s .

    and experimenta l t hr us t and torqu e has a ls o been made

    us ing t he c on ica l f l ank model as r e f e r e n c e - E i g h t

    d r i l l s w i t h a w id e ra ng e o f d r i l l p o i n t

    f e a t u r e s

    i l : 117.7 ' - 1 3 7 . 4 0 ;

    C

    : 12.6' - 20;9O, 6

    .

    1 0 . 7 - 3 0 . 8 9

    have been se l e c t ed f ro& ba t ches o f as pr8duced man-

    u f a ct u r e d d r i l l s a n d t e s t e d o n 1 2 s t e e l a t t h r e e

    feeds

    ( .

    1 0 2 , . 2 0 4 and . 3 0 6 mm/rev) and one speed of

    1 8 . 3 m/min. For eac h t e s t c o n d i t i o n f i v e c u t s w e re

    t aken to improve t he e s t ima te

    of

    t he measured t h rus t

    and to rque . The pe rcen t age d i f f e rence i n p re d i c t i on

    i . e . ( (Predic ted-Experimenta l )

    x

    lOO/Experimental) and

    i t s average value f or th ru st and torque have been used

    to a sse ss t he mode l. Very rea sonab le co r re l a t i o n

    between predic ted and experiment va lues

    have been

    found. For t he d r i l l on

    a

    whole , t he ave rage pe rcen t -

    a ge d i f f e r e n c e i n p r e d i c t i o n

    w a s

    - 7 .9 f o r t h e t h r u s t

    and

    - 2 . 2 %

    fo r t he t o rque us ing a

    s e m i

    cone angle e

    =

    3

    The

    i nd iv idu a l pe rcen t age d i f f e r ence

    w a s

    w i t h i n

    20% f o r t h e m a j o ri t y o f t h e t h r u s t a nd a l l b u t two o f

    t h e t e s t c o n d i t i o n s f o r t h e t o r q ue . T he se r e s u l t s

    compare favourably wi th simi lar comparisons wi th a

    d i f f e r e n t s e t o f d r i l l s [ll]. Further informat ion on

    t h es e r e s u l t s i s g i ve n i n [ 1 5 ] b u t th e f u l l d e t a i l s

    w i l l

    b e p u b l is h e d i n a l a t e r p a p e r . I t

    i s

    i n t e r e s t i n g

    t o n o t e t h a t t h e d r i l l f l a n k s ha pe s o f m os t o f t h e

    ' a s p roduced ' gene ra l pu rpose d r i l l s t e s t ed canno t be

    gua ran t eed t o be con ica l f l ank d r i l l s . Neve r the l e ss

    th e measured ch is e l edge wedge ang les

    2 y

    a t t he d r i l l

    dead cen t re were wi thin

    60

    of t he p red i c red va lues

    used i n t he c oni ca l f lank model which ranged from

    104.6O t o

    112.3O.

    ment be tween t he th ree f lan k models as shown i n

    equa t ions (73) t o (78) and th e h i s togram in F ig .

    5,

    i t

    i s

    e v i d en t t h a t t h e o t h e r

    two

    f la nk models

    w i l l

    y i e l d s i m i l a r l y a c c ep t a b le c o r r e l a t i o n w i th t h e

    expe r imen tal t h r us t and to rque a s no t ed fo r t he con-

    i c a l f lan k model . Thus for f orce (and hence power)

    pr ed ic t io ns , any of t he th ree models may be used.

    However, t he ch oic e of the most appr op ria te model i s

    open

    t o

    some deb ate. The Pla ne Flank model i s t h e

    s imple s t o f t he t h re e bu t exc ludes

    Ca.

    . The conica l

    flank model

    i s

    th e most complex model'considered and

    th e semi-cone ang le e should be known. For tuna te ly ,

    any rea sonab le e s t ima te of e w i l l s u f f i c e f o r f o r c e

    p r e d i c t i o n s a l th o u gh

    e

    may become importan t f o r ot he r

    performance measures s uch

    as

    d r i l l - l i f e . T h e Clear-

    ance Planes Flank model i s appea l ing due t o t h e r e l a t -

    iv e ly simple geometry which in c ludes a l l the commonly

    s p e c i f i e d d r i l l p o i n t f e a t u r e s . The p r e f e r r e d mo del

    may be th e one which adequat e ly descr ibes the c hi se l

    e d ge ge om et ry a nd i n c o r p o r a t e s t h e s p e c i f i e d d r i l l

    p o i n t f e a t u r e s o f r e l ev a n ce t o t h e f o r c e s i n d r i l l i n g .

    The 'Clearance Planes Flank' model seems the most

    s u i t a b l e

    of

    t h e t h r e e mo de ls s t u d i e d p a r t i c u l a r l y

    s i n c e t h e a c t u a l d r i l l f l a n k g eo me tr y o f m a n uf ac tu r ed

    d r i l l s i s no t p rec i se ly known o r s t anda rd i sed .

    conica l f lank model i s unnecessar i ly complex for

    The percentage di fference E a r e a l l l e s s khan

    A

    qu an t i t a t i ve comparison between the pred ic ted

    (D:6.35 - 1 2 . 7 IIUII; 2W/D:

    .12

    -

    , 2 2 8 ;

    2p: 112O - 120.5',

    I n v i ew o f t h e q u a l i t a t i v e a n d q u a n t i t a t i v e a g re e -

    The

    force p red i c t i ons bu t shou ld be pe r s i s t ed wi th fo r

    d r i l l l i f e s t ud i e s due t o t h e p o pu l ar i ty o f t h i s d r i l l

    poin t gr ind ing method.

    CONCLUSIONS

    based on mechanics of cu tt in g analy ses and fundamental

    cut t in g data have been developed, compared and te ste d

    f o r t h r e e d r i l l f l a n k c o n f i g u ra t i on s .

    t he

    l i p

    c l ea rance ang le C r

    ,

    th e Clearance Planes

    Flank' model includes a l l ehe s i x s p e c i fi e d d r i l l

    poi nt fe a tu re s whi le th e 'Conica l Flank ' model requires

    the semi-cone angle

    e

    t o b e known i n a d d i t i o n t o a l l

    t h e s p e c i f i e d d r i l l p o i n t f e a t u r e s . N e v er t he l es s t h e

    th ree mode ls r e su l t ed i n comparabl e t h rus t and to rque

    pre dic t ions when numerica l ly t es ted over

    a

    wide range

    o f d r i l l p o i n t f e a t u r e v a l u e s. F u r t h e r , good c o r r e l -

    a t i on between predic ted and experimenta l da ta has

    been obta ined.

    type t h ru s t and to rque equa t ions i ncorpor a t i ng t he

    many d r i l l and cut ge ometr ica l va r ia bl es have been

    e s t a b l i s h e d

    f o r

    u s e i n i n d u s t r y .

    I t i s shown tha t provided th e ba si c geometry a t

    t he d r i l l c u t t i ng edges can be adequa t e ly mode ll ed,

    the mechanics of cu t t i ng approach can be succ essf ul ly

    used to p r ed i c t t he t h rus t and to rque wi thou t r e so r t -

    i ng t o t he more complex d r i l l f l ank geome tr i ca l

    ana lyse s .

    Acknowledgement. The fi na nc ia l sup por t rec eiv ed from

    t h e

    Australian Research Grants Scheme

    i s

    g r e a t l y

    a p p r e c i a t e d .

    Pred i c t i v e mode ls fo r d r i l l i n g t h ru s t and to rque

    I t i s shown th a t the 'Pl ane FSank' model ignor es

    From these i n t r i c a t e ana lyse s , s imple r empi r i ca l

    1.

    2 .

    3 .

    4 .

    5.

    6.

    7 .

    8.

    9 .

    10.

    11.

    1 2 .

    1 3 .

    1 4 .

    15 .

    REFERENCES

    M.E. MERCHANT, I . E . Aust . I nt . Conf . Prod. Tech. ,

    Melbourne ( 1974) .

    R .

    TOURRET, " Perfor mance of Metal C ut ti ne Tools ".

    -

    Butteworth, London, ( 1 9 5 8 ) .

    Machining Data Handbook, 3r d Ed. , Metcut Research

    Assoc i a t e s Inc . , C inc inna t i , Ohio, ( 1 9 8 0 ) .

    E.J.A.

    ARMAREGO,

    UNESCO-CIRP se min ar on Manuf.

    Technology, Singapore, ( 1 9 7 2 ) .

    A.S.T.M.E. 'To ol Eng ine ers Handb ook', McGraw

    H i l l

    New York ( 1 9 5 8 ) .

    METAL CUTTING TOOL INSTITUTE, "Metal C ut ti ng Tool

    Handbook ( 1969) .

    AMERICAN STANDARD, USAS. B94- 11 - 1967 .

    AUSTRALIAN STANDARD, AS 2438- 1981 .

    E.J.A. ARMAREGO

    and A. ROTENBERG, I n t . 3 Mach.

    Tool Des. Res..

    1 3 .

    155. 165 and

    183 ( 1973) .

    E.J .A. ARMAREGO iiiid J.D: WRIGHT, Annais CIkp, 3

    5 ( 1980) .

    S .

    WIRIYACOSOL and E . J .A .

    ARMAREGO,

    Annals CIRP,

    2 8 , 8 7 ( 1 9 7 9 ) .

    KALDOR and E. LENZ, Annals C I Y ,

    2 9 , 2 3 ( 1 9 8 0 ) .

    E . J . A .

    ARMAREGO an d R.H. BROWN, TheTach in ing o f

    Me ta l s" , Pren t i ce H a l l I n c . , New J e r s e y ( 1969) .

    J . D . WRIGHT

    and E.J .A.

    ARMAREGO,

    Annals. CIRP, 2

    1 ( 1 9 8 3 ) .

    J . D . WRIGHT, Ph.D. Th es is , U ni ve rs it y of Melbourne

    ( 1 9 8 1 ) .

    NOMENCLATURE

    b

    -

    wid th o f cu t

    C C

    - conica l gr inding method

    parameters

    Cx yC

    C t 0 - s p e c i fi e d l i p c l ea r an c e a gg le a t t h e d r i l l

    D,D'- nominal dr i l l d iameter and ch is e l edge diameter

    - t o t a l c h i s e l e d g e f o r c e s p e r u n i t w i d th o f

    lp

    gut along and normal to

    V

    i n t h e v e l o c i t y p l a ne

    pe r iphe ry

    - t o t a l ch i se l edge fo rce s a long and norma l

    i n t h e v e l o c i t y p l a ne

    K

    ,K

    -

    edge fo rce s pe r un i t wid th o f c u t

    a t

    t h e

    lip

    'Qlong and perpe ndicul ar to Vw i n t h e p l a ne

    L - ch i se l edge l eng th (=

    D ' =

    2 r )

    Mi,Mc - se l e c t ed number o f e l ement sca t d r i l l l i p and

    2p - s p e c i f i e d d r i l l p o i n t a n g le

    r

    - r ad ius a t t he mid-poin t o f an e lementa l cu t t i ng

    r -

    c h ip l e n g t h r a t i o

    r

    tL

    - c u t t h i c k ne s s

    n or ma l t o t h e l i p

    ch i se l edge

    edge

    -

    r ad ius a t t he ch i se l edge when anD

    = 0

    ~ __

    Tc,T,,Tt - t o rque a t t h e c h i s e l ed g e, l i p s an d t h e

    w h o l e d r i l l

    Thc,Th,,Th - t h r u s t a t t h e c h i s e l e dg e, l i p s a nd t h e

    V e , V f , V w

    - r e s u l t a n t , f e e d an d t a n g e n t ia l v e l o c i t i e s ,

    2W - web thickness a t t h e d r i l l p oi n t

    un,unD

    3 , y n D

    2ref

    t wh ol e d r i l l

    r e s p e c t i v e l y

    - s t a t i c and dynamic normal c leara nce angles ,

    r e s p e c t i v e l y

    -

    s t a t i c and dynamic normal rake an gle

    - r e fe rence rake ang le a t t h e l i p s

    -

    ch is e l edge wedge angle

    YW

    9

  • 8/11/2019 Predictive Models for Drillin-g Thrust and Torque - A Comparison of Three Flank

    6/6

    6 ,

    6 0

    -

    hel i x angl es at any poi nt on t he l i p and at

    oA, Ab - el ement al ar ea and w dth of cut

    cl assi cal obl i ue cut t i ng f orce compon-

    ent s due to dej ormati on at t he dr i l l

    l i p el ement s

    - cl assi cal ort hogonal cut t i ng force com

    ponents due t o def or mat i on and edge

    ef f ects at t he chi sel edge el ement s

    -

    cl assi cal obl i que cutt i ng f orce

    dri l l l i p el ements

    - Thr ust and tor que at t he kt h el ement at

    t he chi sel edge

    and edge ef f ects on the j t d l i p el ement

    out er corner

    A F ~ , A F ~ , A F ~

    nFpC. AFFqC

    AFpE, AF

    os

    -

    el ement al cut t i ng edge l ength

    AThck, ATck

    AT

    .,cThtj

    -

    t orques and t hrust due to ef ormat i on

    - r efer ence angl e at t he l i ps

    nc

    a - gr i ndi ng cone sem - cone angl e

    x - f r i ct i on angl e on the rake face

    ? ~B x 1 * ~2 n o r ma lr i ct i on angl e i n pl ane normal t o

    QE' AFREcomponents due to edge ef f ect s at t he

    I J

    n

    - r esul t ant cutt i ng speed angl e

    -

    chi p fl ow angl e on the r ake face f or dr i l l

    l i p el ement s

    - gri ndi ng cone gener at or pl an angl es [9]

    - st at i c and dynam c angl es of i ncl i nat i on,

    cutt i ng edge

    r e spec i vel y

    s

    sD

    T

    - shear st r ess i n shear pl ane

    -

    normal shear angl es

    z?w',wo

    - dr i l l web angl es at any poi nt on t he l i p,

    t he chi sel edge cor ner and the out er cor ner,

    respect i vel y

    X

    -

    coni cal gri ndi ng method par amet er

    I

    J'

    -

    dri l l speci f i ed chi sel edge angl e and i ts

    compl ement , r especti vel y.

    10