precision atom interferometry in a 10 meter tower

49
Jason Hogan Stanford University July 20, 2013 Varenna 2013 Precision atom interferometry in a 10 meter tower

Upload: others

Post on 05-Nov-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Precision atom interferometry in a 10 meter tower

Jason Hogan Stanford University

July 20, 2013

Varenna 2013

Precision atom interferometry

in a 10 meter tower

Page 2: Precision atom interferometry in a 10 meter tower

Gravitational wave detection

Page 3: Precision atom interferometry in a 10 meter tower

Technology development for GW detectors

1) Long interrogation time atom interferometry

2) Large wavepacket separation (meter scale)

3) Ultra-cold atom temperatures (picoK)

4) Spatial wavefront noise characterization

5) Laser frequency noise mitigation strategies

Page 4: Precision atom interferometry in a 10 meter tower

Light Pulse Atom Interferometry

• Lasers pulses are atom beamsplitters & mirrors (Raman or Bragg atom optics)

• pulse sequence

• 1D (vertical) atomic fountain

• Atom is freely falling

Page 5: Precision atom interferometry in a 10 meter tower

Apparatus

Ultracold atom source >106 atoms at 50 nK

3e5 at 3 nK

Optical Lattice Launch 13.1 m/s with 2372 photon recoils to 9 m

Atom Interferometry 2 cm 1/e2 radial waist

500 mW total power

Dynamic nrad control of laser angle with precision piezo-actuated stage

Detection Spatially-resolved fluorescence imaging

Two CCD cameras on perpendicular lines of sight

Current demonstrated statistical resolution, ~5 ×10-13 g in 1 hr (87Rb)

Page 6: Precision atom interferometry in a 10 meter tower

Ultra-cold atom source

< 3 nK

Atom cloud imaged after 2.6 seconds free-fall

No apparent heating from lattice launch

BEC source in TOP trap, then diabatic steps in strength of trap to further reduce velocity spread:

Page 7: Precision atom interferometry in a 10 meter tower

Interference at long interrogation time

2T = 2.3 sec Near full contrast 6.7×10-12 g/shot (inferred)

Interference (3 nK cloud)

Wavepacket separation at apex (this data 50 nK)

Dickerson, et al., arXiv:1305.1700 (2013)

Page 8: Precision atom interferometry in a 10 meter tower

Equivalence Principle Test

Co-falling 85Rb and 87Rb ensembles

Evaporatively cool to enforce tight

control over kinematic degrees of

freedom

Statistical sensitivity

dg ~ 10-15 g with 1 month data collection (2 hk atom optics)

Systematic uncertainty

dg/g ~ 10-16 limited by magnetic

field inhomogeneities and gravity

anomalies.

Page 9: Precision atom interferometry in a 10 meter tower

Phase shifts

Observe velocity dependent shifts with spatial imaging

(useful when atoms expand from a point source)

(Tij, gravity gradient; vi, velocity; xi, initial position; a, wavefront curvature; g, acceleration; T, interrogation time; keff, effective

propagation vector)

Gravity

Coriolis

Timing asymmetry

Curvature, quantum

Gravity gradient

Wavefront

Page 10: Precision atom interferometry in a 10 meter tower

Rotation Compensation System

nanopositioner (x3) mirror

< 1 nrad measured precision ~ 1 nrad repeatability Piezoresistive position sensors Rigidly anchored to quiet floor

In-vacuum nanopositioning stage & mirror

Anchor plate

Coarse alignment

Page 11: Precision atom interferometry in a 10 meter tower

Observing velocity-dependent phase

Point Source Interferometry (PSI)

• Long time of flight position-velocity correlation

• Velocity-dependent phase spatial phase gradient

• Spatially resolved detection

“point source” Final size much larger than initial size

Page 12: Precision atom interferometry in a 10 meter tower

Coriolis phase shift

Dickerson, et al., arXiv:1305.1700 (2013)

Side view

Expansion from point source:

Coriolis phase shift:

Phase gradient No gradient

F=2

F=1

F=2

F=1

Page 13: Precision atom interferometry in a 10 meter tower

Coriolis phase shift

Dickerson, et al., arXiv:1305.1700 (2013)

Side view

Coriolis phase shift:

Phase gradient No gradient

F=2

F=1

F=2

F=1

Expansion from point source:

Page 14: Precision atom interferometry in a 10 meter tower

Spatial fringes versus rotation rate

Interference patterns for rotating platform:

Dickerson, et al., arXiv:1305.1700 (2013)

• Spatial frequency increases with increased rotation

• Imaging the fringe pattern improves contrast

Integrated contrast

Fringe contrast

Page 15: Precision atom interferometry in a 10 meter tower

Dual-axis gyroscope

Rotation phase shift:

CC

D2

CCD1

y

x z

CCD1:

CCD2:

Measurement of rotation rate near null rotation operating point.

Ellipse Fits CCD 1 CCD 2

F = 2 (pushed)

F = 1

Page 16: Precision atom interferometry in a 10 meter tower

Dual-axis gyroscope

Rotation phase shift:

CC

D2

CCD1

y

x z

CCD1:

CCD2:

Precision:

Noise Floor:

CCD1

CCD2

Measurement of rotation rate near null rotation operating point.

Page 17: Precision atom interferometry in a 10 meter tower

Phase shear readout (PSR)

g

Tilt angle of final pulse to introduce a phase shear:

Fluorescence image y

Page 18: Precision atom interferometry in a 10 meter tower

Phase shear readout

Tilt angle of final pulse to introduce a phase shear:

Sugarbaker, et al., arXiv:1305.3298 (2013).

Enables simultaneous readout of contrast and phase

-80 µrad 0 µrad 80 µrad -40 µrad 40 µrad

Page 19: Precision atom interferometry in a 10 meter tower

Phase shear readout

g

1 cm

F = 2 (pushed)

F = 1

≈ 4 mm/s

g

1 cm

F = 2 (pushed)

F = 1

Phase Shear Readout (PSR)

Mitigates noise sources:

Pointing jitter and residual rotation readout

Laser wavefront aberration in situ characterization

Single-shot interferometer phase measurement

Page 20: Precision atom interferometry in a 10 meter tower

Phase shear readout

g

1 cm

F = 2 (pushed)

F = 1

≈ 4 mm/s

g

1 cm

F = 2 (pushed)

F = 1

Phase Shear Readout (PSR)

Single-shot interferometer phase measurement

Mitigates noise sources:

Pointing jitter and residual rotation readout

Laser wavefront aberration in situ characterization

Page 21: Precision atom interferometry in a 10 meter tower

Phase shear readout

g

1 cm

F = 2 (pushed)

F = 1

≈ 4 mm/s

g

1 cm

F = 2 (pushed)

F = 1

Phase Shear Readout (PSR)

Single-shot interferometer phase measurement

Mitigates noise sources:

Pointing jitter and residual rotation readout

Laser wavefront aberration in situ characterization

Page 22: Precision atom interferometry in a 10 meter tower

Phase shear readout

g

1 cm

F = 2 (pushed)

F = 1

≈ 4 mm/s

g

1 cm

F = 2 (pushed)

F = 1

Phase Shear Readout (PSR)

Single-shot interferometer phase measurement

Mitigates noise sources:

Pointing jitter and residual rotation readout

Laser wavefront aberration in situ characterization

Page 23: Precision atom interferometry in a 10 meter tower

Deterministic Phase Extraction

T = 25 ms, 60 μrad misalignment at final pulse

Demonstrate single shot phase using short T interferometer

(less sensitive to seismic noise)

Page 24: Precision atom interferometry in a 10 meter tower

Residual Coriolis

Applied shear Use PSR:

Measuring small phase shears with PSR

Alternate sign of tilt

Trial 1 Trial 2

• Applied shear adds or subtracts from residual Coriolis.

• Analogous to a heterodyne measurement in the time domain.

Can be difficult to measure small phase gradients

Page 25: Precision atom interferometry in a 10 meter tower

Gyrocompass demonstration using phase shear

Use phase shear to determine true North

Vary rotation compensation direction, measure phase shear

0.01 deg resolution in 1 hr.

g

Page 26: Precision atom interferometry in a 10 meter tower

PSR with timing asymmetry

δT fringes discussed earlier in lectures by E. Rasel.

(see H. Müntinga et al., PRL 2013)

-240 µs -160 µs 240 µs 160 µs 0 µs

-160 µs -80 µs 160 µs 80µs 0 µs

Beam tilt + timing asymmetry:

Vertical shear due to asymmetric pulse spacing:

Page 27: Precision atom interferometry in a 10 meter tower

Large momentum transfer atom optics

Chiow, PRL, 2011 102 photon recoil atom optics 0.6 m/sec recoil

Page 28: Precision atom interferometry in a 10 meter tower

LMT power requirements

• Higher Rabi frequency

• Spontaneous emission

• Larger beam diameter

Impacts temperature requirement

(Doppler broadening)

Faster transitions

More pulses/bigger LMT

Intensity uniformity impacts temperature requirement

Wavefront uniformity

Rayleigh range

Need high power lasers:

Page 29: Precision atom interferometry in a 10 meter tower

High power laser at 780 nm

Frequency double 1560 nm fiber amplifiers in PPLN

Coherently combine two 30 W beams @ 1560 nm

S.-w. Chiow et al., Optics Letters 37, 3861 (2012)

Page 30: Precision atom interferometry in a 10 meter tower

High power laser system for LMT in tower

• Dual output, fiber coupled

• Each output fiber gives up to 7 W at 780 nm

• Frequency control provided by phase modulation of seed light before fiber amplifiers

• Amplitude control provided by acousto-optic modulators after doubling crystals

Page 31: Precision atom interferometry in a 10 meter tower

Wavepacket

separation at the top:

4 cm

LMT with long interrogation time

6 ħk sequential Raman in 10 meter tower

2T = 2.3 seconds

Page 32: Precision atom interferometry in a 10 meter tower

Delta kick cooling in a harmonic trap

Harmonic Lens:

At the end of evaporation BEC:

Atom number: ~106 atoms

Cloud diameter: 10 -- 50 μm

Temperature: ~1 μK (from chemical potential)

t = 0 t < tLens t = tLens t = tLens + ε

vx

C. Monroe et al., PRL 65, 1990.

Ammann & Christensen, PRL 78, 1997

Page 33: Precision atom interferometry in a 10 meter tower

Magnetic lens in a harmonic trap

Trap turned off

Page 34: Precision atom interferometry in a 10 meter tower

Magnetic lens in a harmonic trap

Trap turned off

Page 35: Precision atom interferometry in a 10 meter tower

Magnetic lens in a harmonic trap

Residual velocity is x0ω

Trap turned off

x0

Page 36: Precision atom interferometry in a 10 meter tower

Oscillations in a TOP trap

Absorptive images of atoms released into weak TOP potential (3.7 G & 25 G/cm)

Cloud width oscillations (breathing modes) Radial Vertical

anisotropy

Page 37: Precision atom interferometry in a 10 meter tower

Isotropic turning points in a TOP trap

Radial Vertical

TOP turn-off time

Absorptive images of atoms released into weak TOP potential (3.7 G & 22.9 G/cm)

Cloud width oscillations (breathing modes)

Tune radial and vertical trap frequencies of gravity + TOP trap using field gradient.

Page 38: Precision atom interferometry in a 10 meter tower

Lattice Solution to Anisotropy

Lattice locks atoms vertically

z

x

Another solution: optical lattice confinement

Page 39: Precision atom interferometry in a 10 meter tower

Lattice Solution to Anisotropy

Radial (two-dimensional) expansion

z

x x

Another solution: optical lattice confinement

Page 40: Precision atom interferometry in a 10 meter tower

Lattice Solution to Anisotropy

Lattice turns off -- Expansion in three dimensions

z

x x x

Another solution: optical lattice confinement

Page 41: Precision atom interferometry in a 10 meter tower

Lattice Solution to Anisotropy

Turn off trap

z

x x x x

Another solution: optical lattice confinement

Page 42: Precision atom interferometry in a 10 meter tower

Lattice-Aided Lens Cooling

Lattice turn-off time

Cloud launched to 9 meters

20x colder (50 nK)

5 mm

TOP turn-off time

Radial

Vertical

Page 43: Precision atom interferometry in a 10 meter tower

Extending to colder temperatures

• Delta kick in micro gravity weaker potential, more expansion

• Multiple lens sequences

• Apply additional kick at the fountain turning point?

• Apply optical potential for radial delta kick? (high power AI laser)

Page 44: Precision atom interferometry in a 10 meter tower

Collaborators

NASA GSFC

Babak Saif

Bernard D. Seery

Lee Feinberg

Ritva Keski-Kuha

Stanford Mark Kasevich (PI)

Susannah Dickerson

Alex Sugarbaker

Sheng-wey Chiow

Tim Kovachy

Theory:

Peter Graham

Savas Dimopoulos

Surjeet Rajendran

Former members:

David Johnson Visitors:

Philippe Bouyer (CNRS) Jan Rudolph (Hannover)

Page 45: Precision atom interferometry in a 10 meter tower

Extra

Page 46: Precision atom interferometry in a 10 meter tower

Launch using optical lattice

Far-detuned optical standing wave potential

Velocity set by frequency difference

Coherent acceleration (negligible spontaneous emission)

Page 47: Precision atom interferometry in a 10 meter tower

PSR phase reference

• Absolute phase depends on the path of the laser

• Atoms “illuminate” the phase prescribed by the laser sequence

Laser phase:

Page 48: Precision atom interferometry in a 10 meter tower

• Large momentum transfer (LMT) beamsplitters – multiple laser interactions

• Each laser interaction adds a momentum recoil and imprints the laser’s phase

Example LMT interferometer LMT energy level diagram

Phase amplification factor N

LMT Beamsplitters: Coherent Phase Amplification

Page 49: Precision atom interferometry in a 10 meter tower

AI Geometry with Large Rotation Bias

t k

0 1

T 9/4

3T 5/2

5T 9/4

6T 2

Five pulse sequence:

• Beamsplitter momenta chosen to give symmetry and closure

• Insensitive to acceleration + gravity gradients

x

z