practiceeffectsoncoordination andcontrol ...e.guigon.free.fr/rsc/article/layetal02.pdf ·...

24
Practice effects on coordination and control, metabolic energy expenditure, and muscle activation B.S. Lay a , W.A. Sparrow a, * , K.M. Hughes a , N.J. OÕDwyer b a School of Health Sciences, Deakin University, Melbourne, Victoria 3125, Australia b School of Physiotherapy, University of Sydney, Lidcombe, NSW 1825, Australia Abstract One defining characteristic of skilled motor performance is the ability to complete the task with minimum energy expenditure. This experiment was designed to examine practice effects on coordination and control, metabolic energy expenditure, and muscle activation. Partici- pants rowed an ergometer at 100 W for ten 16-min sessions. Oxygen consumption and per- ceived exertion (central and peripheral) declined significantly with practice and movement economy improved (reliably) by 9%. There was an associated but non-significant reduction in heart rate. Stroke rate decreased significantly. Peak forces applied to the ergometer handle were significantly less variable following practice and increased stability of the post-practice movement pattern was also revealed in more tightly clustered plots of hip velocity against hor- izontal displacement. Over practice trials muscle activation decreased, as revealed in integrated EMG data from the vastus lateralis and biceps brachii, and coherence analysis revealed the muscle activation patterns became more tightly coordinated. The results showed that practice reduced the metabolic energy cost of performance and practice-related refinements to coordi- nation and control were also associated with significant reductions in muscle activation. Ó 2002 Elsevier Science B.V. All rights reserved. PsycINFO classification: 2343 Keywords: Economy; Practice; Metabolism; Coordination; Control; EMG * Corresponding author. Address: School of Health Sciences, Deakin University, 221 Burwood Hwy. Burwood 3125, Australia. Tel.: +03-9244-6334; fax: +03-9244-6017. E-mail address: [email protected] (W.A. Sparrow). 0167-9457/02/$ - see front matter Ó 2002 Elsevier Science B.V. All rights reserved. doi:10.1016/S0167-9457(02)00166-5 Human Movement Science 21 (2002) 807–830 www.elsevier.com/locate/humov

Upload: phungmien

Post on 17-Nov-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Practiceeffectsoncoordination andcontrol ...e.guigon.free.fr/rsc/article/LayEtAl02.pdf · Practiceeffectsoncoordination andcontrol,metabolicenergyexpenditure, andmuscleactivation

Practice effects on coordinationand control, metabolic energy expenditure,

and muscle activation

B.S. Lay a, W.A. Sparrow a,*, K.M. Hughes a, N.J. O�Dwyer b

a School of Health Sciences, Deakin University, Melbourne, Victoria 3125, Australiab School of Physiotherapy, University of Sydney, Lidcombe, NSW 1825, Australia

Abstract

One defining characteristic of skilled motor performance is the ability to complete the task

with minimum energy expenditure. This experiment was designed to examine practice effects

on coordination and control, metabolic energy expenditure, and muscle activation. Partici-

pants rowed an ergometer at 100 W for ten 16-min sessions. Oxygen consumption and per-

ceived exertion (central and peripheral) declined significantly with practice and movement

economy improved (reliably) by 9%. There was an associated but non-significant reduction

in heart rate. Stroke rate decreased significantly. Peak forces applied to the ergometer handle

were significantly less variable following practice and increased stability of the post-practice

movement pattern was also revealed in more tightly clustered plots of hip velocity against hor-

izontal displacement. Over practice trials muscle activation decreased, as revealed in integrated

EMG data from the vastus lateralis and biceps brachii, and coherence analysis revealed the

muscle activation patterns became more tightly coordinated. The results showed that practice

reduced the metabolic energy cost of performance and practice-related refinements to coordi-

nation and control were also associated with significant reductions in muscle activation.

� 2002 Elsevier Science B.V. All rights reserved.

PsycINFO classification: 2343

Keywords: Economy; Practice; Metabolism; Coordination; Control; EMG

*Corresponding author. Address: School of Health Sciences, Deakin University, 221 Burwood Hwy.

Burwood 3125, Australia. Tel.: +03-9244-6334; fax: +03-9244-6017.

E-mail address: [email protected] (W.A. Sparrow).

0167-9457/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.doi:10.1016/S0167-9457(02)00166-5

Human Movement Science 21 (2002) 807–830

www.elsevier.com/locate/humov

Page 2: Practiceeffectsoncoordination andcontrol ...e.guigon.free.fr/rsc/article/LayEtAl02.pdf · Practiceeffectsoncoordination andcontrol,metabolicenergyexpenditure, andmuscleactivation

1. Introduction

Traditionally, the primary focus of motor learning research has been the goal-

directed nature of motor skill, with accuracy, consistency, and certainty of outcome

the skill-defining dependent variables. Formal definitions of skill have, however,often been supplemented with descriptors such as ‘‘efficiency’’ or ‘‘smoothly and ef-

ficiently’’ in appreciation of those aspects of motor performance reflecting the effort

or energy expenditure required to attain the task goal (Guthrie, 1935; Nelson, 1983;

Robb, 1972; Singer, 1968; Sparrow, 1983; Welford, 1976). Consistent with this

perspective on the nature of motor skill, there has been research interest in the rela-

tionship between practice at motor tasks and changes to metabolic energy cost

(Sparrow & Irizarry-Lopez, 1987; Sparrow & Newell, 1994). A review of the move-

ment economy literature by Sparrow and Newell (1998) summarized the researchfindings with the straightforward observation that with mechanical power output

held constant, well-practised individuals reduce their heart rate and metabolic energy

expenditure. Under such conditions, energy savings are achieved by reducing the in-

ternal mechanical work required to coordinate and control the limbs. In the exper-

iment reported here we investigated further the effects of practice on metabolic

variables, coordination and control, and muscle activation parameters as inexperi-

enced participants undertook practice trials of rowing an ergometer at fixed power

output.In previous work the explanation for the metabolic energy savings has been exclu-

sively in terms of changes to coordination and control variables at the level of limb

and limb-segment mechanics (Sparrow, Hughes, Russell, & LeRossignol, 1999; Spar-

row & Irizarry-Lopez, 1987; Sparrow & Newell, 1994). Control parameters are

defined as a temporal, force, or relative frequency scaling of the relative coordination

between the limbs or limb segments. In the present study, the control parameters that

are unspecific in nature and, therefore, do not prescribe the relative timing of the

limbs, were the stroke rate mean and standard deviation, and various derivativesof the force data such as peak force, peak force variability and impulse per stroke

standard deviation and mean. Analyses of phase plane diagrams of the hip marker

and the relative timing of the wrist and hip markers were used to examine changes

in coordination. Changes to limb segment mechanics are effected by patterns of ske-

letal muscle activation and it is predominantly the working muscles that account for

the metabolic energy expended during exercise. One proposition from the association

between metabolic energy expenditure and changes to coordination and control pa-

rameters is that reductions in metabolic energy cost are achieved by a decrease inmuscle activation. Previous studies have described practice-related changes in muscle

activation using electromyography (e.g., Finley, Wirta, & Cody, 1968; Kamon &

Gormley, 1968; Ludwig, 1982; Payton & Kelley, 1972; Person, 1958) but no direct

link has been established between activation and metabolic energy expenditure. A

further consideration is that previous demonstrations of practice effects on muscle

activation have not controlled the external work done by the performer and changes

in muscle activation patterns could have been due, in part, to a change in the external

mechanical work. In order to eliminate the potentially confounding effect of changes

808 B.S. Lay et al. / Human Movement Science 21 (2002) 807–830

Page 3: Practiceeffectsoncoordination andcontrol ...e.guigon.free.fr/rsc/article/LayEtAl02.pdf · Practiceeffectsoncoordination andcontrol,metabolicenergyexpenditure, andmuscleactivation

to work output, in the experiment reported here participants were required to main-

tain a fixed power output (100 W) throughout the experiment.

Given the proposed association between muscle activation and energy expendi-

ture a decrease in EMG activity was expected as a function of practice. Raw

EMG data are usually processed initially by normalizing in order to compare muscleactivation levels and force production between subjects. Reporting muscle activation

as a proportion of an individual�s maximal voluntary isometric contraction (MVC)has been the preferred normalization procedure across a range of experimental tasks

(De Luca, 1997). This procedure would not have been practicable here because in

rowing many muscles contract non-isometrically and it was not possible to isolate

all the active muscles with a view to determining their maximal contraction.

The vastus lateralis was located on the lateral aspect of the thigh and one hand-

breadth above the patella following Delagi and Perotto�s (1980) procedure. The va-stus lateralis (knee extensor) was chosen to represent the contribution of the legs to

the rowing action. Wilson, Robertson, and Stothart (1988) demonstrated the impor-

tance of the vastus lateralis in showing that it was maximally activated at the force

peak of the drive phase. The biceps brachii is also a single joint muscle that is acti-

vated maximally during the drive phase of the stroke and was, therefore, chosen to

represent the contribution of the arms to the rowing cycle (Ishiko, 1968). The EMG

signals recorded from these two muscles were then analyzed in order to reflect any

practice effects. First, the full-wave rectified EMG data for both muscles were visu-ally examined, as illustrated in Fig. 1(a). Following inspection, the rectified data were

normalized to a percentage of maximum recorded activity on the pre-practice trial

(day 1). The integrated EMG (IEMG), or area under the full-wave rectified and nor-

malized EMG-time curve, was computed to confirm, or otherwise, any apparent re-

duction in total muscle activation pre- to post-practice. A further analysis required

sorting the rectified and normalized data into activation bins according to the per-

centage time at specified activation levels (Fig. 1(b). Bins of 15% activation intervals

were chosen because skeletal muscle has been shown not to fatigue at levels below15% of maximum static contraction (Monod & Scherrer, 1965; Muza, Lee, Wiley,

McDonald, & Zechman, 1983). The presentation of the EMG data in Fig. 1(b) re-

veal, therefore, any changes in the distribution of percentage time at various muscle

activation levels and also reflect hypothesized changes to absolute activation relative

to the pre-practice baseline. As illustrated in Fig. 1(b) it was hypothesized that ini-

tially (day 1) a high proportion of the sample time would be in the higher activation

bins but following practice more of the time-sample would be found at the lower ac-

tivation levels. The EMG data as presented in Fig. 1 provided the capacity to con-firm or otherwise that shifts to lower percentages of maximal contraction during that

trial would be observed following practice.

Changes in the magnitude and frequency of muscle activation will have an effect

on the metabolic energy expenditure. With practice at a gross motor task, such as

rowing, the timing and magnitude (coordination and control) of muscle contraction

will become closer to optimal, thereby minimising unnecessary muscle contractions.

In order to examine the practice-related change in coordination of the muscles,

which may lead to a decrease in the absolute levels of muscle activation, the vastus

B.S. Lay et al. / Human Movement Science 21 (2002) 807–830 809

Page 4: Practiceeffectsoncoordination andcontrol ...e.guigon.free.fr/rsc/article/LayEtAl02.pdf · Practiceeffectsoncoordination andcontrol,metabolicenergyexpenditure, andmuscleactivation

lateralis and the biceps brachii were investigated via correlation analysis on day 1

(pre-) and day 10 (post-). The coherence square derived from this analysis has been

employed recently to quantify the coordinative relation between ankle in/eversion

and ad/abduction during walking (Smith, Rattanaprasert, & O�Dwyer, 2001).One characteristic of motor performance that has received recent research interest

is the consistency or stability of movement patterns in well-practised individu-

als (e.g., Newell & Corcos, 1993). Increased stability has also been identified with

greater economy of movement (Sch€ooner, Zanone, & Kelso, 1992; Zanone & Kelso,1994). In walking at preferred speed, for example, there is maximal stability of the

head and joint actions and metabolic cost is at a minimum relative to speeds faster

or slower than preferred (Holt, Jeng, Ratcliffe, & Hamill, 1995). Stability in our row-

ing task was measured using phase plane plots of the velocity and displacement ofthe hip and by analysing the standard deviation of the rate, length, duration, and

force of the strokes. It was hypothesized that increased stability with practice would

be reflected in a decrease of the within-subject standard deviation of stroke variables

and increased consistency in phase plane plots.

0

0.5

1

0 1Time (s)

mV

0

0.5

1

0 1Time (s)

mV

0

10

20

30

40

50

0-15 16-30 31-45 46-60 61-75 76+

% activation

% ti

me Pre-practice

Post-practice

Pre-practice Post-practice

b. % time distribution in 15% activation bins

a. Full-wave rectified EMG

Fig. 1. Hypothetical data to illustrate procedures for determining practice-related changes to absolute

levels of muscle activation from a pre-practice baseline to post-practice (Panel a). In Panel b the EMG

data are normalized to a percentage of the pre-practice maximum and sorted into activation bins.

810 B.S. Lay et al. / Human Movement Science 21 (2002) 807–830

Page 5: Practiceeffectsoncoordination andcontrol ...e.guigon.free.fr/rsc/article/LayEtAl02.pdf · Practiceeffectsoncoordination andcontrol,metabolicenergyexpenditure, andmuscleactivation

In order to modify coordination and control parameters to adopt an energy-con-

servative action pattern, central and peripheral sensory information must be mon-

itored. An association between preferred stroke rates and perceived exertion has

previously been reported (Sparrow et al., 1999) where stroke rates 20% faster

and 20% slower than preferred elicited increased ratings of perceived exertion. Inthe same study it was also demonstrated that perceived exertion reduced signifi-

cantly with practice, a finding that provided the first demonstration of changes

to perceived exertion independent of physical conditioning. Perceived exertion,

both central and peripheral, may reflect the individual�s sensitivity to informationthat may be used to guide the search for movement patterns that minimize energy

expenditure. Ratings of perceived exertion were used to measure participants� sen-sitivity to the sensory information concerning the energy expenditure or ‘‘effort’’ of

performing the rowing task. It was expected that, using Borg�s (1985) scale, a sys-tematic reduction in ratings of perceived exertion would be found as a function of

practice sessions.

An extraneous variable not controlled in previous learning and economy studies

was potential physiological conditioning effects, either due to participation in the ex-

perimental sessions or activities undertaken outside the laboratory. In the present

study pre- and post-tests of submaximal predicted peak oxygen consumption were

included to confirm that any observed reductions in oxygen consumption and heart

rate with practice would be unrelated to training. In addition, physically active indi-viduals were employed who would not be expected to show training responses to the

relatively low work demands of the experimental rowing task.

In summary, the primary aim of the present experiment was to confirm, or other-

wise, the effect on oxygen consumption of practicing a novel task at a constant work-

load. The experiment was designed to extend previous findings of changes in

coordination and control parameters with practice by examining practice-related

changes to muscle activation (EMG) that may account for changes in the coordina-

tion and control parameters. Pre- and post-tests of oxygen consumption were in-cluded to demonstrate that the changes in oxygen consumption were independent

of physiological conditioning.

2. Method

2.1. Participants

Six healthy, physically fit (see submaximal predicted peak oxygen consumption

values in Section 3) male volunteers were recruited from the student population at

Deakin University. Sample size was calculated using means and standard deviations

of the primary dependent measures from pilot work, with 80% power and two-sided

alpha of 0.05. Participants had no experience of competitive rowing and did not use

a rowing ergometer in their everyday physical activity. Mean age of participants was

20� 1:26 years (range 18–21), height 184� 7:46 cm (range 172.7–194.5) and weight78:3� 9 kg (range 66.9–93.5). The Deakin University Ethics Committee approved

B.S. Lay et al. / Human Movement Science 21 (2002) 807–830 811

Page 6: Practiceeffectsoncoordination andcontrol ...e.guigon.free.fr/rsc/article/LayEtAl02.pdf · Practiceeffectsoncoordination andcontrol,metabolicenergyexpenditure, andmuscleactivation

the project and informed consent was obtained from each participant prior to com-

mencing the study.

2.2. Apparatus

A Concept II rowing ergometer (Concept II, Inc.) with a uni-axial force trans-

ducer attached between the oar handle and the ergometer drive chain was used for

the task. The force transducer was interfaced to the AMLAB data acquisition system

to provide a record (100 Hz sampling rate) of the force applied to the long axis of the

ergometer handle. The force transducer was calibrated prior to testing by suspending

two objects of known mass. Muscle activation data were collected via the AMLAB

system using bipolar disc surface electrodes of 30 mm diameter (Ag/AgCl). The

AMLAB system has an input impedance of 1012 X and a common mode rejectionratio of 105 dB. The raw EMG data were amplified (with pre-filtering time constant

of 0.30469 s) with a gain of 1000 and converted from analog to digital format (100

Hz sampling rate). The data was then full-wave rectified and filtered using a low pass

Butterworth filter (cut-off frequency 6 Hz). The low pass filtered linear envelope was

used, as it varies monotonically with muscle tension. Digital filters were used with an

attenuation rate of 12 dB/octave.

The rowing kinematics were sampled using an OPTOTRAK movement analysis

system (Northern Digital Inc.) with joint marker ireds (infrared-emitting diodes) thatprovided 3-D coordinates ðX ; Y ; ZÞ at a sample rate of 25 Hz. Ireds were attachedto the ergometer handle and to the right-side diarthrodial joint centres of the wrist,

elbow, hip, knee, and ankle. Smoothing frequency for the raw OPTOTRAK data

was determined from a residual analysis of the filtered (at cutoff frequencies in the

range 1–16 Hz) and the unfiltered data. The selected cut-off frequency was 3 Hz

for all markers using a second-order zero-lag Butterworth filter to eliminate additive

noise (Winter, 1990).

Oxygen (O2) consumption and carbon dioxide (CO2) production were measuredcontinuously using an expired air analyzer with dedicated hardware and software

(MMC Gould 2900). Heart rate was measured using a Polar heart rate monitor

strapped around the chest. Pre- and post-practice submaximal predicted peak

oxygen consumption were performed on an electronically braked cycle ergometer

(Quinton Excalibur) that maintained a constant power output independent of cycle

rate.

2.3. Procedure

The experiment comprised 12 testing sessions for each participant, a submaximal

predicted peak oxygen consumption pre-test and post-test on a bicycle ergometer

and 10 rowing ergometry practice trials. There was a minimum of 24 h between each

rowing testing session. The average inter practice-session interval was 4 days with a

maximum of 14 days for Participant 5 (see Section 3 for explanation of Participant

5�s 14 day inter-session interval). The average overall length of the practice period

812 B.S. Lay et al. / Human Movement Science 21 (2002) 807–830

Page 7: Practiceeffectsoncoordination andcontrol ...e.guigon.free.fr/rsc/article/LayEtAl02.pdf · Practiceeffectsoncoordination andcontrol,metabolicenergyexpenditure, andmuscleactivation

was 40 days (range 19–56 days). One important requirement of the present study de-

sign was that the pre- and post-tests of submaximal predicted peak oxygen consump-

tion be performed on a different apparatus to the rowing ergometer. If the oxygen

consumption tests were performed on the rowing ergometer then the submaximal

predicted peak oxygen consumption would be affected by the various practice-related adaptations that occur during the practice trials. The Astrand submaximal

predicted peak oxygen consumption cycle test was completed within 48 h of the start

and finish of the rowing ergometer trials. Participants cycled at a pre-determined

constant power output (196 W) at 60 rpm for 6 min while heart rate was recorded

at the end of each minute from a Polar heart rate monitor. The means of the 5th

and 6th minute heart rates were used to interpolate _VVO2peak from the Astrand ad-justed nomogram (Astrand & Rodahl, 1977). The seat and handlebar heights were

the same for the pre- and post-test. Within the strength training literature it is wellaccepted that improvements in strength during the first several weeks are predomi-

nantly due to neural adaptations and that strength gains are highly movement spe-

cific (Hakkinen, 1994; Sale, 1992). Baseline tests of participants� maximum power orstrength were, therefore, not performed, as movement specific neural adaptations

would not be assessed in these tests.

Prior to undertaking the first rowing trial participants were familiarized with

Borg�s 15-point scale for ratings of perceived exertion (PE) and instructed how to in-dicate their PE when requested by the experimenter. In all the rowing ergometry tri-als the instruction was to work at a comfortable stroke rate while maintaining a

power output of 100 W by monitoring the ergometer�s LED display. Bipolar surfaceelectrodes were aligned parallel with the muscle fibres of the left biceps brachii and

vastus lateralis. The biceps brachii electrode position was located one third of the

lead line length from the cubital fossa (insertion of biceps brachii) in accordance with

Zipp�s (1982) procedure. It is assumed that during each rowing cycle contralaterallimbs move in unison allowing for kinematic data to be recorded on the right side

and EMG on the left side of the participants. Prior to electrode attachment the mus-cle sites were shaved, gently abraded, and cleansed with alcohol. The reference elec-

trode for the biceps brachii was placed on the acromion process of the scapula and,

for the vastus lateralis, the medial surface of the tibial condyle. To ensure consistent

electrode placement on the first and last sessions, the inter-electrode distance was

maintained at 30 mm using indelible ink markings that were re-applied from time-

to-time as they faded. An ohmmeter was used to confirm that skin impedance was

below 5 kX prior to data collection.Each rowing trial lasted 16 min. Using Borg�s scale participants gave central and

peripheral perceived exertion ratings at 5:20, 10:20, and 15:20 min. The central PE

related to stress on the participants� heart and lungs and peripheral PE on their limbsand joints. The kinematic measures (from the OPTOTRAK), muscle activation, and

force-transducer data were sampled for 20 s at 0:20, 2:20 and 15:00 min. This sam-

pling protocol was designed to reveal any improvements in performance early in

practice and also to represent performance throughout the practice session. Heart

rate, stroke rate, and power output were recorded manually at 20 s intervals

throughout all practice sessions.

B.S. Lay et al. / Human Movement Science 21 (2002) 807–830 813

Page 8: Practiceeffectsoncoordination andcontrol ...e.guigon.free.fr/rsc/article/LayEtAl02.pdf · Practiceeffectsoncoordination andcontrol,metabolicenergyexpenditure, andmuscleactivation

2.4. Design and analysis

A single-group time-series design was employed in order to maximize practice ef-

fects on all dependent measures. Heart rate, stroke rate, power output and perceived

exertion were measured on all 10 practice days. Oxygen consumption, rowing kine-matics, force–time measures and muscle activation (EMG) were recorded on day 1

and day 10 only, thereby incorporating a pre-test and post-test into the design.

Stroke length was calculated by subtracting the largest maximum horizontal dis-

placement of the oar handle from the smallest value in each stroke cycle. (Horizontal

coordinate values increased as the handle moved forward during recovery and then

decreased during the drive phase.) Duration and velocity of the stroke cycle was then

calculated from the sampled time between these events. Centroids of the phase plane

plots (displacement versus velocity of the hip marker) were calculated according tothe method described in detail by Walters & Carson (1997). To further quantify

the practice-related changes in the extent of the phase plots, four variables were cal-

culated (see Fig. 4). Mean values of the distance from the centroid to the largest and

smallest values of each circle along the X -axis (displacement) constituted the X -pos-itive and X -negative values respectively. The Y -positive and Y -negative values weresimilarly calculated along the Y -axis (velocity). Values were calculated for each of thevariables from the individual full circles recorded in each 20 s sample period, with

these values also used to calculate standard deviations.As described earlier (Fig. 1), the EMG data were expressed as a percentage of the

maximum-recorded activity on day 1. The rectified and normalized EMG data were

integrated by multiplying the recorded value (in mV) by the time window of 10 ms

and summing these values over the sample period. The percentage of the sample time

accumulated in activation bins of 15% intervals was then calculated.

The coordination between vastus lateralis and biceps brachii was investigated via

correlation analysis. The Pearson product moment correlation coefficient (r) is anobvious candidate statistic for such an analysis. However, artificially low correla-tions can be obtained using this approach if, as is the case with the EMG signals

in this study, the signals have a dynamic relation such that they are not in phase with

each other and do not have a fixed amplitude ratio throughout the cycle. These lim-

itations of the Pearson correlation can be overcome using cross-correlational and

spectral analysis (Ada, O�Dwyer, & Neilson, 1993; Bendat & Piersol, 1971; Neilson,1972; Winter & Patla, 1997). This linear systems analysis approach computes multi-

ple correlations between the signals at progressively increasing time shifts (or lags),

thereby taking phase differences between the signals into account and also accommo-dating frequency-dependent variations in amplitude (i.e., gain ratio). The overall co-

herence square derived from this analysis quantifies the proportion of variance

accounted for by the linear relationship between the signals. In this way, the coher-

ence square is directly analogous to the square of the Pearson product moment cor-

relation (r2).The analysis of variance (ANOVA) procedure to determine significant pre-to-post

differences in dependent variable means was a 2� 3 (2 levels of practice: pre andpost; 3 samples per trial) repeated-measures design. Oxygen consumption, EMG,

814 B.S. Lay et al. / Human Movement Science 21 (2002) 807–830

Page 9: Practiceeffectsoncoordination andcontrol ...e.guigon.free.fr/rsc/article/LayEtAl02.pdf · Practiceeffectsoncoordination andcontrol,metabolicenergyexpenditure, andmuscleactivation

force–time and kinematic variables were analysed within this design. Since heart rate,

stroke rate, power output, and ratings of perceived exertion were collected during

every trial, the ANOVA for these measures was performed with 10 levels of the prac-

tice factor. The means across participants for submaximal predicted peak oxygen

consumption and the EMG coherence values were compared using a single factor(2 levels of practice: pre and post) ANOVA to determine any practice effects.

3. Results

Between rowing sessions 8 and 9, Participant 5 sustained a sporting injury (inde-

pendent of the present study) and, as a result, there were 14 days between these two

practice sessions. This interval between sessions was considered inconsistent with thefrequency of data collection for the remaining participants. His data have, therefore,

been included in the following tables and figures but removed from the statistical

analyses.

3.1. Metabolic variables

The top four graphs (a, b, c and d) of Fig. 2 summarize the results for the meta-

bolic variables. Graph a shows that oxygen consumption decreased significantlyfrom day 1 to day 10, F ð1; 4Þ ¼ 29:18, p < 0:01. Consistent with this effect, heart ratealso declined but this result was not statistically significant (Graph b). Note however,

from the top graph in Fig. 3, that group mean heart rate for each practice day

showed a downward trend over the first 8 days prior to an increase. As indicated

in Fig. 2 (Graph c), with a decrease in oxygen consumption and no change in power

output the economy of the performance increased significantly, F ð1; 4Þ ¼ 45:26,p < 0:01. This effect corresponded to an overall improvement in economy fromday 1 to day 10 of 9%, supporting the hypothesis that the rowing action would be-come more economical with regards to metabolic energy expenditure with practice.

An important result concerns the participants� aerobic fitness as measured by thesubmaximal predicted peak oxygen consumption test performed pre- and post-prac-

tice. Fig. 2 (Graph d) shows that there was no significant change in the participants�predicted maximum peak oxygen consumption over the practice period, F ð1; 4Þ ¼1:66, p > 0:05. This finding provides further support for the conclusion that the re-sults cannot be attributed to changes in aerobic fitness.

Participants� sensitivity to the sensory stimuli engendered by physical work wasmeasured via central and peripheral ratings of perceived exertion. The pre-test and

post-test mean perceived exertion ratings are displayed in Fig. 2 (Graphs e and f)

and the perceived exertion ratings over practice days are in Fig. 3. With a decline

in the metabolic response to the task demands, a decrease in both central and periph-

eral ratings of perceived exertion was anticipated. This prediction was confirmed as

both central (F ð9; 4Þ ¼ 19:03, p < 0:01) and peripheral (F ð9; 4Þ ¼ 12:07, p < 0:01)ratings decreased significantly.

B.S. Lay et al. / Human Movement Science 21 (2002) 807–830 815

Page 10: Practiceeffectsoncoordination andcontrol ...e.guigon.free.fr/rsc/article/LayEtAl02.pdf · Practiceeffectsoncoordination andcontrol,metabolicenergyexpenditure, andmuscleactivation

0

5

10

15

20

25

30

115

120

125

130

135

140

145

Day 1 Day 10

3.6

3.8

4

4.2

4.4

4.6

4.8

5

01020

30405060

7080

0

2

4

6

8

10

12

14

0

2

4

6

8

10

12

14

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

0.9

1

1.05

0.95

1.1

1.15

1.2

1.25

0

0.2

0.4

0.6

0.8

1

1.2

1.4

00.20.40.60.8

11.21.41.61.8

* *

*

*

a. b.

c.

e. f.

h.

i. j.

g.

d.

Day 1 Day 10

Day 1 Day 10 Day 1 Day 10

Day 1 Day 10 Day 1 Day 10

Day 1 Day 10 Day 1 Day 10

Day 1 Day 10 Day 1 Day 10

*O

2 C

on

sum

pti

on

(m

l.kg

.min

-1)

Eco

no

my

(wat

ts.m

l-1)

Dri

ve L

eng

th (

met

res)

Dri

ve D

ura

tio

n (

sec)

Cen

tral

Rat

ing

of

Per

ceiv

edE

xert

ion

Hea

rt R

ate

(bp

m)

Rec

ove

ry L

eng

th (

met

res)

Rec

ove

ry D

ura

tio

n (

sec)

Per

iph

eral

Rat

ing

of

Per

ceiv

ed E

xert

ion

Su

bm

axim

al P

red

icte

d P

eak

O2

Co

nsu

mp

tio

n (

ml.k

g.m

in-1

)

Fig. 2. Means (with standard deviation bars) for metabolic variables (a)–(d), ratings of perceived exertion

(e and f), and length and duration of rowing strokes (g)–(j) on day 1 and day 10. Significant pre- to post-

practice differences at p < 0:05 are starred.

816 B.S. Lay et al. / Human Movement Science 21 (2002) 807–830

Page 11: Practiceeffectsoncoordination andcontrol ...e.guigon.free.fr/rsc/article/LayEtAl02.pdf · Practiceeffectsoncoordination andcontrol,metabolicenergyexpenditure, andmuscleactivation

3.2. Coordination and control variables

3.2.1. Kinematics

In Fig. 3 (bottom) a trend of decreasing stroke rate over days of practice can be

seen, suggesting a ‘‘longer-slower’’ action pattern. The ANOVA results for meanstroke rate showed a main effect for day, F ð9; 4Þ ¼ 6:83, p < 0:01, indicating a signif-icant slowing with practice. It was hypothesized that skilled performance is reflected

in the ability to produce a more consistent or stable action pattern. The apparent de-

crease in stroke rate variability in Fig. 3 suggests that the participants adopted a

more consistent cycle rate over trials, but this trend narrowly failed statistical signif-

icance, F ð9; 4Þ ¼ 2:13, p ¼ 0:052.Graphs g, h, i and j of Fig. 2 present the mean length and duration for the drive

and recovery phases of the rowing stroke. There was a trend toward longer strokeswith practice and the drive phase (Graph g and i) increased slightly in length and

8

9

10

11

12

13

1 2 3 4 5 6 7 8 9 10Days

Ratin

gof

Perc

eive

dEx

ertio

n

112

116

120

124

128

132

Hear

tRat

e(b

pm)

Central PE

Peripheral PE

heart rate

20

24

28

32

1 2 3 4 5 6 7 8 9 10

Days

Mea

nSt

roke

Rate

(cyc

les

perm

inut

e)

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Stan

dard

Devi

atio

nof

Stro

keRa

te(c

ycle

spe

rmin

ute)

Std. Dev.

Stroke Rate

Fig. 3. Heart rate (HR) in beats per minute (bpm), central rating of perceived exertion (CPE), peripheral

rating of perceived exertion (PPE), stroke rate and standard deviation of stroke rate over days of practice.

B.S. Lay et al. / Human Movement Science 21 (2002) 807–830 817

Page 12: Practiceeffectsoncoordination andcontrol ...e.guigon.free.fr/rsc/article/LayEtAl02.pdf · Practiceeffectsoncoordination andcontrol,metabolicenergyexpenditure, andmuscleactivation

duration from day 1 to day 10 lending qualified support to the view that the action

tended toward the ‘‘longer-slower’’ mode described above. The recovery phase did,

Subject 2

-1.5

-1

-0.5

0

0.5

1

1.5

1.45 1.65 1.85 2.05 2.25

Displacement (m)

Velo

city

(m/s

)

-1.5

-1

-0.5

0

0.5

1

1.5

1.45 1.65 1.85 2.05 2.25

Displacement (m)

Velo

city

(m/s

)

Subject 3

-1.5

-1

-0.5

0

0.5

1

1.5

1.45 1.65 1.85 2.05 2.25

Displacement (m)

Velo

city

(m/s

)

-1.5

-1

-0.5

0

0.5

1

1.5

1.45 1.65 1.85 2.05 2.25

Displacement (m)

Velo

city

(m/s

)

Subject 4

-1.5

-1

-0.5

0

0.5

1

1.5

1.45 1.65 1.85 2.05 2.25

Displacement (m)

Velo

city

(m/s

)

-1.5

-1

-0.5

0

0.5

1

1.5

1.45 1.65 1.85 2.05 2.25

Displacement (m)

Velo

city

(m/s

)

Subject 5

-1.5

-1

-0.5

0

0.5

1

1.5

1.45 1.65 1.85 2.05 2.25

Displacement (m)

Velo

city

(m/s

)

-1.5

-1

-0.5

0

0.5

1

1.5

1.45 1.65 1.85 2.05 2.25

Displacement (m)

Velo

city

(m/s

)

Subject 6

-1.5

-1

-0.5

0

0.5

1

1.5

1.45 1.65 1.85 2.05 2.25

Displacement (m)

Velo

city

(m/s

)

-1.5

-1

-0.5

0

0.5

1

1.5

1.45 1.65 1.85 2.05 2.25

Displacement (m)

Velo

city

(m/s

)

DAY 1 DAY 10

Fig. 4. Phase plane diagrams of hip velocity (m s�1) against horizontal hip displacement (mm) with cent-

roid position indicated. (Participant 1 omitted because of missing hip data.)

818 B.S. Lay et al. / Human Movement Science 21 (2002) 807–830

Page 13: Practiceeffectsoncoordination andcontrol ...e.guigon.free.fr/rsc/article/LayEtAl02.pdf · Practiceeffectsoncoordination andcontrol,metabolicenergyexpenditure, andmuscleactivation

however, show a significant increase in duration with practice, F ð1; 4Þ ¼ 11:83,p < 0:05. This result provides stronger evidence for the proposed change to a longerand slower action but also suggests that the overall slowing of the rowing cycle was

mostly due to increased recovery time with less change in the duration of the drive

phase.To characterize the inter-limb coordination of the task the relative timing of the

hip and wrist were calculated. A trend toward a practice-related decrease in the time

lag between the hip and the wrist at the end of the drive phase was evident in all par-

ticipants except one. This increasing tendency toward a time-synchronized coordina-

tion pattern indicated that with practice the hip and wrist markers finished their

movement cycles closer to the same time. There was however, no significant effect

of practice on the mean timing differences. A similar trend of a decline in the stan-

dard deviations of the timing differences to a more consistent relative timing relation-ship between the two joints was found but this decrease in variability was also not

statistically significant.

Fig. 4 displays the hip phase plane diagrams for the rowing cycles obtained during

the 1st 20 s sample from day 1 and day 10. The elongation of the diagrams on day 10

reflects the overall increase in stroke length described above. Depicted on the phase

plane diagrams is the centroid position of the individual elliptical plots that con-

stitute each 20 s sample period. While no evidence of shifts in the mean of either

the X - or Y -coordinate after practice was found, there was a visible decrease in thevariability of the centroid position and a statistically significant decrease in the stan-

dard deviation of the vertical position of the centroid (Y -coordinate; F ð1; 3Þ ¼ 15:89,p < 0:05). Comparisons of the mean and standard deviation of the centroid coordi-nates and the extent of the phase plane plots of day 1 and day 10 are shown in Table

1. A statistically significant decrease in the mean peak velocity (Y -negative directionmean) (see Table 1) during the recovery phase was found, F ð1; 3Þ ¼ 100:62, p < 0:05.While the peak velocity decreased in the recovery phase it appears that close to peak

velocity was maintained for a longer period of the recovery phase following prac-tice (day 10). The standard deviations of the extent of the phase plane diagrams

were included to quantify changes in kinematic variability. A significant decrease

in the standard deviation of the peak velocity was found (Y -positive direction, see

Table 1

Practice effects on the rowing cycle: mean and standard deviation of centroid coordinates and extent of

phase plane plots

Mean Standard deviation

Day 1 Day 10 Day 1 Day 10

Centroid X -coordinate (m) 1.827 1.809 0.007 0.015

Centroid Y -coordinate (m) 0.060 0.069 0.031� 0.018�

X -Positive direction (m) 0.273 0.286 0.008 0.015

X -Negative direction (m) 0.242 0.290 0.006 0.018

Y -Positive direction (m) 1.023 0.905 0.053� 0.031�

Y -Negative direction (m) 0.904� 0.792� 0.043 0.033

�Statistically significant differences (p < 0:05) between day 1 and day 10.

B.S. Lay et al. / Human Movement Science 21 (2002) 807–830 819

Page 14: Practiceeffectsoncoordination andcontrol ...e.guigon.free.fr/rsc/article/LayEtAl02.pdf · Practiceeffectsoncoordination andcontrol,metabolicenergyexpenditure, andmuscleactivation

Fig. 5. Force–time characteristics of the ergometer rowing cycles over the 1st 20 s sample on day 1 and day

10.

820 B.S. Lay et al. / Human Movement Science 21 (2002) 807–830

Page 15: Practiceeffectsoncoordination andcontrol ...e.guigon.free.fr/rsc/article/LayEtAl02.pdf · Practiceeffectsoncoordination andcontrol,metabolicenergyexpenditure, andmuscleactivation

Table 1, F ð1; 3Þ ¼ 33:64, p < 0:05) reflecting decreased variability in peak velocityduring the drive phase.

3.2.2. Kinetics

The force–time data in Fig. 5 indicate that the force peaks for the strokes sampled

during the 20 s interval showed greater consistency on day 10. Statistical analyses

confirmed that peak force variability (standard deviation) on day 10 was significantlylower than on day one, F ð1; 5Þ ¼ 8:42, p < 0:05. A further assessment of practice-related changes to force production was undertaken by time-integrating force for

each stroke cycle to reveal any practice effects on both the magnitude and timing

of force application. Total impulse and the mean and standard deviation of impulse

per stroke from the 1st, 2nd and 3rd 20 s samples are displayed in Table 2. It is im-

portant to note first, from the left two columns, that there were no significant differ-

ences between day 1 and day 10 in total impulse for any of the 20 s samples. This

result was expected because with power (Nm s�1) constant, and increased strokelength compensated by decreased stroke rate, total work done on the ergometer

would be unchanged. It was observed earlier that stroke rate declined with practice

(Fig. 3) and was reflected in fewer force–time peaks on day 10 (Fig. 5). To compen-

sate for the reduced stroke frequency there was a significant increase in impulse per

stroke, F ð1; 4Þ ¼ 10:29, p < 0:05. A further link between stability of movement andminimization of metabolic energy expenditure was found with a significant decrease

in the standard deviation of impulse per stroke, F ð1; 4Þ ¼ 14:48, p < 0:05.

3.3. Muscle activation (EMG)

Figs. 6 and 7 display the full wave rectified EMG signals for the 1st 20 s sample on

day 1 and day 10. Practice-related refinements to the patterns of muscle activation

were observed with all participants revealing a clear decrease in activation in at least

one of the two muscles. The EMG signal of the vastus lateralis on day 10 (see Fig. 6)

was characterized by discrete bursts of activation at the initiation of the drive phase,

with muscle silence between these bursts. In contrast, in the day 1 EMG signal thephasic bursts were usually less clearly delineated and additional tonic activity was

present.

To summarize the above observations concerning practice effects on muscle acti-

vation and also to determine the reliability of these trends, the average integrated

Table 2

Practice effects on the rowing cycle: mean and standard deviation of impulse per stroke

Total Mean/stroke� Std. dev./stroke�

Day 1 Day 10 Day 1 Day 10 Day 1 Day 10

1st 20 s 2102.30 2028.64 199.95 238.03 30.18 14.22

2nd 20 s 1997.44 2057.20 198.97 249.16 19.29 10.59

3rd 20 s 2017.74 2018.28 198.84 249.88 19.64 12.40

�Statistically significant differences (p < 0:05) between day 1 and day 10.

B.S. Lay et al. / Human Movement Science 21 (2002) 807–830 821

Page 16: Practiceeffectsoncoordination andcontrol ...e.guigon.free.fr/rsc/article/LayEtAl02.pdf · Practiceeffectsoncoordination andcontrol,metabolicenergyexpenditure, andmuscleactivation

Fig. 6. Rectified EMG data for vastus lateralis in millivolts over time (1st 20 s sample).

822 B.S. Lay et al. / Human Movement Science 21 (2002) 807–830

Page 17: Practiceeffectsoncoordination andcontrol ...e.guigon.free.fr/rsc/article/LayEtAl02.pdf · Practiceeffectsoncoordination andcontrol,metabolicenergyexpenditure, andmuscleactivation

EMG (IEMG) for the vastus lateralis and biceps brachii was computed (Table 3).The IEMG values from the vastus lateralis showed an overall decrease following

Fig. 7. Rectified EMG data for biceps brachii in millivolts over time (1st 20 s sample).

B.S. Lay et al. / Human Movement Science 21 (2002) 807–830 823

Page 18: Practiceeffectsoncoordination andcontrol ...e.guigon.free.fr/rsc/article/LayEtAl02.pdf · Practiceeffectsoncoordination andcontrol,metabolicenergyexpenditure, andmuscleactivation

practice, but no significant effect was found. Consistent with the hypothesised de-

crease in muscle activation, there was a significant practice-related decrease in the

IEMG of the biceps brachii, F ð1; 4Þ ¼ 9:31, p < 0:05. In summary, these results in-dicated an overall decrease in muscle activation with practice and more clearly ac-centuated bursts of activity with intervening silent periods.

To further investigate changes in muscle activation patterns, an analysis was un-

dertaken of the percentage time distribution in various activation bins. As described

earlier in Fig. 1, the day 10 activation data were expressed as a percentage of max-

imum activation on day 1 to reveal not only changes in the distribution of activation

within a trial but also, most importantly, to indicate the reduction in activation with

practice. It can be seen from Fig. 8 that by day 10, in all time samples from the vastus

lateralis, approximately 60–70% of muscle activation time was within 0–15% of theday 1 maximum. The biceps brachii data show the same effect. Thus, comparison of

the day 1 and day 10 data in Fig. 8 revealed that the effect of practice was to engen-

der a shift to lower activation levels and a reduction in total activation over the

course of the time sample.

The changes in muscle activity patterns whereby, following practice, both muscles

had more clearly delineated bursts with longer periods of reduced activity also con-

tributed to modifications to coordination between the muscles. As shown in Table 4,

coherence between the vastus lateralis and the biceps brachii increased in all partic-ipants from day 1 to day 10 such that there was an overall significant increase in

group mean coherence, F ð1; 4Þ ¼ 13:80, p < 0:05. It should be noted that the equiv-alent r2 values as obtained from Pearson�s product–moment correlation were low,0.09 and 0.10 respectively, reflecting the inadequacy of straightforward correlation

measures for quantifying the dynamic relation between the signals obtained from

pairs of active muscles.

Table 3

Mean and standard deviation (Std. dev.) of integrated EMG values (mV.s) for the 1st, 2nd, 3rd and mean

of 1st, 2nd and 3rd 20 s samples

Day 1 Day 10

IEMG Std. dev. IEMG Std. dev.

Vastus lateralis

1st 20 s 436.73 77.03 292.10 92.53

2nd 20 s 455.14 216.61 311.06 194.94

3rd 20 s 428.57 148.46 492.48 419.62

Mean of 1st, 2nd and 3rd 440.15 147.37 365.21 235.70

Biceps brachii�

1st 20 s 409.07 97.54 271.29 138.94

2nd 20 s 427.05 76.58 271.26 101.52

3rd 20 s 415.72 105.43 304.30 213.43

Mean of 1st, 2nd and 3rd 417.28 93.18 282.28 151.30

�Statistically significant differences (p < 0:05) between day 1 and day 10.

824 B.S. Lay et al. / Human Movement Science 21 (2002) 807–830

Page 19: Practiceeffectsoncoordination andcontrol ...e.guigon.free.fr/rsc/article/LayEtAl02.pdf · Practiceeffectsoncoordination andcontrol,metabolicenergyexpenditure, andmuscleactivation

4. Discussion

While previous research demonstrated reduced metabolic energy expenditure withpractice, it had not been confirmed that this effect was independent of physiological

conditioning (Sparrow et al., 1999; Sparrow & Irizarry-Lopez, 1987; Sparrow & Ne-

well, 1994). The absence of a pre- to post-test difference in submaximal predicted

peak oxygen consumption supported the contention that the intensity and duration

0

20

40

60

80

0-15 16-30 31-45 46-60 61-75 75+

% activation

%tim

e Day 1 EMG sampleDay 10 EMG sample

0

20

40

60

80

0-15 16-30 31-45 46-60 61-75 75+

% activation

%tim

e Day 1 EMG sample

Day 10 EMG sample

0

20

40

60

80

0-15 16-30 31-45 46-60 61-75 75+

% activation

%tim

e Day 1 EMG sample

Day 10 EMG sample

0

20

40

60

80

0-15 16-30 31-45 46-60 61-75 75+

% activation

%tim

e Day 1 EMG sample

Day 10 EMG sample

0

20

40

60

80

0-15 16-30 31-45 46-60 61-75 75+

% activation

%tim

e Day 1 EMG sample

Day 10 EMG sample

0

20

40

60

80

0-15 16-30 31-45 46-60 61-75 75+

% activation

%tim

e Day 1 EMG sample

Day 10 EMG sample

Vastus Lateralis Biceps Brachii1st 20 second sample

2nd 20 second sample

3rd 20 second sample

Fig. 8. Percentage time distribution of muscle activation on day 1 and day 10 for three time samples with

activation levels on day 10 normalized relative to maximum activation on day 1.

B.S. Lay et al. / Human Movement Science 21 (2002) 807–830 825

Page 20: Practiceeffectsoncoordination andcontrol ...e.guigon.free.fr/rsc/article/LayEtAl02.pdf · Practiceeffectsoncoordination andcontrol,metabolicenergyexpenditure, andmuscleactivation

of exercise employed here was not sufficient to elicit changes in physiological fitness

(Green, Cadefau, Cuss�oo, Ball-Burnett, & Jamieson, 1995; Green et al., 1992; Putmanet al., 1998). The results also confirmed that with practice at a motor task, even with-

out augmented information of heart rate or oxygen consumption in the form of

‘‘biofeedback’’, metabolic energy expenditure is reduced with external power output

constant. As a consequence, movement economy as measured by decreased oxygen

consumption at constant levels of power output increased by 9% over the ten 16 min

practice trials. At present, it is difficult to suggest a critical test of the causal link be-tween metabolic energy expenditure and changes to movement coordination and

control. It remains, nevertheless, an intriguing hypothesis that a primary stimulus

to refining movement patterns with practice is sensitivity to sensory information re-

garding metabolic energy expenditure (Sparrow & Newell, 1998). Further work is

necessary to provide an unequivocal demonstration of this effect but the data ob-

tained here, and in previous work, suggest a strong link between metabolic processes

and movement coordination and the scaling of the movement coordination, via tem-

poral or force characteristics, in learned movements.Although the data did not reveal a significant decrease in heart rate, it was

strongly suggested from Fig. 3 that from day 1 to day 8 heart rate declined system-

atically. Lack of a significant practice effect on heart rate may have been due to the

marked increase on day 10, possibly due to re-introduction of the oxygen consump-

tion, movement analysis, and muscle activation instruments. The testing procedures

may, therefore, have elicited an elevated, cortically mediated, sympathetic heart rate

response.

Given that power output was maintained throughout the practice period, therewere no significant differences in the total impulse produced at the oar handle over

the three 20 s samples pre- and post-practice. With total impulse constant and a de-

crease in stroke rate it would be anticipated that the impulse per stroke would nec-

essarily increase. A significant trend of greater impulse per stroke emerged,

suggesting that learning of this task was characterized by increased impulse produc-

tion. It is possible that one of the characteristics of learning high power-demanding

skills, such as rowing and cycling, is increased impulse per cycle. Smith & Spinks

(1995) demonstrated that elite level rowers have an increased propulsive power out-put per kilogram of body mass when compared to novices and Van Soest & Casius

(2000) reported that the goal in sprint cycling was to maximise power output. Prac-

Table 4

Practice effects on coherence between the biceps brachii and the vastus lateralis

Day 1 Day 10

Subject 1 0.494 0.842

Subject 2 0.536 0.827

Subject 3 0.676 0.868

Subject 4 0.623 0.638

Subject 6 0.756 0.958

Mean 0.617� 0.827

�Statistically significant differences (p < 0:05) between day 1 and day 10.

826 B.S. Lay et al. / Human Movement Science 21 (2002) 807–830

Page 21: Practiceeffectsoncoordination andcontrol ...e.guigon.free.fr/rsc/article/LayEtAl02.pdf · Practiceeffectsoncoordination andcontrol,metabolicenergyexpenditure, andmuscleactivation

tice may also lead to reduced variability in impulse control, since in this study the

standard deviation of the impulse per stroke also declined with practice.

Muscle activation has been shown to be a relative measure of muscle metabolism

and therefore of metabolic energy expenditure (Komi, Kaneko, & Aura, 1987; Stras-

ser & Ernst, 1992). A practice-related decrease in the absolute level of muscle activa-tion was hypothesized consistent with reduced metabolic energy cost. The trend in

the IEMG data was a decrease in absolute activation from day 1 to day 10 with

all except the 3rd sample from the vastus lateralis demonstrating a decrease follow-

ing practice (see Table 3). A statistically significant decrease in the average IEMG of

the biceps brachii over the three sample periods provided support for the hypothesis.

Although only two muscles were recorded in this study, these findings are important

in suggesting a general mechanism by which metabolic energy expenditure is mini-

mized with practice. It appears possible that a greater impulse per rowing strokecan be generated despite lower levels of muscle activity by using longer, slower

strokes. In a mechanical system dominated by inertial loads, the torque required

to generate movement increases in proportion to the square of movement frequency.

It is, therefore, likely to be more mechanically efficient to lower the cycle frequency.

During the early stages of acquiring many skills, especially multiple degree of free-

dom tasks such as rowing, the coordination and control of movement is complex and

difficult to organise. It has been suggested that the learner ‘‘freezes’’ biomechanical

degrees of freedom early in practice by keeping either a single segment or limb seg-ments fixed and then releasing the constraint on the joint movements over time (e.g.,

Vereijken, van Emmerik, Whiting, & Newell, 1992). From this perspective the unnec-

essary muscle activity present early in practice may part of an essential process in be-

ing able to simply perform the task. The highly correlated patterns of muscle

activation found following practice in the present study could be interpreted as a co-

ordinative structure facilitating the release of limb segments while at the same time

maintaining well-controlled movements. A further observation on the EMG results

is that the rectified EMG for the vastus lateralis of participant three did not decrease,rather it increased with practice. This enhanced activity in the legs was, however, ac-

companied by a decrease in the biceps brachii in this participant. Coyle (1994) and

others have shown that the large muscle groups of the legs are metabolically more

efficient than the relatively small muscles of the arms (see also Kang et al., 1997;

Powers & Howley, 1997). With a larger muscle mass to share in the power output,

the active muscle fibres of the legs can maintain a lower relative work rate and im-

proved economy (Coyle, 1994). Apportioning more of the workload from the upper

body to the larger muscle groups of the lower limbs may reflect a process by whichmetabolic energy is saved. It is possible that further adaptations of this sort may

have been revealed with more practice sessions in other participants. It is, however,

most probable that the adaptations found in the other participants were indicative of

a release of mechanical degrees of freedom and the minimization of unnecessary

muscle activity.

In addition to reinforcing earlier observations of practice effects on metabolic

variables, we have confirmed previous findings of practice effects on muscle activation

patterns (e.g., Kamon and Gormley, 1959; Person, 1958). It is, however, important

B.S. Lay et al. / Human Movement Science 21 (2002) 807–830 827

Page 22: Practiceeffectsoncoordination andcontrol ...e.guigon.free.fr/rsc/article/LayEtAl02.pdf · Practiceeffectsoncoordination andcontrol,metabolicenergyexpenditure, andmuscleactivation

to emphasize that no previous work has demonstrated the capacity to reduce muscle

innervation with external workload constant. We also observed that the decline in

total muscle activation (IEMG) was associated with shifts from high to low levels

of activation. High levels of activation are often characteristic of co-contraction be-

tween antagonistic muscle pairs. In this experiment agonist–antagonist muscle pairswere not sampled simultaneously but it is now hypothesized that with practice co-

contraction would be minimized and more of the force produced by agonist activa-

tion usefully employed to overcome the resistance imposed by the ergometer. As a

consequence, the same external work would be done at lower metabolic cost. It

has already been proposed that co-contraction of antagonist muscles is either a sign

of neurological abnormality or ‘‘lack of training’’ (Basmajian, 1978 p. 96). Future

work into practice effects on muscle activation could include changes in the relation-

ships of antagonistic muscles and the capacity to shift activation to more economicalmuscle groups or other synergists.

References

Ada, L., O�Dwyer, N. J., & Neilson, P. D. (1993). Improvement in kinematic characteristics andcoordination following stroke quantified by linear systems analysis. Human Movement Science, 12,

137–153.

Astrand, P., & Rodahl, K. (1977). A textbook of work physiology. New York: McGraw-Hill.

Basmajian, J. V. (1978). Muscles alive, their functions revealed by electromyography. Baltimore, MD:

Williams and Wilkins.

Bendat, J. S., & Piersol, A. G. (1971). Random data: Analysis and measurement procedures. New York:

Wiley-Interscience.

Borg, G. A. V. (1985). An introduction to Borg�s RPE-scale. New York: Movement Publications.Coyle, E. F. (1994). Integration of the physiological factors determining endurance performance ability.

Exercise and Sports Sciences Reviews, 23, 25–63.

Delagi, E. F., & Perotto, A. (1980). Anatomic guide for the electromyographer. Springfield, IL: Thomas.

De Luca, C. J. (1997). The use of surface electromyography in biomechanics. Journal of Applied

Biomechanics, 13, 135–163.

Finley, F. R., Wirta, R. W., & Cody, K. A. (1968). Muscle synergies in motor performance. Archives of

Physical Medicine and Rehabilitation, 49, 655–660.

Green, H. J., Cadefau, J., Cuss�oo, R., Ball-Burnett, M., & Jamieson, G. (1995). Metabolic adaptations to

short-term training are expressed early in submaximal exercise. Canadian Journal of Physiology

(Pharmacology), 73, 474–482.

Green, H. J., Helyar, R., Ball-Burnett, M., Kowalchuk, N., Symon, S., & Farrance, B. (1992). Metabolic

adaptations to training precede changes in muscle mitochondrial capacity. Journal of Applied

Physiology, 72, 484–491.

Guthrie, E. R. (1935). The psychology of learning. New York: Harper.

Hakkinen, K. (1994). Neuromuscular adaptation during strength training, aging, detraining and

immobilisation. Critical Reviews in Physical and Rehabilitation Medicine, 6, 168–198.

Holt, K. G., Jeng, S. F., Ratcliffe, R., & Hamill, J. (1995). Energetic cost and stability during human

walking at the preferred stride frequency. Journal of Motor Behavior, 27, 164–178.

Ishiko, T. (1968). Application of telemetry to sports activities. In Biomechanics I (pp. 138–146). Basel:

Karger.

Kamon, E., & Gormley, J. (1968). Muscular activity pattern for skilled performance and during learning

of a horizontal bar exercise. Ergonomics, 11, 345–357.

828 B.S. Lay et al. / Human Movement Science 21 (2002) 807–830

Page 23: Practiceeffectsoncoordination andcontrol ...e.guigon.free.fr/rsc/article/LayEtAl02.pdf · Practiceeffectsoncoordination andcontrol,metabolicenergyexpenditure, andmuscleactivation

Kang, J., Robertson, R. J., Goss, F. L., Dasilva, S. G., Suminski, R. R., Utter, A. C., Zoeller, R. F., &

Metz, K. F. (1997). Metabolic efficiency during arm and leg exercise at the same relative intensities.

Medicine and Science in Sports and Exercise, 29, 377–382.

Komi, P. V., Kaneko, M., & Aura, O. (1987). EMG activity of the leg extensor muscles with special

reference to mechanical efficiency in concentric and eccentric exercise. International Journal of Sports

Medicine, 8, 22–29.

Ludwig, D. A. (1982). EMG changes during the acquisition of a motor skill. American Journal of Physical

Medicine, 2, 229–243.

Monod, H., & Scherrer, J. (1965). The work capacity of a synergistic muscular group. Ergonomics, 8, 329–

338.

Muza, S. R., Lee, L.-Y., Wiley, R. L., McDonald, S., & Zechman, F. W. (1983). Ventilatory responses to

static handgrip exercise. Journal of Applied Physiology, 54, 1457–1462.

Neilson, P. D. (1972). Speed of response or bandwidth of voluntary system controlling elbow position in

intact man. Medical and Biological Engineering and Computing, 10, 450–459.

Nelson, W. L. (1983). Physical principles for economies of skilled movements. Biological Cybernetics, 46,

135–147.

Newell, K. M., & Corcos, D. M. (Eds.). (1993). Variability and motor control. Champaign, IL: Human

Kinetics Publishers.

Payton, O. D., & Kelley, D. L. (1972). Electromyographic evidence of the acquisition of a motor skill: A

pilot study. Physical Therapy, 52, 261–266.

Person, R. S. (1958). An electromyographic investigation on coordination of the activity of antagonist

muscles in man during the development of a motor habit. Pavlovian Journal of Higher Nervous Activity,

8, 13–23.

Powers, S. K., & Howley, E. T. (1997). Exercise physiology: Theory and application to fitness and

performance (third ed.). WCB/McGraw-Hill.

Putman, C. T., Jones, N. L., Hultman, E., Hollidge-Horvat, M. G., Bonen, A., McConachie, D. R., &

Heigenhauser, G. J. F. (1998). Effects of short-term submaximal training in humans on muscle

metabolism in exercise. American Journal of Physiology (Endocrinology and Metabolism), 275, E132–

E139.

Robb, M. D. (1972). The dynamics of motor-skill acquisition. Englewood Cliffs, NJ: Prentice-Hall.

Sale, D. G. (1992). Neural adaptation to strength training. In P. V. Komi (Ed.), Strength and training in

sport (pp. 249–265). Blackwell: Oxford.

Sch€ooner, P. G., Zanone, P. G., & Kelso, J. A. S. (1992). Learning as a change of coordination dynamics:Theory and experiment. Journal of Motor Behavior, 24, 29–48.

Singer, R. N. (1968). Motor learning and human performance. London: Collier-Macmillan.

Smith, R., Rattanaprasert, U., & O�Dwyer, N. (2001). Coordination of the ankle joint complex duringwalking. Human Movement Science, 20, 447–460.

Smith, R. M., & Spinks, W. L. (1995). Discriminant analysis of biomechanical differences between novice,

good and elite level rowers. Journal of Sports Sciences, 13, 377–385.

Sparrow, W. A. (1983). The efficiency of skilled performance. Journal of Motor Behavior, 15, 237–261.

Sparrow, W. A., Hughes, K. M., Russell, A. P., & LeRossignol, P. F. (1999). Effects of practice and

preferred rate on perceived exertion, metabolic variables, and movement control. Human Movement

Science, 18, 137–153.

Sparrow, W. A., & Irizarry-Lopez, V. M. (1987). Mechanical efficiency and metabolic cost as measures of

learning a novel gross motor task. Journal of Motor Behavior, 19, 240–264.

Sparrow, W. A., & Newell, K. M. (1994). Energy expenditure and motor performance relationships in

humans learning a motor task. Psychophysiology, 31, 338–346.

Sparrow, W. A., & Newell, K. M. (1998). Metabolic energy expenditure and the regulation of movement

economy. Psychonomic Bulletin and Review, 5, 173–196.

Strasser, H., & Ernst, J. (1992). Physiological cost of horizontal materials handling while seated.

International Journal of Industrial Ergonomics, 9, 303–313.

Van Soest, A. J. K., & Casius, L. J. R. (2000). Which factors determine the optimal pedalling rate in sprint

cycling? Medicine and Science in Sports and Exercise, 32, 1927–1934.

B.S. Lay et al. / Human Movement Science 21 (2002) 807–830 829

Page 24: Practiceeffectsoncoordination andcontrol ...e.guigon.free.fr/rsc/article/LayEtAl02.pdf · Practiceeffectsoncoordination andcontrol,metabolicenergyexpenditure, andmuscleactivation

Vereijken, B., van Emmerik, R. E. A., Whiting, H. T. A., & Newell, K. M. (1992). Freezing degrees of

freedom in skill acquisition. Journal of Motor Behavior, 24, 133–142.

Walters, M. R., & Carson, R. G. (1997). A method for calculating the circularity of movement trajectories.

Journal of Motor Behavior, 29, 72–84.

Welford, A. T. (1976). Skilled performance: Perceptual and motor skills. Glenview, IL: Scott, Foresman

and Company.

Wilson, J. J.-M., Robertson, D. G. E., & Stothart, J. P. (1988). International Journal of Sports

Biomechanics, 4, 315–325.

Winter, D. A. (1990). Biomechanics and motor control of human movement. Brisbane: John Wiley.

Winter, D. A., & Patla, A. E. (1997). Signal processing and linear systems for the movement sciences.

Waterloo, Ontario: Waterloo Biomechanics.

Zanone, P. G., & Kelso, J. A. S. (1994). Coordination dynamics of learning: Theoretical structure and

experimental agenda. In S. Swinnen, J. Heuer, J. Massion, & P. Caesar (Eds.), Interlimb coordination:

neural dynamical, and cognitive constraints (pp. 461–490). San Diego, CA: Academic Press.

Zipp, P. (1982). Recommendations for the standardization of lead positions in surface electromyography.

European Journal of Applied Physiology, 50, 41–54.

830 B.S. Lay et al. / Human Movement Science 21 (2002) 807–830