practice presentation 25

27
The Sizing For Fuel Cell Stack, Battery and Supercapacitor of FCHEV Truck Iin Lidiya Zafina Supervised by Ir. Edwin Tazelaar Dr. P.A. Veenhuizen Collaboration Project Master of Control System Engineering - Applied Research Laboratory Automotive Department HAN University of Applied Science

Upload: ilzafina

Post on 17-Dec-2014

259 views

Category:

Technology


0 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Practice presentation 25

The Sizing For Fuel Cell Stack, Battery and Supercapacitor

of FCHEV Truck

Iin Lidiya Zafina

Supervised byIr. Edwin Tazelaar

Dr. P.A. VeenhuizenCollaboration Project

Master of Control System Engineering - Applied Research Laboratory Automotive Department

HAN University of Applied Science

Page 2: Practice presentation 25

Introduction Objective Problems Definitions Modeling Solutions Result and

Discussion Conclusion Recommendation

Introduction Objective Problems Definitions Modeling Solutions Result and

Discussion Conclusion Recommendation

Page 3: Practice presentation 25

0 200 400 600 800 1000 1200 1400 1600 1800-2

-1

0

1

2

Time [s]

Accele

ration [m

/s2 ]

Vehicle acceleration (CSC Cycle)

0 200 400 600 800 1000 1200 1400 1600 18000

20

40

60

80

Time [s]

Speed [m

/s]

Vehicle speed profile (CSC cycle)

Page 4: Practice presentation 25
Page 5: Practice presentation 25
Page 6: Practice presentation 25

Hytruck prototype

Hytruck SpecificationVehicle Variable Value Uni

t

Empty massPayloadMax gross vehicle weightEquivalent rotating massFrontal areaDrag coefficientRolling resistance

mv_em

mv_payload

mv_max

mrot

Af

cd

cr

460017407500

2004.40.7

0.015

kgkgkgm2

-

-

-

0 200 400 600 800 1000 1200 1400 1600 1800-2

-1

0

1

2

Time [s]

Accele

ration [m

/s2 ]

Vehicle acceleration (CSC Cycle)

0 200 400 600 800 1000 1200 1400 1600 18000

20

40

60

80

Time [s]

Speed [m

/s]

Vehicle speed profile (CSC cycle)

0 200 400 600 800 1000 1200 1400 1600 1800 2000-2

-1

0

1

2

Time [s]A

ccele

ration [m

/s2 ]

Vehicle acceleration (je05 Cycle)

0 200 400 600 800 1000 1200 1400 1600 1800 20000

50

100

Time [s]

Speed [km

/h]

Vehicle speed profile (je05 cycle)

Page 7: Practice presentation 25
Page 8: Practice presentation 25

f

maxscapmaxbatmax_FC

tt

t

max_scapmax_batmax_FCfuelP,P,P

max_scapmax_batmax_FC d)P,P,P(mminarg)P,P,P(0

Page 9: Practice presentation 25

Equality constraintsPFCn - Paux+Pbatn+Pscap_term - Pdemand=0SOEbat(0)=SOEbat(end)

SOEscap(0)=SOEscap(end)

f

scap_sbat_sFC

t

tFCfuelPPP

τd)P(mminarg)u,u,u(0

321

ratedscap_occrated VVV 2

1

Inequality constraints

rated_scapscaprated_scap III

Page 10: Practice presentation 25

DC/DC

DC/DC

DC/AC

Pw

Pbat_term

Pbatn

Pdemand

PEM

PFCn

Paux

Mleft

PFC= u1.PFC_max

Fuel Cell System

Ps_scap

losses

Supercapacitor

Idealstorage

Mright

Ps_bat

losses

Idealstorage

Battery

PFC

Pscap_term

fuelm

invem

FC_dcη

bat_dcη

Ps_scap = u3.Pscap_max

P s_bat = u2.Pbat_max

Page 11: Practice presentation 25

Voc_ba t= f

(SOC)

01

2

2

2

μP

P

H

Pm

max_FC

FC

max_FC

FC

H

max_FCfuel

short_bat

bat_sbat_sterm_bat P

PPP

2

Fuel consumption

Battery model

Supercapacitor model

short_scap

scap_sscap_sterm_scap

P

PPP

2

scap

scapscapoc C

EV _

_ .2

d.PEEt

scap_soscap_ 0

],0[ t

Voc_scap= f

(E_scap)

Rint_scap

Ps_scap Pscap_term

Rint_bat = f (SOC)

Ps_bat Pbat_term

int_bat

bat_ocshort_bat R

VP

2

int_

2_

_scap

scapocshortscap R

VP

max_FCmax_FC

FCaux Pγ

P

PγP 01

bat_dc

term_batterm_batbat_dcbatn

P,P.minP

FCFC_dcFCn P.P

Page 12: Practice presentation 25

inertraw FFF.vP

2....2

1vcAF dfaa

cos... gmcF vrr

a.mmF jvinert

Vehicle model

invem

demanddemandBERinv.emdemand .

P,P..maxP

Inverter and motor are modeled as average values

Page 13: Practice presentation 25

Range of sizes PFC_ max1, PFC_ max2, PFC _maxi,,.

Pbat_ max1, P bat max2,. Pbat maxt j,....

Pscap max1, Pscap max2, Pscap_max k,….

EMSPdemand

Driving cycle

PFC__max i, Pbat_maxj,Pscap_max k Vehicle Model

111 ,,kmax_scapjmax_batimax_FCopt )P,P,P(,J

Jopt

PFC_max i,

Pbat_maxj,Pscap_maxk

211 ,,kmax_scapjmax_batimax_FCopt )P,P,P(,J

k,j,ikmax_scapjmax_batimax_FCopt )P,P,P(,J

…………………………...

Store the result

)P,P,P(,J optmaxscapoptmaxbatoptmaxFCopt

Find theOptimal

sizing

Page 14: Practice presentation 25

Sizing

Offline activity

Energy management strategy

Offline method

Dynamic problems

•Cost function

•Constraints

Global minimum

as Benchmark

Pseudo static optimization as DP approach

Dynamic Programming (DP)

Page 15: Practice presentation 25

J(u)=0

G(u)=0

u1

um+1

u0

u0

u*

0 uu G.J

11 ij

iiuu uG.λuJH ij

ii uG.λuJ

uJminu

ej n,..juG 10 eqej n,..njuG 10

Page 16: Practice presentation 25

Initial approximation

J(u) ,Gu), Ju (u), Gu(u)

Huu

Iter ≤ max iter

du ,dλ,

Evaluate initial function

J(u) ,G(u), Ju (u), Gu(u), ,, du

Evaluate function

maipulated u and λ

end

Vehicle + Propulsion model

Driving cycle

i-th

u0

u ,λ

t

t

t

u

u

u

...uu

...uu

...uu

u

u

u

3

2

1

3231

2221

1211

3

2

1

0

Page 17: Practice presentation 25
Page 18: Practice presentation 25

0 200 400 600 800 1000 1200 1400 1600 1800-500

0

500

1000

time [s](a)

curr

ent [

A]

Supercapacitor Current

0 200 400 600 800 1000 1200 1400 1600 180050

100

150

200

time [s](b)

volta

ge [V

]Supercapacitor open clamp Voltage

0

3

0

2

0

1

0

32

0

31

0

22

0

21

0

12

0

11

0

3

0

2

0

1

t

t

t

u

u

u

...uu

...uu

...uu

u

u

uEMS result 0uJ

0 200 400 600 800 1000 1200 1400 1600 1800-0.02

-0.01

0

time [s]

pow

er [kW

]

Power demand deviation

0 200 400 600 800 1000 1200 1400 1600 1800-0.2

0

0.2

time [s]

ener

gy [kW

h]

Battery Energy Content

0 200 400 600 800 1000 1200 1400 1600 1800-0.5

0

0.5

time [s]

ener

gy [V

]

Supercapacitor Energy content

Page 19: Practice presentation 25

35 40 45 50 55 60 65 704.1

4.2

4.3

4.4

Stack size [kW](a)

Fuel

consu

mption [kg

/100

km

]

Fuel consumption against Stack size

je05

csc

25 30 35 40 45 50 55 60 654.1

4.2

4.3

4.4

Battery size [kW](b)

Fuel

consu

mption [kg

/100

km

]

Fuel consumption against battery size

je05

csc

40 60 80 100 120 140 160 180 200 220 2404

4.5

5

Supercapacitor size [kW](c)

Fuel

consu

mption [kg

/100

km

]

Fuel consumption against supercapacitor size

je05

csc

Component Source

Optimal size

[ kW]CSC cycle

Optimal size

[kW]Je05 Cycle

Fuel cell stack 45 - 55 55 - 66

Battery 25 25

Supercapacitor 116 – 145 188 – 246

Page 20: Practice presentation 25

50 100 150 200 25035

40

45

50

55

60

65

70 Battery size at minimum fuel consumption against supercapacitor size and stack size

Supercapacitor [kW]

Stac

k si

ze [k

W]

25

30

35

40

45

50

55

40 60 80 100 120 140 160 180 20035

40

45

50

55

60

65 Battery size at minimum fuel consumption against stack size and supercapacitor size

Supercapacitor size

Sta

ck s

ize

[kW

]

25

30

35

40

45

50

55

Page 21: Practice presentation 25

0 200 400 600 800 1000 1200 1400 1600 1800-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

time [s]

Energ

y [kW

h]

Delta Energy Storage CSC Cycle

Supercapacitor Energy deviation

Battery Energy deviation

demand

maxFC

P

P

CSC cycle Je05 cycle Unit

Stack size 45 – 55 55 - 66 kW

Battery powerBattery capacityBattery used capacity

25[25][0.21 - 0.22]

25[25]

[0.50 - 0.52]

kWkWhkWh

Supercapacitor powerSupercapacitor capacitySupercapacitor used capacity

116 – 145[0.64 - 0.73][0.64 - 0.73]

188 - 232[1.13 -1.29][1.13 -1.29]

kWkWhkWh

Total Energy Content 0.87 - 0.95 1.63 - 1.80 kWh

Fuel Consumption 4.11 4.13 Kg/100 km

Average demand 13.8 16.6 kW

Peak demand 99 115 kW

3.2-3.7 3.3-3.9

•The energy content is not an issue of hybridization

•Energy deviation is small

•Supercapacitor Compensate energy deviation to its maximum capacity

Page 22: Practice presentation 25

0 200 400 600 800 1000 1200 1400 1600 18000

1

2

3

time [s]

powe

r [kW

]

Power losses

Supercapacitor

Battery

0 200 400 600 800 1000 1200 1400 1600 18000

5

10

15

time [s]

perc

enta

ge [%

]

Internal losses

Supercapacitor

Battery

CSC cycle Je05 cycle Unit

Battery powerBattery capacityBattery used capacity

25[25]

[0.21 - 0.22]

25[25]

[0.50 - 0.52]

kWkWhkWh

Supercapacitor powerSupercapacitor capacitySupercapacitor used

capacity

116 – 145[0.64 - 0.73][0.64 - 0.73]

188 - 232[1.13 -1.29][1.13 -1.29]

kWkWhkWh

Hybridization is sized by its power handling Not by energy content !

Supercapacitor compensates more ! The component source

Power rate[W/Kg]

Impacts of the increment size to

the fuel consumption

trends

Supercapacitor 510 reduced

Battery 100 increased continually

Page 23: Practice presentation 25

demand

maxFC

P

P

CSC cycle

Je05 cycle

Unit

Stack size 52 63 kW

SupercapacitorCapacityCapacity used

1740.970.97

2031.291.29

kWkWhkWh

Fuel Consumption

3.9 4.0 kg/100 km

Average demand

13.55 16.2 kW

Peak demand 97 113.5 kW

3.7 3.9 -

demand

maxFC

P

P

CSC cycle Je05 cycle Unit

Stack size 45 – 55 55 - 66 kW

Battery powerBattery capacityBattery used capacity

25[25][0.21 - 0.22]

25[25]

[0.50 - 0.52]

kWkWhkWh

Supercapacitor powerSupercapacitor capacitySupercapacitor used capacity

116 – 145[0.64 - 0.73][0.64 - 0.73]

188 - 232[1.13 -1.29][1.13 -1.29]

kWkWhkWh

Total Energy Content 0.87 - 0.95 1.63 - 1.80 kWh

Fuel Consumption 4.11 4.13 kg/100 km

Average demand 13.8 16.6 kW

Peak demand 99 115 kW

3.2-3.7 3.3-3.9

Page 24: Practice presentation 25

10-3

10-2

10-1

100

40

50

60

70

80

90

100

110

Frequency [Hz]

Pow

er spectr

al density [dB

/Hz]

Distribution of power spectral density between fuel cell stack, battery and supercapacitor

Stack

Battery

Supercapacitor

Traction demand

10-3

10-2

10-1

100

30

40

50

60

70

80

90

100

110

Frequency [Hz]

Pow

er spectr

al density [dB

]

Distribution of power spectral density between fuel cell stack and supercapacitor

Stack

Supercapacitor

Traction demand

(a).FC stack –battery-supercapacitor

(b). FC stack - supercapacitor

Page 25: Practice presentation 25

The optimal sizes and minimum fuel consumption has been summarized in the table.

The result from fuel sensitivity against component sizes show that by reducing the battery size, the fuel consumption is continuously reduced. In addition, from the size trends, the optimal size for the battery is found at the minimum size, 25 kW. Therefore, the fuel cell stack with supercapacitor is configured to observe the possibility of less fuel consumption. The result shows that the fuel consumption is reduced to 3.99 kg/100 km for CSC cycle and 4.03 kg/100 km for Je05 cycle which is reduced about 2 % from the optimal size with FC stack , battery and supercapacitor. The optimal stack size is 52 kW for CSC cycle with supercapacitor size 174 kW and stack 63 KW with supercapacitor 203 kW for Je05 cycle.

Page 26: Practice presentation 25

The on line EMS implementation should be implemented.

Equivalent Consumption Minimization Strategy, ECMS. The EMS strategy manipulating the equivalent electricity to fuel consumption cost

On line using the feedback battery model

predicting the future of the driving cycle using driving cycle generator.

0 200 400 600 800 1000 1200 1400 1600 1800-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

time [s]

Energ

y [kW

h]

Delta Energy Storage

Battery energy content DP

Battery energy content ecms

0 200 400 600 800 1000 1200 1400 1600 1800-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time [s]

Energ

y [kW

h]

Delta Energy Storage

Supercapacitor energy content DP

Supercapacitor energy content ecms

Page 27: Practice presentation 25

Thank you