pp-g-ma/ study on the preparation and the properties of pp-g … · 2000-11-07 · abstract...

7
HWAHAK KONGHAK Vol. 38, No. 5, October, 2000, pp. 691-697 (Journal of the Korean Institute of Chemical Engineers) 691 PP-g-MA/ * * * * , * (2000 4 29 , 2000 6 15 ) Study on the Preparation and the Properties of PP-g-MA/Layered Silicate Nanocomposites Mi-Jung Kim, Min-Ho Choi*, Chong-Min Koo*, Sang Ouk Kim* and In-Jae Chung* Center for Facilitated Transport Membranes, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650, Korea *Department of Chemical Engineering, Korea Advanced Institute of Science and Technology, 373-1, Kusong-dong, Yusung-gu, Taejon 305-701, Korea (Received 29 April 2000; accepted 15 June 2000) maleic anhydride(MA) polypropylene(PP-g-MA) octadecyl ammonium ion montmorillonite(C18M) PP-g-MA/ . PP-g-MA MA 1 H NMR 2.0% . XRD TEM . PP-g-MA/ PP PP-g-MA , 3 wt% 5 wt% . complex viscosity 1 wt% PP-g-MA/ PP-g-MA , . DSC PP-g-MA PP-g-MA/ PP-g-MA . Abstract - PP-g-MA/layered silicate nanocomposites were prepared by melt intercalation method using PP modified with maleic anhydride (PP-g-MA) by solid-phase grafting process and montmorillonite modified with octadecyl ammonium ion (C18M). The graft level of PP-g-MA was about 2.0% when measured by 1 H NMR and elemental analysis. XRD patterns and TEM micrographs showed that PP-g-MA was successfully intercalated into C18M. A PP-g-MA/layered silicate nanocompos- ite had higher tensile strength and modulus than PP and PP-g-MA. Especially, it showed a dramatically increased tensile mod- ulus up to the silicate content of 3wt% and the constant modulus over silicate content of 5wt%. Dynamic storage modulus and complex viscosity of the nanocomposites were higher than those of PP-g-MA. They increased considerably up to silicate con- tent of 1wt%, but increased slowly over this content like the tensile modulus. It was found that the nanocomposites showed the faster crystallization than PP-g-MA. Key words: Polypropylene, Maleic Anhydride, Montmorillonite, Nanocomposite E-mail: [email protected] 1. / (polymer/layered silicate nanocom- posite) (filler) , , , (self-extinguish- ing characteristics) [1]. , , . Toyota Motor Company / [2-4] - , Ube Industry Toyota food packaging barrier film , . /

Upload: others

Post on 05-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PP-g-MA/ Study on the Preparation and the Properties of PP-g … · 2000-11-07 · Abstract −PP-g-MA/layered silicate nanocomposites were prepared by melt intercalation method using

HWAHAK KONGHAK Vol. 38, No. 5, October, 2000, pp. 691-697(Journal of the Korean Institute of Chemical Engineers)

PP-g-MA/�� ����� ��� �� � ��� �� ��

�������*���*���*��� *†

��������, �� ��� ���*������ �����

(2000� 4� 29� ��, 2000� 6� 15� ��)

Study on the Preparation and the Properties of PP-g-MA/Layered Silicate Nanocomposites

Mi-Jung Kim, Min-Ho Choi*, Chong-Min Koo*, Sang Ouk Kim* and In-Jae Chung* †

Center for Facilitated Transport Membranes, Korea Institute of Science and Technology,P.O. Box 131, Cheongryang, Seoul 130-650, Korea

*Department of Chemical Engineering, Korea Advanced Institute of Science and Technology,373-1, Kusong-dong, Yusung-gu, Taejon 305-701, Korea

(Received 29 April 2000; accepted 15 June 2000)

� �

�� ���� �� �� maleic anhydride(MA) ��� polypropylene(PP-g-MA)� octadecyl ammonium ion�

��� montmorillonite(C18M)� ��� ���� PP-g-MA/�� ����� !"#$� %&�'(. PP-g-MA)

MA ����*+ ,-./� 1H NMR 0�1 2� 3 2.0% '(. XRD4 TEM ���� !"#$5 6�7�

%&89: ;<�'(. PP-g-MA/�� ����� !"#$) <=>?4 <=@6A� PP PP-g-MAB( CD�,

EF <=@6A) GH �����) IJ� 3 wt%KLM �����) IJN O� PQ R5�(5 5 wt% ��N�M

S) T��Q ULV W X Y9(. Z7 [= @6A� complex viscosity) GH? �����) IJ� 1 wt%N�

PP-g-MA/�� ����� !"#$5 PP-g-MAB( \] R5^�_, � ��) IJN�M ``F R5I B'(.

DSC� ���� PP-g-MA �� ����� !"#$) 2�a SZ 0�1 2� PP-g-MA/�� ����� !"

#$) 2�a b?5 PP-g-MA) 2�a b?B( cd ;<e X Y9(.

Abstract − PP-g-MA/layered silicate nanocomposites were prepared by melt intercalation method using PP modified with

maleic anhydride (PP-g-MA) by solid-phase grafting process and montmorillonite modified with octadecyl ammonium ion

(C18M). The graft level of PP-g-MA was about 2.0% when measured by 1H NMR and elemental analysis. XRD patterns and

TEM micrographs showed that PP-g-MA was successfully intercalated into C18M. A PP-g-MA/layered silicate nanocompos-ite had higher tensile strength and modulus than PP and PP-g-MA. Especially, it showed a dramatically increased tensile mod-

ulus up to the silicate content of 3wt% and the constant modulus over silicate content of 5wt%. Dynamic storage modulus and

complex viscosity of the nanocomposites were higher than those of PP-g-MA. They increased considerably up to silicate con-

tent of 1wt%, but increased slowly over this content like the tensile modulus. It was found that the nanocomposites showed the

faster crystallization than PP-g-MA.

Key words: Polypropylene, Maleic Anhydride, Montmorillonite, Nanocomposite

†E-mail: [email protected]

1. � �

���/�� ��� �� ��(polymer/layered silicate nanocom-

posite)� ��� ��� �� ��� ���(filler)�� �� �,

�� !"#, $% &'" (�� �� )* +�� ,� -�. �/

0 % 123, 4�� 56 &'"* �� �7�8(self-extinguish-

ing characteristics) , 9:; <2� =>? 1@[1]. AB �CD

* EF ��� ��� GH2� �B I�", I�"� J"2� �

� �K6� LHM8"� /B NOD �PQ:R� 123, @SB

JTD UVQW@. Toyota Motor Company�X� �YZ/���

�� ��[2-4]� �[\ �]^H _`-a bcd "e62�

fgh�, Ube Industry� Toyotai �j2� food packagingk @l

mHD. n� �� �� barrier film. fgo� 123, ( 4 p

q k Yr� sA tGD NOd �Po� 1@. AB ���/�

691

Page 2: PP-g-MA/ Study on the Preparation and the Properties of PP-g … · 2000-11-07 · Abstract −PP-g-MA/layered silicate nanocomposites were prepared by melt intercalation method using

692 ����������������

�� �� ��� uX 5vB wD xy z{| �P� }�~,

N� ��, �� �� ��, ��� (�� _: , @SB ���

mH� % 1� �~�. MR� 1@.

������ �� ��� /os ���d H� �� H����X

�� ��� ��� �:�� ������ �B �[ ��D �

�Q� 1@. ������ �� �� ��d �[0 � ���M �

� ��� ��2�   ��Q�¡ o� < M� ¢£B *�

@. ¤"¥¦R §� ���� B ¨% J". MR©� ¨%"

ªnd «Eo� 1� ���D� �� ��� �[M Ho@. (

w� epoxy[5-7], poly(ethylene oxide)[8] ,� ���� ������ �

�X "e62� �� ��d �[0 % 1@. (A� /��� ��

��� ���D� �K6� mH £O�� ¬Oo�, /�� ¨­�"

. ®©� ������ �B �[M HoR §@. ¯B n�X

wd ° ±" ���D� I²�� �° �� ��� ���D�

/� y³0 yB ��. �/o�� :´@. Giannelis ,� AB µ

�C. �¶o� n�, ���M ��� ���   ��Q�¡ o�

n� ���� ���� · ¸¹ ºm� �� ��� �G�

1� »¼·. =½¾�¿ ·2� $¹¥À ���d ¤"¥Á

Â, ���d ��os ��� �� ��d "e62� �[oÃ@[9].

Kurokawa ,� n� ̈ ­�" ���d Hos ��Ä�ÅÆ(PP)

�� ��� �[d ¥�oÃ2� y³0 yB "*d ÇR Èh@. ̄

B, Okada ,� PP �� ��d �[o� n�X maleic anhydride�

fÉ\ PP ���Ê(PP-g-MA ���Ê)d �[os ���� ��

B Â, PPi Ë�os PP/PP-g-MA ���Ê/��� �� ��d

�[oÃ2� ���i ���Ê� ��� Ì�2� �� ²%B ��6

Í". M� �� ��d ÇR� Èh@[10].

r NO�X� ²%B ��6 Í"� PP �� ��d �[o� no

s ����� PPd maleic anhydride� fÉ¥Á Â, �� ��d �

[os, ¶'7 v], ��6 Í" k ­¤Î6 "É ,. [GoÃ@.

2. � �

2-1. ��

r NO� GH\ ¥�D Table 1� 5vQ: 1@. PP/PP-g-MA�

PP(62.5 wt%), MA(10 wt%), trially cyanurate(5 wt%), benzene(10 wt%),

benzoyl peroxide(12.5 wt%)d 120oC� ·��X 15� ]& ºm¥À

�[oÃ@. pºm\ MAd �vo� nos ÏÐ%� 72¥� �

ÑUB Â, 100oC� �eo�X ��Ò Ó[oÃ@. NO�X GHB

�� ���� octadecyl ammonium ion2� $¹\ montmorillonite

(C18M)Ã@. Cation exchange capacity(CEC)� 108 meq/100 g@. PP-

g-MAi C18M. 200oC� ��n��X 15� ]& H��os �

� ��d �[oÃ@. C18M� E�� 1 wt%, 3 wt%, 5 wt%k 10 wt%

Ã23, ���� ÔÕ���Ö C1PPMA, C3PPMA, C5PPMA (��

C10PPMA|� ××oÃ@.

2-2. ��

PPi �[B PP-g-MA� ���� 1,2,4-trichlorobenzene. H�

GHos GPC(Waters 150CV)Ù'. Ú� Û�oÃ@. PP-g-MA�X

MA� (|Ä#� IR(Bomem-MB-100),1H NMR(Bruker-AMX-500),

(�� V� �Ü(HERAEUS; CHN-O-Rapid). Hos Ù'oÃ@.

�� ��� �[s�i ¶'O[� ¤7� Rigaku X-ray generator

(CuKα radiation, λ=0.15406 nm)d GHos ÝÞoÃ@. ¯B ����

�ß��� TEM(Philips CM-20)d GHos Û�oÃ@. PP-g-MA/C18M

�� ��� 5��J"(thermomechanical property). �Üo� n�

X DMA(Universal V2.5H TA Instruments)Ù'. oÃ23, Frequency

� 1 Hz,à· ¼�� 3 oC/minÃ@.��Í"� ASTM D 1708� á|

Ù'oÃ@. ­¤Î6 J"� Parallel-plate(Râ: 25 mm)M �ã\

ARES Rheometerd Hos 220oC� ·��X Ù'oÃ�, äå C

!" æç&�X %PoÃ@. �� ��� ¶'7 v]� DSC(Du Pont

model 910 thermal analyzer)d Hos ÝÞoÃ@.

3. �� �

3-1. PP-g-MA� ���

Table 2� PPi PP-g-MA� J". ×¥oÃ@. ���. èé®ê

PP-g-MA� I² PP®@ �� +�oÃë. = % 1@. PP-g-MA�

FT-IRìíî. Fig. 1� �¥oÃ@. Fig. 1(c)�X MA� 1,860 cm−1

* 1,780 cm−1�X C=O� anti-symmetric stretching bandi symmetric

stretching bandd ïï �_}�, Fig. 1(a)� PP� C=O bandM ð23,

Fig. 1(b)� PP-g-MA� I²�� 1,850 cm−1* 1,770 cm−1�X C=O�

anti-symmetric stretching bandi symmetric stretching bandd ïï �_

ñ@.� MA� C=C bondM òRêX PP� (|Ä Q©�X PP-

g-MA� I²�� C=O bandD ó�ô wavenumberM õ� ö2�

]B <3, <2� PP-g-MA�X pºm MAM v� �~oR

§ë. = % 1@.

PP-g-MA� MA (|Ä÷. Oo� ���� NMR, V��Ü 6

'�* FT-IR[9] , sA MRM 1@. FT-IR. Hos PP-g-MA�

(|Ä÷. Oo� ��[11] M� �øo� �µ� ���� ù

GHQ� 12� 'Û�M ú:R� �µ� r NO�X� NMR k

V��Ü ¶*d '�7oÃ@.1H NMR� �os PP-g-MA� (|Ä\ MA� S. �ßo� �

�� MA� 1� methine proton� peakê6. propylene� 1� methine

Table 1. Starting materials and their sources

Reagent Company Molecular weight

Polymer Polypropylene Samsung Co. Mn=36,479, Mw=225,778Comonomer Maleic anhydride Aldrich 098.06Free radical initiator Benzoyl peroxide Aldrich 242.23Catalyst Triallyl cyanurate Aldrich 249.27Interfacial agent Benzene Katayama chemical 078.11

Table 2. Basic properties of PP and PP-g-MA

PP PP-g-MA

Tma (oC) 163.1 159.1

Tcb (oC) 110.3 110.8

Mn 36,479 32,894Mw 225,778 185,163PDI(Mw/Mn) 6.19 5.63

Graft level(%) 1H NMR - 2.4Elemental analysis - 1.9

aValues obtained from second heating scan with heating rate of 10oC/min.bValues obtained from cooling scan with cooling rate of 10oC/min.

���� �38� �5� 2000� 10�

Page 3: PP-g-MA/ Study on the Preparation and the Properties of PP-g … · 2000-11-07 · Abstract −PP-g-MA/layered silicate nanocomposites were prepared by melt intercalation method using

PP-g-MA/� ����� ������ �� � ��� ! "� 693

proton� peak ê6* �¸os ÔÕ �÷� ¹ßo� <@[12]. Fig. 2

� PP-g-MA� 1H NMR ìíî �_� 1�û, �� (|Ä\

MA� �üo� peak� PP� �� ýÔ j� S� ppm þnM ÿ

R §z Fig. 2�X� ®R §�@. (A� Fig. 2d Û/B Fig. 3� �

_; <�î 2.2 ppm, 1.9 ppm, 1.7 ppmk 1.3 ppm ��� MA� methine

proton peakM jÕ ®�û ê6D. propylene� �üo� peak

� ê6* �¸os ÔÕ �÷� ¹ßos MA� (|ÄS. �ßo

Ã@. ( ¶* PP-g-MA� MA (|Ä÷� 2.4� �_�@.

V� �Ü. ÚB PP-g-MA }� MA E�� z�� %�� �o

s �ßoÃ@[12].

MA� (|Ä#(w%)= (1)

s�X O w%� V� �Ü. Ú� Ù'B PP-g-MA� �~o� ß�

� E��, 16� �� V���, 98� MA� ���3 3� MA�

�~o� ß� V�� f%d �_ñ@. MA� (|Ä÷� Table 2�

Xi � 1.9Ã@. NMR. HB ¶*i 'ÛÒ Y$oR� §R

y ���^d �>0 � v� �B ¶*�, MA� (|Ä÷�

ó 2.0% '�. = % 1@.

3-2. PP-g-MA �� �� ������ ���

Yº62� ���M �� ���� ���   ��QW�R�

s�d Û�o� n� X-rayi TEM. HB@. Fig. 4� r NO�

X GHB �� ���i PP-g-MA/C18M� X-ray t� � .

®s�@. r NO�X� octadecyl ammonium ion2� $¹\ mont-

morillonite(C18M)d GHoÃ�û Fig. 4(a)�X ®� �i � 2θ=

4.87o�X (001) peakd ®s�� 1@. Bragg’s lawd Hos C18M

� �� v�d �ßos 18.13 Å� �. ÇW@. �� ��� ��

� $¹\ alkyl chain� �� á| ��� � G�X mono-

¯� bi-layerd å"oêX ��� �* �P, %� �� ��:�

å�� �5B@. ®Ú octadecyl ammonium ion2� $¹QW. I²

alkyl chainD� bi-layer� ���i �åoÕ �s1� <2� =

>? 1@[13, 14]. ���M �� ���� ��2� ��QW�R

� s�� basal spacing� ��� = % 1�û, Fig. 4(b-d) (��

(e)� ïï ���� E�� ál X-ray t� � @. �° I²

� (001) peak õ� ï�� ]oÃë. Û�0 % 1@.

Fig. 4(d)� C5PPMA� X-rayt� � �û, C5PPMA� I² 2θ=

2.66o� C18M� (001) peak �ö2� ]oÃ� 2θ=5.78o�X (002)

peak. ®s�� 1@. �� basal spacing� 33.19 Å� �� ��

� v�M ó 15.06 Å '� �:�ë. = % 1@. Fig. 4i � �

° �� ��� I² (001) peak �ö2� ]oÃ2� peak �z

O wt% 983 16×--------------×

Fig. 1. FT-IR spectra of (a) PP, (b) PP-g-MA and (c) maleic anhydride.

Fig. 2.1H NMR spectrum of PP-g-MA.

Fig. 3. Magnified spectrum of Fig. 2.

Fig. 4. XRD patterns of (a) C18M, (b) C1PPMA, (c) C3PPMA, (d) C5�PPMA, and (e) C10PPMA.

HWAHAK KONGHAK Vol. 38, No. 5, October, 2000

Page 4: PP-g-MA/ Study on the Preparation and the Properties of PP-g … · 2000-11-07 · Abstract −PP-g-MA/layered silicate nanocomposites were prepared by melt intercalation method using

694 ����������������

1� <2� ®z, ��å �� ��(intercalated nanocomposite)

M å"�. = % 1@. Table 3� ��� E�� ál PP-g-MA

� �� '�d 5voÃ@. Table 3�X ®� �i � ���

E�* basal spacing G�� �ÝÝ�M ðë. = % 1@.

Fig. 5� PP-g-MA/�� ��� �� ��� TEM G�. ®s

�@. Fig. 5(a)� 1 wt%� C18M. E­B I²� Fig. 5(b)� 10 wt%

C18M. E­B I²� TEM G�@. ï G��X ®ê �� ��

� ���d �_}� �� ��� PP-g-MAd �_}�û, ��

� ��� PP-g-MAM ��Q:? 1ë. � % 1@. ¶*62�,

X-ray � * TEM G�. Ú�X C18M� S� Ý�ð �� �

�M å"QWë. Û�0 % 1W@.

3-3. ��� �� ��

PP-g-MA/�� ��� �� ��� ¶'7 J". DSCd H

os èé® @. Fig. 6� 5 oC/min !ï¼��X� DSC ¶*D. ®

s�� 1@. Table 4� !ï¼�� ál ¶'7 ·�i 10oC/min2�

M50 � Ç� H�5. 5voÃ@. Fig. 6�X ®� �i � PP-

g-MAi PP-g-MA �� ��� �� �� �" o�� g5 �

d ®�@. (A�, �*' �_�� ·� æç �� ���

I² PP-g-MAi @â. = % [email protected]�X PP-g-MA� Tc� 117.9oC

�û ��X, C1PPMA� Tc� 126.5oC� ó 9 oC '� #z�ë. =

% 1@. � �� ��� �~o� ���M $�� jHos

*!ï Ì�. ó7¥Á <2� �Ü0 % 1@[15]. ¯B �� ��

� I² PP-g-MA®@ g5 �� % & 'z(. = % 1�û,

� ¶'7 ¼�M ÏMo� Ì�2� ��� ���� $�(nu-

cleating agent) ç0� �os & ù� $)" ­�Q� �µ2� s

*�@. !ï¼�M 1 oC/min, 2oC/min, 10oC/min* 15oC/min� I²

�� �� I-. ®. Table4d Ú�X = % 1@. Fig.7� C3PPMA

� !ï¼�� ál ¶'7 ·�� ¤7d ®s�� 1�û, !ï¼�

M b(� á| *!ï +*M b? ¶'7 ·�M +�E. = %

1@.

Fig. 8� PP-g-MAi PP-g-MA/�� ��� �� ��� wide

angle X-ray t� � . ®s�� 1�û t� � � ïï� ¥

�d 130oC�X 30� ]& annealingos Ç� <@. �° ¥�D

�å6� PP� α form¶'O[� J" peak(2θ=14.15o, 16.95o, 18.66o,

21.25o, 21.88o)D. �_}� 1@. ��Ö ���� �B ¶'O

[� ¤7� ðë. = % 1@. Table 4�X �� !ï¼�� /�

Table 3. Basal spacings of C18M and PP-g-MA layered silicate nano-composites

Sample 2θ, degree Basal spacing

C18M 4.87o 18.13 ÅC1PPMA 2.74o 32.22 ÅC3PPMA 2.50o 35.31 ÅC5PPMA 2.66o 33.19 ÅC10PPMA 2.45o 36.03 Å

Fig. 5. Transmission electron micrographs of (a) C1PPMA and (b) C10-PPMA.

Table 4. Crystallization temperature, melt temperature and the heat of fusion of PP-g-MA and PP-g-MA/layered silicate nanocomposites with variouscooling rates

SampleTc(

oC) at different cooling rateTm(∆H)a [oC(J/g)]

15(oC/min) 10(oC/min) 5(oC/min) 2(oC/min) 1(oC/min)

PPMA 107.3 112.3 117.9 123.2 126.2 159.1 (92.5)C1PPMA 120.3 123.0 126.5 130.4 132.8 157.1 (92.6)C3PPMA 120.5 123.1 126.7 130.6 133.1 157.2 (90.2)C5PPMA 119.0 121.7 125.4 129.4 132.0 157.2 (90.7)C10PPMA 116.8 119.8 123.9 128.4 131.3 157.4 (86.0)

aObtained from 2nd scan with heating rate of 10oC/min.

Fig. 6. DSC cooling scans of PP-g-MA and PP-g-MA/layered silicatenanocomposites with cooling rate of 5oC/min.

���� �38� �5� 2000� 10�

Page 5: PP-g-MA/ Study on the Preparation and the Properties of PP-g … · 2000-11-07 · Abstract −PP-g-MA/layered silicate nanocomposites were prepared by melt intercalation method using

PP-g-MA/� ����� ������ �� � ��� ! "� 695

�° ¥�D ���� S� Ý�ð �B H�5�. ®�

1�û, D� ¶' å�M ]Yo©�, ��� E� ÏM��

¶'7�� v� ¤7d ®R §ë. = % 1@.

3-4. ��� �� ��

�� ��� /B �� ��� ¶*d Fig. 9i 10� �¥oÃ@.

Fig. 9�X ®� �i � PPi PP-g-MA� �� �� ïï 32.5i

Fig. 7. DSC cooling scans of C3PPMA with various cooling rate.

Fig. 8. Wide angle XRD patterns of (a) PPMA, (b) C1PPMA, (c) C3PP-MA, (d) C5PPMA and (e) C10PPMA.

Fig. 9. Tensile strength of PP-g-MA/layered silicate nanocomposites asa function of clay content.

Fig. 10. Tensile modulus of PP-g-MA/layered silicate nanocomposites asa function of clay content.

Fig. 11. Curve fitting for XRD patterns of (a) PP and (b) PP-g-MA.

HWAHAK KONGHAK Vol. 38, No. 5, October, 2000

Page 6: PP-g-MA/ Study on the Preparation and the Properties of PP-g … · 2000-11-07 · Abstract −PP-g-MA/layered silicate nanocomposites were prepared by melt intercalation method using

696 ����������������

n

33 MPaW@. � MAM PP� (|Ä� � �Ò> ��� +�

� ��X ¶'7 ¼�M ÏMos ¶'7�� ÏMoÃ� �µ� <

2� ®�@. PPi PP-g-MA� ¶'7�d �¸� ®� n� �� �

� Â� ¥�d X-ray �Ü. Ú� ¶'7�d �¸� ® @. Fig. 11

� PPi PP-g-MA� XRD� � /B curve fitting ¶*d �¥oÃ@.

PP-g-MA� ¶'7�� 0.67� PP� ¶'7�� 0.42� PP-g-MAM

PP®@ ¶'7�M #ë. Û�0 % 1@.

Fig. 9�Xi � ���� E� ÏME� á| �� �M

ÏMo@M 10 wt%� I² Í" ú:(. � % 1@. Fig. 10� PPi

PP-g-MA �� ��� ��!"#. �_}W@. PPi PP-g-MA� I

² ïï 1.1 GPa, 1.2 GPa� PP-g-MA� ¶'7�� ÏM� �� ��

!"# ÏMhë. = % 1@. ��� E� 1 wt%Y �� �

�!"#� 1.43 GPa� PP-g-MA ®@ 0.23 GPa '�M ÏMoÃ�,

3 wt%� ���d E­h. I²� 1.65 GPa� 1 wt%Y � ®@

0.22 GPa '� ÏMhRy, ��� E� ( � ÏMoê ��

!"#� v� Y'oÕ �. = % 1@. ,, ��!"#� ÏM÷�

���� E� ÏM� á| +�B@� <. = % 1@. Burnside

i Giannelis� ���� �- �÷ ÏM�%¡ ��� Ø.ìi

��� �� �ê �/62� ÏMo3, �ê�X� �ã /�

oR §� J"� �� !"#� ÏM ¼�M /7Q� Ì�. ®�o

Ã@[16-17]. u�X ¶'7v]� �Ü ¶*, PP-g-MAi PP-g-MA/

C18M �� ��� ¶'7�� �" �h2©�, AB ��6 Í

"� ÏM� ��� ���� �B +*. = % 1@.

3-5. �� ��� ��

PP, PP-g-MA (�� PP-g-MA/C18M �� ��� ·�� ál ]

6 0� !"#* tanδ� ¤7d Fig. 12� �¥oÃ@. −40oC, 0oC, 40oC

(�� 80oC�X dynamic storage moduli� �* ­� � ·�d

Table 5� 5voÃ@. ­� � ·� o�X� PP-g-MAM PP ®@

& õ� ]6 0� !"#. ®� ­�� ·� ��X� PP ®

@ & #� �. ®. = % 1@. <� PP-g-MAM ­� �

·��X Í"+�M 1 Ô'å��� �÷ j� �µ� �_�� Ì

�@. ̄ B −40oC�X PP-g-MA� ]6 0� !"#� 8.34 GPa�û

º�X 1 wt%� ���d E­h. I²�� 15.03 GPa� ó "

� '� ÏMhë. = % 1@. (A�, ���� E� ÏM0%

¡ ]6 0� !"#� ÏM�M +�os �����Xi �� I-.

®Ã@.

Table 5. Dynamic storage moduli of PP, PP-g-MA and PP-g-MA/C18Mnanocomposites at various temperatures and their glass tran-sition temperature obtained from tan δδδδ

SamplesStorage modulus, GPa

Tga,(oC)

−40oC 0oC 40oC 80oC

PP 11.17 08.55 3.99 2.01 6.60PPMA 08.34 07.79 4.64 2.03 9.21C1PPMA 15.03 11.67 5.16 2.33 8.39C3PPMA 15.58 12.04 5.39 2.47 9.27C5PPMA 16.02 12.67 5.89 2.59 8.90C10PPMA 16.79 13.03 5.87 2.68 10.10�

aThe glass transition temperatures were measured at the peak tops of taδ.

Fig. 12. (a) Dynamic storage moduli(E') and (b) tan δδδδ of PP, PP-g-MAand PP-g-MA�layered silicate nanocomposites as a function oftemperature.

Fig. 13. (a) Storage modulus(G'), (b) loss modulus(G'' ) and (c) complex viscosity for PP-g-MA and PP-g-MA/layered silicate nanocomposites at 220oC.

���� �38� �5� 2000� 10�

Page 7: PP-g-MA/ Study on the Preparation and the Properties of PP-g … · 2000-11-07 · Abstract −PP-g-MA/layered silicate nanocomposites were prepared by melt intercalation method using

PP-g-MA/� ����� ������ �� � ��� ! "� 697

d

-

r-

A.:

p-

.Y.

s,

3-6. ���� ��(rheological properties) ��

Fig. 13� PP-g-MAi �� ��� H���X� 0� !"#(G'),

2� !"#(G") (�� �C�(complex viscosity)d �_}W@. �

�� E� ÏME� á| �� ��� !"#* �C�M Ï

Mo3, JÒ ��� E� 1 wt%� I²�� �üÒ ÏME.

= % 1@. � ��� 3�� %�� Ô� ��� ��� I²

i� @l S�@. PS/calcium carbonate[18], PS/carbon black[19]* PP/

calcium carbonate[20] �� Ô� ��� ��� I², ���� E�

�/62� #� I² ��� Ø.ì� �� �üB 0� !"#

� ÏMi C�� ÏMM �_�� ºê�, PP-g-MA/�� ���

�� ���X� ��� ���� E��X� �üB 0� !"#

* C�� ÏMd ®�@.

Table 6� �� ���� E�� á| õ� �]% æç�X�

0� !"#* 2� !"#� ��� �. 4¥oÃ@. Table 6�X ®�

�i �, PP-g-MA� I² G'� ���M 1.27, G"� ���� 0.962

� ����«M ð� ��� H��D� �å6� �� ïï 2i 1�

��X jÕ �_�. � % 1@. � MAM (|ÄQ: 1� ���

�«� 5� �µ2� 6×0 % 1@[21]. ���� E� ÏM0%

¡ ]6 0� !"#� ���M CC +�B@. B̄ C5PPMA, C10PPMA

� 0�!"#* �C��X 7 m�Ì� ÝÞ\@(Fig. 13). 8 7

m�Ì�� ®Ú ����� �9jH� �� �_�� Ì�2� =

>? 123, ���� :�M #.%¡, ��� ��� ��M j�

;<�M =%¡ (�� ���� !"# =%¡ ÛNoÕ ÝÞQ�

<2� =>? 1@[22]. ��� ���(­�>­, !�>­ ,) D. G

H0 I² AB 7 m�v]� �/62� �:�� ���d «E0

I² ÝÞQ� <2� =>? 12�, ���M exfoliationQ: 1

� Ø.ìM ��� ��}� ̈ ¹\ ̈ ­� G?� 7κm2�

�ãQ: 1� I² ��� ���d «E0 I²�� �_�� <2�

®�QW@[23]. r ��� ¶*�X� ªR ��� G? ��\ å�

� I²�� AB 7 m� Ì�. ®. = % 1�û, <� ��

� �� /�Ò ò:RR §&|� Fig. 5�X � % 1@ ��

�M   �ßQ: 1� ��� ��� ;<�M #� ��M j

� +*M ­¤Î6 "É� æ-. p$� <2� �Ü0 % 1@.

4. � �

PP-g-MAd Ø.ì� GHos �� ��� �� ��d �[

B Â, ��6 Í", ­¤Î6 v] k ¶'7 v]� /� NOoÃ@.

PP-g-MA� ����� PP� MAd ��ºm. Ú� (|Ä¥À �

[oÃ23 (|Ä÷� ó 2.0%Ã@. XRDi TEM Ù'. Úos

�� ��M "e62� �[QWë. Û�oÃ@. PP-g-MA/�� �

�� �� ��� ¶'7 ·�M PP-g-MA� ¶'7 ·� ®@

& #z(2��Ö ���M $�� ç0. B@� <. = % 1

W@. ��� �� ��� �� � k ��!"#� õ� ��

� E��X� 1 ÏMd �_}W23, H���X� 0�!"#

* �C� ç¥ 1 ÏM%. ®Ã@.

r NO� Aµ� *Î~ª(KOSEF). ÚB the Center for Advanced

Functional Polymersi 2000B� "C Bq 21GK� �os RVQ

W�� +G DE{@.

���

1. Giannelis, E. P.: Adv. Mater., 8(1), 29(1996).

2. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Kurauchi, T. an

Kamigaito, O.: J. Polym. Sci.: Part A: Polym. Chem., 31, 983(1993).

3. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Kurauchi, T., Kur

auchi, T., Kamigaito, O. and Kaji, K.: J. Polym. Sci.: Part B: Polym.

Phys., 32, 625(1994).

4. Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Ku

auchi, T. and Kamigaito, O.: J. Mater. Res., 8(5), 1179(1993).

5. Messersmith, P. B. and Giannelis, E. P.: Chem. Mater., 6, 1719(1994).

6. Lan, T., Kaviratna, P. D. and Pinnavaia, T. J.: J. Phys. Chem. Solids,

57, 1005(1996).

7. Zilg, C., Mulhaupt, R. and Finter, J.: Macromol. Chem. Phys., 200(3), 661

(1999).

8. Aranda, P. and Ruiz-Hitzky, E.: Chem. Mater., 4, 1395(1992).

9. Kurokawa, Y., Yasuda, H. and Oya, A.: J. Mater. Sci. Lett., 15, 1481

(1996).

10. Kawasumi, M., Hasegawa, N., Kato, M., Usuki, A. and Okada,

Macromolecules, 30, 6333(1997).

11. Garcia-Martinez, J. M., Laguna, O., Areso, S. and Collar, E. P.: J. Appl.

Polym. Sci., 73, 2837(1999)

12. Honam Chemical Co., Technical Report, “Study on the Develo

ment of Polymer Alloy by Nylon Polymer Blend,” (1993).

13. Lagaly, G.: Solid State Ionics, 22, 43(1986).

14. Vaia, R. A., Teukolsky, R. K. and Giannelis, E. P.: Chem. Mater., 6,

1017(1994).

15. Liu, L., Qi, Z. and Zhu, X.: J. Appl. Polym. Sci., 71, 1133(1999).

16. Burnside, S. D.: PhD thesis, Chapter 2, Cornell University, Ithaca, N

(1996).

17. Shia, D., Hui, C. Y., Burnside, S. D. and Giannelis, E. P.: Polym. Com-

pos., 19(5), 608(1998).

18. Tanaka, H. and White, J. L.: Polym. Engng. Sci., 20(14), 949(1980).

19. Lakdawala, K. and Salovey, R.: Polym. Engng. Sci., 27(14), 1035(1987).

20. Han, C. D., Sandford, C. and Yoo, H. J.: Polym. Engng. Sci., 18(18),

849(1978).

21. Ferry, J. D.: “Viscoelastic Properties of Polymer,” John Wiley & Son

Inc.(1980).

22. Aroon� V. S�: “Rheology of Filled Polymer Systems,” Kluwer Ac-

ademic Publishers(1999).

23. Krishnamoorti, R. and Giannelis, E. P.: Macromolecules, 30, 4097(1997).

Table 6. Terminal slopes of G' and G'' vs ωωωω for PP-g-MA/layered sili-cate nanocomposites

Sample G' G''

PP 1.72 1.00PPMA 1.27 0.96C1PPMA 1.00 0.82C3PPMA 0.94 0.79C10PPMA 0.64 0.68

HWAHAK KONGHAK Vol. 38, No. 5, October, 2000