power to fuels modelling of production

22
Power to Fuels Modelling of methanol production Annukka Santasalo-Aarnio Judit Nyári, Markus Laitinen Daulet Izbassarov, prof. Ville Vuorinen Aalto University Energy Conversion Department of Mechanical Engineering Santasalo-Aarnio et al. 2020 https://doi.org/10.4271/2020-01-2151

Upload: others

Post on 10-Dec-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Power to Fuels

Modelling ofmethanolproductionAnnukka Santasalo-AarnioJudit Nyári, Markus Laitinen

Daulet Izbassarov, prof. Ville Vuorinen

Aalto UniversityEnergy ConversionDepartment of Mechanical Engineering

Santasalo-Aarnio et al. 2020https://doi.org/10.4271/2020-01-2151

https://youtu.be/mK41f24lX1k

Research Group of Energy ConversionAalto University

Prof. Mika Järvinen

Prof. Annukka Santasalo-Aarnio

Prof. Ville Vuorinen

HeadProf. Martti Larmi

Energy Transition

Institute of Energy of South East Europe

Energy Transition

Storages

Electricityproduction

Heatproduction Mobility

ELEC

CHEMENG

Systems Business

Materials

5The World Energy Council Germany:INTERNATIONAL ASPECTS OF A POWER-TO-X ROADMAP (2019)https://www.weltenergierat.de/ptxstudie/

Where do we need power t X?

PtX -Carboncompounds/H2

Methanol: a clean-burningmultipurpose fuel

27.10.20216

Sources: Methanex, Investor Presentation, Macrh 2019ATA Markets Intelligence S.L., Renewable Methanol Report, December 2018

Emission reductions when compared to heavy fuel oil

Renewable methanol production

27.10.2021

Source: ATA Markets Intelligence S.L., Renewable Methanol Report, December2018

7

Mixture

Full system modellingAspen Plus

Methanol plantStudy boundaries

27.10.20219

Economic feasibility

Process simulation

Nyári et al. 2020 J. CO2 utilization,https://doi.org/10.1016/j.jcou.2020.101166

REACTORHX4

MIXER1

HX5

HX6

SPLITTER

DISTLSEP1

SEP2

COMPR5MIXER2

BOILER

COMPR4

COMPR3

COMPR2

COMPR1

HX1

HX2

HX3

RECT

HX7

HX8

250

50

FEED

250

50

PRODUCT

47

50

MIX

18

2

CO2FEED

50

50H2FEED

30

50

S8

30

45 RECYCLE

30

45 RAWMEOH

30

1

S11

87

1

S12

30

45

PURGE30

45

S9

103

1

BOTTOM

66

1

S1330

1CO2RICH

42

50S10

32

1

S16

1509

1

STEAM

15

1

AIR

120

50S7

118

22

S5

120

10S393

4

S1

38

4

S2

38

10S4

38

22

S6

60

1

VAPOUR 60

1

S15

66

1

S14

30

1METHANOL

120

1

S17

Temperature (C)

Pressure (bar)

27.10.202110

Nyári et al. 2020 J. CO2 utilization,https://doi.org/10.1016/j.jcou.2020.101166

Production cost of methanol

27.10.202111

0

100

200

300

400

500

600

700

800

Leve

lised

cos

t of M

eOH

(€/t)

Fixed OPEX Catalyst Electricity Cooling water CO2 H2 CAPEX Methanex price

Methanex price for fossilmethanol October 2021

Nyári et al. 2020 J. CO2 utilization,https://doi.org/10.1016/j.jcou.2020.101166

Methanex price for fossilmethanol - 2020

Scale of plant(250 - 10 kt/a)

O2 selling(Yes - No)

CO2 cost(25 - 75 €/t)

Electricity cost(20 - 40 €/MWh)

500 600 700 800 900 1000 1100

Levelised cost of methanol (€/ton)

Bottlenecks of economic viability

27.10.202112

Nyári et al. 2020 J. CO2 utilization,https://doi.org/10.1016/j.jcou.2020.101166

Comparison to other LCOMeOH studies

27.10.202113

0 20 40 60 80 100 120

300

400

500

600

700

800

900

1000

This paper Asif et al., 2018 Atsonios et al., 2016 Hannula, 2015a Kourkoumpas et al., 2016 Pérez-Fortes et al., 2014 Rivera-Tinoco et al., 2016 Szima and Cormos, 2018 Tremel et al., 2015 Varone and Ferrari, 2015 Wiesberg et al., 2016

Leve

lised

cos

t of m

etha

nol (

€/to

n)

Electricity cost (€/MWh)

Nyári et al. 2020 J. CO2 utilization,https://doi.org/10.1016/j.jcou.2020.101166

Reactor modellingComputational Fluid

Dynamics (CFD)

Computational Fluid Dynamics

Aim and objectivesDevelopment of intensified cost-effective methanol synthesis processstarting from H2 and CO2 using modular milli-scale reactor design.

CFD modelling of multi-tubular and milli-scale reactors.

Adiabatic and Isothermal reactorsSoftware:OpenFOAM Izbassarov et al (2021)

https://doi.org/10.1016/j.ijhydene.2021.02.031

2D Fixed-bed Reactor

𝑇𝑖 = 523𝐾, 𝑝𝑖 = 5𝑀𝑃𝑎, 𝑅𝑒 = 100, 𝑆𝑉 = 6𝑚3 𝑘𝑔𝑐𝑎𝑡⁄ ℎ

Adiabatic reactor

Izbassarov et al (2021)https://doi.org/10.1016/j.ijhydene.2021.02.031

p2xenable.fi

2D Fixed-bed Reactor

17

Adiabatic Isothermal

Izbassarov et al (submitted)Izbassarov et al (2021)https://doi.org/10.1016/j.ijhydene.2021.02.031

ExperimentalstudiesLab-scale methanolsynthesis reactor

Experimental reactor systemMethanol synthesis from CO2 and H2

Process conditionsT: 200 – 250 °Cp: 30 – 50 bar

CommercialCu-based catalyst

Optimized with modelling

Height: 50 cmInner diameter: 3,8 cm(Volume: 0.567 L)

Integrated oil cooling channels on theoutside3 places for temperature sensors3 places for pressure sensors

Reactor Details

• Different catalyst materials• Different catalyst packings• Different feed gas compositions (e.g.

CCU product gases)• Validation of simulation results (Aspen

Plus& OpenFoam simulation)• The effect of operating conditions in

modified cases

Research topics

Conclusion

Methanol is a versatile chemicalcompound that can be implemented

into the current fuel infrastructure

27.10.202122

Technically viable to synthesisefrom CO2 and H2

Efficiency improvements needed

Price of H2 is significant contributorto high methanol production cost