power flow analysis

14
qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwe rtyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwert yuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyu iopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuio pasdfghjklzxcvbnmqwertyuiop asdfghjklzxcvbnmqwertyuiopa sdfghjklzxcvbnmqwertyuiopas dfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfgh Power flow Analysis Loud FLOW SOLUTION Prepared to Dr. Emaad Sedeek Prepared by Ahmed Raafat Ahmed

Upload: ahmedraafat

Post on 25-Nov-2014

118 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Power flow Analysis

qwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopas

dfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmq

wertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwert

yuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmrtyuiopasdfghjklzxcvbnmqwertyuiopas

dfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnmq

Power flow Analysis

Loud FLOW SOLUTION

Prepared toDr. Emaad Sedeek

Prepared byAhmed Raafat Ahmed

Page 2: Power flow Analysis

Power flow Analysis 2011

1. Gauss iterative Routine Method using [Y] Matrix

2

Page 3: Power flow Analysis

Power flow Analysis 2011

i. Construct [Y] matrix

Y= y11 y 12 y 13y 21 y 22 y 23y 31 y 32 y 33

ii. Initial Assumption

iii. Calculation transmitted Power

iv. 1st iteration:

v. 2nd iteration :

vi. Calculation of complex power

3

Page 4: Power flow Analysis

Power flow Analysis 2011

2. Gauss iterative Routine Method using [Z] Matrix

4

Page 5: Power flow Analysis

Power flow Analysis 2011

i. Construct [Y] matrix

Y= y11 y 12 y 13y 21 y 22 y 23y 31 y 32 y 33

ii. Matrix ref. to bus one

iii. Matrix ref. to bus one

iv. Initial Assumption

v. Calculation transmitted Power

vi. 1st iteration:

vii. Calculation of complex power

3. Newton & Raphthon method

5

Page 6: Power flow Analysis

Power flow Analysis 2011

i. Construct [Y] matrix

6

Page 7: Power flow Analysis

Power flow Analysis 2011

Y= y11 y 12 y 13y 21 y 22 y 23y 31 y 32 y 33

ii. Initial Assumption

iii. Matrix formation of N.R Method

Where:

iv. Calculation of complex power

7

Page 8: Power flow Analysis

Power flow Analysis 2011

8

Page 9: Power flow Analysis

Power flow Analysis 2011

Solution :

(a)

1. Line impedances are converted to admittances

2. Initial condition

3. Calculation of transmitted power

4. 1st iteration

5. 2nd iteration

9

Page 10: Power flow Analysis

Power flow Analysis 2011

6. Calculation of complex power

ــــــــــــــــــــــــــــــــــــــــــــــــــــــ

(b)

To find the line flows1. Line Current

2. Line power flow

10

Page 11: Power flow Analysis

Power flow Analysis 2011

3. Line power loss

4. Power flow diagram

ـــــــــــــــــــــــــــــــــــــــــــــ

(C) The power flow program lfgauss is used to obtain the solution, with the following statements:clearbasemva = 100; accuracy = 0.000001; accel = 1.1; maxiter = 100;% Problem 6.7(c)% Bus Bus Voltage Angle -Load--- -Generator-- Injected% No code Mag. Degree MW MVAR MW MVAR Qmin Qmax Mvarbusdata=[1 1 1.0 0.0 0.0 0.0 0.0 0.0 0 0 02 0 1.0 0.0 400 320 0.0 0.0 0 0 03 0 1.0 0.0 300 270 0.0 0.0 0 0 0];% Line code% Bus busR X 1/2 B = 1 for lines% nl nr pu pu pu >1 or <1 tr. tap at bus nllinedata=[1 2 0.0 1/30 0.0 11 3 0.0 0.0125 0.0 12 3 0.0 0.050 0.0 1];disp('Problem 6.7(c)')Lfybus % form the bus admittance matrixlfgauss % Load flow solution by Gauss-Seidel methodbusout % Prints the power flow solution on the screenlineflow % Computes and displays the line flow and losses

11

Page 12: Power flow Analysis

Power flow Analysis 2011

Result

Power Flow Solution by Gauss-Seidel MethodMaximum Power Mismatch = 7.39775e-007

No. of Iterations = 10

Bus Voltage Angle ------Load------ ---Generation--- Injected No. Mag. Degree MW Mvar MW Mvar Mvar 1 1.000 0.000 0.000 0.000 700.000 700.000 0.000 2 0.906 -6.340 400.000 320.000 0.000 0.000 0.000 3 0.951 -3.013 300.000 270.000 0.000 0.000 0.000 Total 700.000 590.000 700.000 700.000 0.000

Line Flow and Losses

--Line-- Power at bus & line flow --Line loss-- Transformer from to MW Mvar MVA MW Mvar tap 1 700.000 700.000 989.950 2 300.000 300.000 424.264 0.000 60.000 3 400.000 400.000 565.685 0.000 40.000 2 -400.000 -320.000 512.250 1 -300.000 -240.000 384.187 0.000 60.000 3 -100.000 -80.000 128.062 0.000 10.000 3 -300.000 -270.000 403.609 1 -400.000 -360.000 538.145 0.000 40.000 2 100.000 90.000 134.536 0.000 10.000 Total loss 0.000 110.000

12