chapter 6. power flow (load flow) analysis...

38
Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital analysis of a power system in normal op eration. - Find S I V , , of all circuital elements (Generator, load, line). - 발전기에서 생산된 전력은 송전 및 배전 선로를 통해 수용가에게 전송되어 소비되는데 이러한 전력의 흐름을 전력 조류 또는 조류라고 함. - Backbone of power system analysis and design. - Nonlinear static equations → Numerical technique Linear static (algebraic) equations 3x+4y=2 3 4 x 2 5x+6y=4 5 6 y 4 Nonlinear static equations 3x 2 +4y=2 # of va riable = # of equation 2xy+ y =3

Upload: others

Post on 13-Apr-2020

51 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석)

- Steady-state circuital analysis of a power system in normal operation.

- Find SIV ,, of all circuital elements (Generator, load, line).

- 발전기에서 생산된 전력은 송전 및 배전 선로를 통해 수용가에게 전송되어

소비되는데 이러한 전력의 흐름을 전력 조류 또는 조류라고 함.

- Backbone of power system analysis and design.

- Nonlinear static equations → Numerical technique

Linear static (algebraic) equations

3x+4y=2 3 4 x 2

5x+6y=4 5 6 y 4

Nonlinear static equations

3x2 +4y=2 # of variable = # of equation

2xy+ y =3

Page 2: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

6.1 Gauss-Seidel Method of nonlinear algebraic equations.

one variable nonlinear equation

)(0)( xgxxf =⇒=

*)(*0*)( xgxxf =⇒=

Assume initial 0x

?)( 0101 ε<−⇒= xxxgx

?)( 1212 ε<−⇒= xxxgx

?)( 2323 ε<−⇒= xxxgx

!)( 11 Yesxxxgx kkkk ε<−⇒= ++

MM

→ kk xxx ≈= +1*

Update rule : )(1 kk xgx =+

0x1x

)( 01 xgx =

)( 12 xgx =

2x

)( 23 xgx =

3x 4x*xx

)(xgy =

y xy =

0x3x

)( 01 xgx = )( 12 xgx =

)( 23 xgx =

2x 1xx

)(xgy =

y xy =

Page 3: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

1)'(1 <<− xg

)(xg

3x 1x 0x 2x

Ex 6.2 (Page 196)

?*0496)( 23 ==−+−= xxxxxf

)3)(1(3)94(3)'( 2 −−=+−= xxxxxf 3,1'=x

1 3 4

4,1* =x

1 3

04961)1( =−+−=f

44275427)3( −=−+−=f

By Gauss – Seidel 20 =x

)(xgx = 469 23 ++−= xxx

)(94

96

92

3

xgxxx =++−=

22222.2944

96

98)2()( 0 =++−== gxg

5173.2)22222.2( =g

8966.2)5173.2( =g

3376.3

7398.3

9568.3

9988.3

Page 4: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

M

Fig 6.3 Page 197

n-variable with n-equations

T

nxxxX ],,,[ 21 L=

=

==

0)(

0)(0)(

2

1

Xf

XfXf

n

M 0

)(

)()(

)( 2

1

=

=

Xf

XfXf

XF

n

M

=

==

)(

)()(

22

11

Xgx

XgxXgx

nn

M

==

)(

)()(

)(),( 2

1

Xg

XgXg

XGXGX

n

M

Update rule

)(1 kk XGX =+

=

=

=

=

+

+

+

+

)(

)(

)(

)(

)1(

3)1(3

2)1(2

1)1(1

knkn

kk

kk

kk

Xgx

Xgx

Xgx

Xgx

M 조금이라도 더 좋은 값으로 표현하기 위해서

→ Updated values are used immediately in subsequent equation.

Stop condition

)( 11 kkk XXX −∆∆ ++ → ε≤∆ +1kX

Euclidean norm : 2/1

1

2)1(1 ])([∑

=++ ∆=∆

n

ikik xX

Sup norm : )1(1 max ++ ∆=∆ kiik xX

Vector form

Vector form

Page 5: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

EX)

=+−+=

=−−+=

0110),(

0510),(

23

21212

213

1211

xxxxxf

xxxxxf

TxxX ],[ 21= ,

TX ]6.0,6.0[0 =

Sol) With initial value

−=

=→

04.4)6.0,6.0(616.0)6.0,6.0(

2

1

ff

, TXF )04.4,616.0()( 0 −=

=++=

=++−=

),(101

101

101

),(21

101

101

2123

212

21123

11

xxgxxx

xxgxxx

Update rule: )(1 kk XGX =+

==

==

1754.0)6.0,5384.0(

5384.0)6.0,6.0(

2)1(2

1)1(1

gx

gx

)1754.06.0,5384.06.0max( −−=∆X

4246.0)4246.0,0616.0max( ==

==

==

1507.0)1754.0,5019.0(

5019.0)1754.0,5384.0(

2)2(2

1)2(1

gx

gx

)1507.01754.0,5019.05384.0max( −−=∆X

0365.0)0247.0,0365.0max( ==

0176.0)1507.0,5019.0(0053.0)1507.0,5019.0(

2

1

=−=

ff

==

==

1506.0)1507.0,5024.0(

5024.0)1507.0,5019.0(

2)3(2

1)3(1

gx

gx

)1506.01507.0,5024.05019.0max( −−=∆X

0005.0)0001.0,0005.0max( ==

0191.0)1506.0,5024.0(0002.0)1506.0,5024.0(

2

1

==

ff

-> TXF )0191.0,0002.0()( 3 =

Page 6: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

6.2 Newton – Raphson Method of nonlinear algebraic equations.

<Linearization of Nonlinear function>

Taylor Series )(xf at ax =

∑∞

=−=

0

)()(

!)()(

n

nn

axn

afxf

L+′′′−+′′−

+′−+= )(!3

)()(!2

)()()()(32

afaxafaxafaxaf

),( yxf at ),( oo yx

...),()(),()(),(),( tohyxyfyyyx

xfxxyxfyxf +

∂∂

−+∂∂

−+= oooooooo

Ex1) 22)( 2 ++= xxxf at 1=x

L+′′′−+′′−

+′−+= )1(6

)1()1(2

)1()1()1()1()(32

fxfxfxfxf

4|22)1( 1=+=′ =xxf

2|2)1( 1==′′ =xf

0)1( =′′′f

2

2)1(4)1(5

2

⋅−

+⋅−+=xx

222 ++= xx → 고차 미분 Term 이 Zero 가 아니면 무한대항까지!

Ex2) 222)( 2 =++= xatxxxf

...)2('''6

)3()2(''2

)2()2(')2()2()(22

+−

+−

+−+= fxfxfxfxf

10244)2( =++=f

6|22)2(' 2 =+= =xxf

2|2)2('' 2 == =xf

xx

xx2)2(6)2(10 −

+−+=

222 ++= xx

Page 7: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

First order approximation with Taylor expansion

)(')()()( afaxafxf −+≅

oooo yxoyxooo yfyy

xfxxyxfyxf ,, |)(|)(),(),(

∂∂

−+∂∂

−+≅

Ex3) 222)( 2 =++= xatxxxf

)2(')2()2()( fxfxf −+=

26 −= x → Tangential line

Ex4) 322)( 2 =++= xatxxxf

8)3(17)3(')3()3()( −+=−+= xfxfxf

78 −= x

EX5) )2,1(22),( 22 atyxyxyxf ++=

)2,1()2,1( )2()1()2,1(),(yfy

xfxfyxf

∂∂

−+∂∂

−+=

1044222122)2,1( 2 =++=+⋅⋅+=f

8221424 )2,1()2,1( =⋅+⋅=+=∂∂ yx

xf

6221222 )2,1()2,1( =⋅+⋅=+=∂∂ yxyf

)2(6)1(810 −+−+= yx

> 가장 빨리 증가하는 방향 (접평면에 수직)

1068 −+= yx →Tangential plane

- linearization of a nonlinear function

비선형 함수의 선형화에 적용 !

< Newton-Raphson method>

One variable nonlinear equation

cxf =)( c : constant

Assume initial x0 and linearization at x0

Page 8: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

cxfxxxfxf =′−+≅ )()()()( 000

)]([)(

1)( 00

0 xfcxf

xx −′

=−

100

0 )]([)(

1 xxfcxf

xx ∆−′

+= , )( 0xfc − : error

similarly,

)]([)(

11

112 xfc

xfxx −

′+=

update rule

)()(

1k

kkk xf

xfcxx′

−+=+

0x1xx

2x*x

c

y

cf) limitation of Newton-Raphson

0x3x1xx

2x*x

→ Initial point needs to be near the solution!

Page 9: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

Two variables nonlinear equations

1( , )f x y C=

2( , )g x y C= with initial 0 0( , )x y

Linearization at 0 0( , )x y

0, 0 0, 00 0 0 ( ) 0 ( ) 1( , ) ( , ) ( ) ( )x y x yf ff x y f x y x x y y Cx y

∂ ∂≅ + − + − =

∂ ∂

0, 0 0, 00 0 0 ( ) 0 ( ) 2( , ) ( , ) ( ) ( )x y x yg gg x y g x y x x y y Cx y

∂ ∂≅ + − + − =

∂ ∂

0, 0 0, 00 ( ) 0 ( ) 1 0 0( ) ( ) ( , )x y x yf fx x y y C f x yx y

∂ ∂− + − = −

∂ ∂

0, 0 0, 00 ( ) 0 ( ) 1 0 0( ) ( ) ( , )x y x yg gx x y y C g x yx y

∂ ∂− + − = −

∂ ∂

x∆ y∆

=

∆∆

∂∂

∂∂

∂∂

∂∂

),(),(

2

1

)0,0()0,0(

)0,0()0,0(

kk

kk

yxyx

yxyx

yxgcyxfc

yx

yg

xg

yf

xf

= Jacobian matrix at 0 0( , )x y

0 0( , )J x y=

=

∆∆ −−

),(),(

),(002

00100

1

yxgCyxfC

yxJyx

+

=

−−

),(),(

),(002

001

00

1

0

0

1

1

yxgCyxfC

yxJyx

yx

update rule

+

=

−−

+

+

),(),(

),(2

11

1

1

kk

kkkk

k

k

k

k

yxgcyxfc

yxJyx

yx

Page 10: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

n-variables & n-equations

( )nxxxX ⋅⋅⋅⋅= 21 [ ]0,20100 ,)( nxxxXCXF ⋅⋅⋅⋅==

=•••

==

nn CXf

CXfCXf

)(

)()(

22

11

•••

=

)(

)()(

)(

2

1

Xf

XfXf

XF

n

,

•••

=

nC

CC

C

2

1

update rule

)()(

)()(1

11

CXFXJX

XFCXJXX

kkk

kkkk

−−=

−+=−

−+

where,

kXXn

nnn

n

n

k

xf

xf

xf

xf

xf

xf

xf

xf

xf

XJ

=

∂∂

⋅⋅⋅⋅⋅∂∂

∂∂

⋅⋅⋅⋅⋅∂∂

⋅⋅⋅⋅⋅∂∂

∂∂

∂∂

⋅⋅⋅⋅⋅∂∂

∂∂

=

21

2

2

2

1

2

1

2

1

1

1

)(MMM

Stop condition

)( 11 kkk XXX −∆∆ ++ → ε≤∆ +1kX

Euclidean norm : 2/1

1

2)1(1 ])([∑

=++ ∆=∆

n

ikik xX

Sup norm : )1(1 max ++ ∆=∆ kiik xX

P. 205 Ex 6.5 6.6

Discussion) Why use the 1+∆ kX as a stop condition instead of CXF k −+ )( 1 ?

Page 11: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

Summary

Gauss – Seidel

· Derivatives are not used → Relatively simple & fast calculation

· Hard to converge & slow convergence

Newton-Raphson

· Calculation of derivative & (n×n) matrix inversion

→ long time and not correct!

· Good convergence & fast convergence

→ sparse matrix : A matrix has a few non zero elements.

· sparse matrix technique with Newton- Raphson.

6.3. Y-Bus Matrix (Bus Admittance Matrix)

용어: Power System

= External Source + Transmission Network(Power Network)

- External Source: 발전기와 부하

- Transmission Network(Power Network): 송전선로로 이루어진 network부분

Transmission Network

ExternalSource

ExternalSource

ExternalSource

iI : 모선전류(Bus current)

: External Source (발전기/부하)에서 Transmission network으로 i- 모선을

통하여 유입되는 전류

- (발전기 혹은 부하)만 존재하는 모선

: (발전기 혹은 부하)에서 모선을 통하여 공급되는 전류

- 발전기와 부하가 동시에 존재하는 모선 : (발전기 전류+부하 전류)

- 발전기와 부하가 모두 없는 모선 : 모선전류는 zero.

ex1) a five-bus power system

Page 12: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

2L 5L2G

4I

1G 4G

13I

12I

2I 5I

1I 1

2

3 4

5

11 GI I= 12 13( )I I = +

2 22 G LI I I= + 21 23( )I I = +

3 0I = 32 35 51( )I I I = + +

44 GI I= 45( )I =

55 LI I= 53 54( )I I = +

Bus Matrix Equation

- A matrix equation which represents the bus current as a function of bus

voltage.

- Ohm’ s Law of entire power system.

- Nodal equation of a power system from KCL

BUSBUSBUS VYI = ,

where,

=

=

n

BUS

n

BUS

V

VV

V

I

II

IMM2

1

2

1

, ,

n: number of bus

YBUS: Bus Admittance Matrix (n*n)

ex2) A 2-bus system with a short line

Page 13: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

+

-

2V1V +

-

1I 2I][ΩjX

−=

−=

2

1

matrixAdmittanceBus

2

1

2

111

11

11

11

VV

Xj

Xj

Xj

Xj

VV

jXjX

jXjXII

BUSY44 344 21

ex3) A two bus system with a medium or long transmission line

1G2L

1V

2G

2V① ②

회로적으로 표현

ay

G1 G2

1I 2I1V

L2 by by

2V

211222

212111

)()()()(

VyyVyVVyVyIVyVyyVVyVyI

baaab

abaab

++−=−+=

−+=−+=

+−

−+=

2

1

2

1

VV

yyyyyy

II

bab

aba

BUSY=

)(1

)(1

122

211

VVjX

I

VVjX

I

−=

−=

Page 14: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

EX4) A three bus system

1G 2G

3L

① ②

ay

byby

βy

βy

αy

G1

G2

L3

1I 1V 2V

3V

2I

3I

KCL at bus ①,②,③

)()( 3112111 VVyVyVVyVyI ab −++−+= αβ

321)( VyVyVyyyy aba αβα −−+++=

211222 )()( VyyVyVVyVyI baaab ++−=−+=

211333 )()( VyyVyVVyVyI βαααβ ++−=−+=

+−+−

−−+++=

3

2

1

3

2

1

)(00)(

)(

VVV

yyyyyy

yyyyyy

III

baa

aba

βαα

αβα

Page 15: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

BusY of n-bus power system

=

nnnnn

n

n

n V

VV

YYY

YYYYYY

I

II

M

L

MLMM

L

L

M2

1

21

22221

11211

2

1

niniii VYVYVYI +++= L2211 ∑=

=n

jjijVY

1

iiY : Self-admittance of i-bus (diagonal)

sum of all admittance connected to i-bus

ijY : Mutual-admittance of i-j bus (off-diagonal)

Negative admittance between i-j bus

→ BusY is a symmetric matrix ( ijY = jiY )

→ ijY = jiY = 0 for no connection between i-j bus

(← impedance 는 ∞)

→ BusY has the information of network topology & transmission line parameters

→ Y-Bus matrix 와 모든 모선전압을 알면 임의의 모선 전류 표현 가능.

Complex power of i-bus : iS

)()(

*

LiGiLiGiLiGi

iiiii

QQjPPSSjQPIVS

+++=+=

+==

- Supplying power from i-bus to the network

- Sum of i-bus Generator & Load

- Zero for a bus has neither Generator nor load

1S in a two – bus system

*

22111112

1

*11

*11111 )()( VYVYVVYVIVjQPS

jjj +===+= ∑

=

ijijijijij

jiijiii

YjBGY

VV

θ

δδδδ

∠=+=

−∆∠= ,

Page 16: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

∑∑

==

=

=

∠−=−∠−=

−∠−∠=

∠+∠=

2

11111

2

11111

2

11111

2

1

*1111

)()()(

)(

)(

jjjjj

jjjjj

jjjjj

jjjjj

jBGVVjBGVV

VjBGV

VjBGV

δδδ

δδ

δδ

=

=

=

−+

+=

+−=

2

111111

2

111111

2

111111

cossin

sincos

sincos)(

jjjjjj

jjjjjj

jjjjjj

BGVVj

BGVV

jjBGVV

δδ

δδ

δδ

=

=

−=

+=

2

1111111

2

1111111

)cossin(

)sincos(

jjjjjj

jjjjjj

BGVVQ

BGVVP

δδ

δδ

Similarly,

=

=

−=

+=

2

1222222

2

1222222

)cossin(

)sincos(

jjjjjj

jjjjjj

BGVVQ

BGVVP

δδ

δδ

→ Note : 1 2 0S S+ ≠ (∵transmission line)

iS in n-bus power system (Power Balance Equation)

( )

( )1

1

cos sin1, 2, 3, ,

sin cos

n

i i j ij ij ij ijj

n

i i j ij ij ij ijj

P VV G Bi n

Q VV G B

δ δ

δ δ

=

=

= +

= ⋅ ⋅ ⋅

= −

-> Power of External Source (발전기+부하) of i-Bus

= Power to the Network through i-Bus

Page 17: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

→ 1

0n

ii

S=

≠∑

cf) Power balance equation with ijijij YY θ∠=

∑=

===−=n

jjjiiiiiiiii VYVIVIVjQPS

1

***** )()(

∑∑

==

=

−∠=+−∠=

∠∠−∠=

n

jijijjiji

n

jjiijjiji

n

jjjijijii

VYVVYV

VYV

11

1

)()( δθδδθ

δθδ

∑∑

==

=

−+−=

−∠=

n

jijijjiji

n

jijijjiji

n

jijijjiji

VYVjVYV

VYV

11

1

)sin()cos(

)(

δθδθ

δθ

−=−−=

−=−=

∑∑

∑∑

==

==n

jijijjiji

n

jijijjijii

n

jijijjiji

n

jijijjijii

VYVVYVQ

VYVVYVP

11

11

)sin()sin(

)cos()cos(

θδδθ

θδδθ ni ,,2,1 L=

Ex1) An elementary DC circuit.

+

-

+

-

][1 Ω

][5 V ][4 V

][1 Ω

][1 Ω

V

I1 I2

V 4[V] 5[V]

1[A] 2[A]3[A]

Sol)

Nodal: 11

51

4 VVV=

−+

][339,29 VVVV ===−

Page 18: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

Mesh:

+=++=+=++=

21212

21211

2)(52)(4

IIIIIIIIII

2,1 21 == II

Supply power:

][41*4][4 WP V ==

][102*5][5 WP V ==

][9)3(*3][1 WP shunt −=−=Ω

][1)1(*)34(][1 WP left −=−−=Ω

][4)2(*)35(][1 WP right −=−−=Ω

0419104 =−−−+=∑ iP

Ex2) Understanding of bus matrix eq. and power eq.

ex1) as a three bus DC power system (not a formal terminology)

with given ?&,]5,3,4[ == iBUST

BUS PIV

][1 S Bus1 Bus2 Bus3

LoadL2

][1 SV1 V2 V3

I1 I2 I3

−−−

−=

=

110121

011

333231

232221

131211

YYYYYYYYY

YBUS

From Bus matrix equation

−=

+−−+−

−=

=

−−−

−=∗=

23

1

53564

34

534

110121

011

BUSBUSBUS VYI

From Power balance equation

V I + -

Page 19: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

∑∑==

⋅+⋅=+=n

jjiji

n

jijijijjijii GVVBGVVP

11)001()sincos( δδ

in DC ,0( =−= jiij δδδ ,0=ijθ )0=ijB

∑∑==

−=−=n

jijji

n

jijijijji YVVYVV

11)00cos()cos( θδ

∑∑==

==n

jijji

n

jijji YVVGVV

11

131112113

11111111 YVVYVVYVVYVVP

jjj ++== ∑

=

][4216054)1(34144 W=−=⋅⋅+−⋅⋅+⋅⋅=

33322221123

1222 YVYVYVVYVVP

jjj ++== ∑

=

][9)3(3)1(5)2(3)1(43 W−=−⋅=−⋅+⋅+−⋅=

33332231133

1333 YVYVYVVYVVP

jjj +++== ∑

=

][10)1(5)1(3033 W=+−⋅+⋅=

0321 ≠++⇒ PPP

transmission loss

][1)34(1)( 222112 WVVyPLEFT =−=−=

][4)35(1)( 223223 WVVyPRIGHT =−=−=

0411094321 =−−+−=++++⇒ RL PPPPP

(Conclusion)

* BUSY → Network Topology + line parameters

* Given BUSY & BUSV → iI , iS of all buses

→ Circuital analysis completed

* Finding out BUSV gives the complete circuital analysis.

Page 20: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

6.4 Power flow (Load flow, 전력조류)

- steady-state circuital analysis of a power system

- nonlinear equations

load: LLL jQPS +=

generator: fixed GP & fixed GG VV =

← 발전기의 출력은 real power 와 전압의 크기.

Ex3) Given V1 = 4, P2 = -9, P3 = 10 of ex2)

find P1 = ?, V2 = ?, V3 = ?

← 어떤 모선은 전압, 어떤 모선은 전력이 주어짐!

← 단순한 nodal, mesh 로는 풀 수 없다!

][1 S ][1 S41 =V ?2 =V ?3 =V

92 −=P 1033 −=P ?1 =P

sol)

−−−

−=

110121

011

BusY

Finding out BUSV gives the complete circuital analysis.

2 unknown voltage variables (V2, V3) ← 2 power equation at Bus 2 & 3

(power 를 알고 있는 모선에서 식을 만들 수 있다.)

Power equation at bus 2

∑=

==3

122222

jjjYVVIVP

)( 2332222112 YVYVYVV ++=

)1()2()1(49 322 −∗+∗+−∗=− VVV

)42(9 322 −−=− VVV - ①

Power equation at bus 3

Page 21: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

∑=

==3

133333

jjjYVVIVP

)( 3333223113 YVYVYVV ++=

)1()1(0410 323 ∗+−∗+∗= VVV

)(10 233 VVV −= - ②

①,② → Numerical technique <V2, V3>=<3,5>

←답을 알고 있기 때문에 확인 가능

T

BUSV ]5,3,4[= & BUSY give the other variables!

∑=

++===3

11331221111111 )(44

jj YVYVYVYVIVP

][405)1(3144 W=⋅+−+⋅=

loss: ][1)34( 2

][1 WR

P l =−

][4)35( 2

][2 WR

P r =−

Power conservation 0411094321 =−−+−=++++ rl PPPPP

- A circuital problem can be defined with given bus voltage and bus power.

← 어떤 모선은 전압, 어떤 모선은 전력이 주어짐.

-“ Power equations” are used to find unknown voltage variables.

EX4) Nonlinear eq.s does not always have the answer!

Given P1= 3[W] P2= -50[W] P3= 4[W]

Find V1= ? V2= ? V3= ?

sol) → Three power equations & 3 variables give <V1,V2,V3>

→ Power conservation can not hold because power losses are negative.

3 - 50 + 4 + loss < 0 (≠ 0)

rl PPPPP ++++ 321 ≠ 0

→ No answer! (Numerical method is not converged!)

Page 22: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

EX5) Nonlinear eq.s does not always have the answer!

Given P1 = 300[W] P2 = -50[W] P3 = 400[W]

Find V1 =? V2 =? V3=?

Sol)

A load 50[W]

Two generator 300+400=700[W]

→ three power equations & 3 variables

power balance gives

line loss = 700-50 = 650[W] !

→ Generally, no answer ! (Numerical method is not converged!)

How to avoid the situation of (EX4) & (EX5) ?

→ All generation power should not be given.

→ At least, one generator power should not be given: “ Slack generator”

→ Reasonable amount of generations considering the loads

Load flow is a Simulation of real situation to feed the loads.

EX6) Given P1 = 30[W] P2 = -50[W] P3 = ?

Find V1 =? V2 =? V3=10[V]

Slack generator P3 = 20(load) + loss

Page 23: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

<Power flow formulation>

- Given BUSY & Load LS , and assumed Generator outputs ( GP & GV )

→ Network condition to feed the loads in the system.

- Firstly, find the voltage of all buses → the other variables.

Type of buses

ⅰ) load bus (85%)

- a bus has no generator.

- given bus power LiLiLi jQPS +=

- find iii VV δ∠=

cf) A bus has neither G nor L: 0=iLS

ⅱ) generator bus (voltage controlled bus,15%))

- a bus with generator.

- given GiP & GiV

- find GiQ & Giδ

cf) A bus has Generator and Load

LiGii SSS +=

= )()( LiiGLiGi QQjPP +++

cf) Note the sign of real power. (usually, positive convention)

ⅲ) slack bus (One bus in a power flow study)

- usually, the largest G bus

- Given °∠= 01slackV

- Find slackslackslack jQPS +=

cf) °∠= 01slackV

← per unit voltage base

← reference phase angle in a AC circuit problem

Given Power balance equation

∑=

+=+=n

jijijijijjiLiGii BGVVPPP

1)sincos( δδ

∑=

−=+=n

jijijijijjiLiGii BGVVQQQ

1)cossin( δδ , ni ,,1L=

Page 24: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

Problem formulation for n-bus power system

Given

variables

Unknown

variables

# of unknown

variables

Load Bus P, Q |V|, δ 2nL

Generator Bus P, |V| Q, δ 2nG

Slack Bus |V|=1, δ=0 P, Q 2

총모선수 : 1++= lg nnn

where, nl : # of load bus

ng : (#-1) of G-bus

unknown voltage variables: (2* nl)+ ng

At load bus

∑=

+=n

jijijijijjiLi BGVVP

1)sincos( δδ

∑=

−=n

iijijijijjiLi BGVVQ

1)cossin( δδ i = 1, …, nl

→ 2* nl equations

At G-bus

∑=

+=+=n

jijijijijjiLiGii BGVVPPP

1)sincos( δδ i = 1, …, ng

→ ng equation

∴ )2( gl nn + variables & )2( gl nn + equations

→ All bus voltages BUSV by numerical technique

→ BUSV gives the complete circuital analysis.

Other variables

→ iQ of G-bus

∑=

−=+n

jijijijijjiLiGi BGVVQQ

1)cossin( δδ , gni ,,1L=

→ slackslack jQ P +=slackS

Page 25: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

∑=

+=+n

jijijijijjiLiGi BGVVPP

1)sincos( δδ

∑=

−=+n

jijijijijjiLiGi BGVVQQ

1)cossin( δδ

If bus ① is slack

∑=

−+=+n

jjjjjjLslack BGVPP

1111 )sin(cos δδ

∑=

−−=+n

jjjjjjLsalck BGVQQ

1111 cos)sin( δδ

→ SI , of transmission lines → BusBus VY &

Ex) Load flow analysis of following three bus power system

(Find PG1, QG1, δ2, QG2, |V3|, δ3 )

°∠= 011V

111 GGG jQPS +=

22 05.1 δ∠=V

6661.02 =GP

333 δ∠=VV

2244.18653.23 jSL +=

−−

−=

98.1910101098.1910101098.19

jjjjjjjjj

YBUS

Sol) 1++= lg nnn (3 =1+1+1)

Unknown voltage variables : < 332 ,, δδ V >

← )2( gl nn + =(2×1+1)=3

Power Equation

Page 26: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

∑∑

∑∑

==

==

−=−=+

=+=+

n

jijijji

n

jijijijijjiLiGi

n

jijijji

n

jijijijijjiLiGi

BVVBGVVQQ

BVVBGVVPP

11

11

cos)cossin(

sin)sincos(

δδδ

δδδ

There power equation with given 332 ,, QPP

· ∑=

=+3

122222 sin

jjjjLG BVVPP δ

232332222222212112 sinsinsin δδδ BVVBVVBVV ++=

)sin()0sin()sin(

06661.0

322332222

2122112

2

δδδδ −+°+−=

+=

BVVBVBVV

P

)sin(*10**05.10)sin(*10*05.1 3232 δδδ −++= V - ①

· ∑=

=+3

133333 sin

jjjjLG BVVPP δ

333333323223313113 sinsinsin δδδ BVVBVVBVV ++=

0)sin()sin(

8653.20

233223133113

3

+−+−=−=

δδδδ BVVBVVP

)sin(*10*05.1*)sin(*10* 23333 δδδ −+= VV - ②

• ∑=

−=+3

133333 cos

jjjJLG BVVQQ δ

( )333333323223313113 coscoscos δδδ BVVBVVBVV ++−=

1*)88.19(*)cos(*10*05.1*cos10*1*

2244.102

323333

3

−+−+−=

−=

VVV

Q

δδδ - ③ Three unknown variables ( 332 ,, δδ V ) and Three equations

→ ( 332 ,, δδ V )=(-3.0023°, 0.9502, -9.9924°) from numerical tech.

°−∠°−∠

°∠=

9924.99502.00023.305.1

01

BUSV

Page 27: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

The other variables

• ?1 =GP

1987.2)994.9sin(*10*9502.0*1)0023.3sin(*10*05.1*10

sinsinsin

sin0

13133112122111111

3

11111

=°+°+=

++=

=+ ∑=

δδδ

δ

BVVBVVBVV

BVVPj

jjjG

• ?1 =GQ

∑=

−=+3

11111 cos0

jjjjG BVVQ δ

[ ]1365.0

coscos 1313311212211111

=++−= δδ BVVBVVBVV

• ?2 =GQ

∑=

−=3

12222 cos

jjjjG BVVQ δ

6395.1−=

Transmission loss = 321 LGG PPP ++

= 8653.26661.01987.2 −+

= 0005.0

→ nearly zero (Q transmission line has no resistance )

BUSBUSBUS VYI =

<Procedure of power flow study>

1) Prepare BusY

2) Determine slack bus and Set )( SlackV = 1 °∠0

3) Set LiLiLi QPS += of Load buses

4) Set GiGi VP , of Generators ( i ≠ 1)

5) Apply G-S or N-R technique to find BusV

→ Assume initial unknown voltage variable

Page 28: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

for numerical technique (usually °∠= 01iV )

6) Find the other circuital variables with BusV and BusY

Discussion)

1. 수학적으로 정확한 식인가?

2. 답이 나오지 않거나 현실적으로 적절하지 않은 결과 (부하모선 전압, 1 번 발전기

출력)가 나오면?

Page 29: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

< Power flow solution with Newton-Raphson >

1++= lg nnn

# of voltage variable : gl nn +2

T

nn VVVX ],,,,,,,[ng) (nl

32

ng) (nl

32 444 3444 21444 3444 21++

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅∆ δδδ

)(2 gl nn + → 식 유도 후, 나중에 불필요한 변수 제외!

)()sincos(1

XPBGVVP in

jijijijijjii ∆+= ∑

=δδ

∑=

−=n

jijijijji YVV

1)cos( θδ

)()cossin(1

XQBGVVQ in

jijijijijjii ∆−= ∑

=δδ

∑=

−=n

jijijijji YVV

1)sin( θδ

ni ,,3,2 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=

=> )(2 gl nn + variables and )(2 gl nn + equations

Given nonlinear equations

0)(

)()(

)(

)()(

)()(

0)(

0)(0)(

0)(0)(

2

3

2

22

33

22

=∆

∆∆

∆∆

∆∆

=−

=−=−

=−=−

XFXQXP

XQ

XQXP

XPXP

QXQ

QXQPXP

PXPPXP

n

nformvector

nn

nn

M

M

M

M

where,

×−×−∆×−∆

1)1(21)1(

)()(

1)1()(

nn

XFXQ

nXP

Page 30: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

update rule

)()(

)()(1

11

kkk

kkkk

XFXJX

CXFXJXX−

−+

−=

−−=

where,

=

∂∂

∂∂

−−∂∂

∂∂

=

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

=∂

∂=

2221

1211

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

|

|

|

)()(

)()(

)()(

)()(

)()(

)()(

)()(

)()(

)()(

JJJJ

VQQ

VPP

VXQ

VXQ

VXQ

VXQ

XQXQ

XQXQV

XPV

XP

VXP

VXP

XPXP

XPXP

XXFXJ

n

nn

n

n

nn

n

n

nn

n

n

nn

n

δ

δ

δδ

δδ

δδ

δδ

L

M

L

L

M

L

L

M

L

L

M

L

.)(,)(,)(,)( 12211211

VXQJXQJ

VXPJXPJ

∂∂

=∂

∂=

∂∂

=∂

∂=

δδ

Let pqJ designate the pq elements of J to avoid confusion ij in )(),( XQXP .

i) q

ppq

XPJ

δ∂

∂=

)(11

∑=

+∂

∂=≠

n

jpjpjpjpjjp

qBGVVqp

1)sincos()( δδ

δ

)sincos(

)(

pqpq

qp

pqpqqpq

BGVV δδδ

δδ

+∂

∂=

−=

)1(cos)1(sin −⋅+−⋅−= pqpqpqpqqp BGVV δδ

)cossin( pqpqpqpqqp BGVV δδ −=

∑=

+∂

∂=

∂==

n

jpjpjpjpjjp

pp

p BGVVXP

qp1

)sincos()(

)( δδδδ

Page 31: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

++

++

+

∂∂

=

)sincos(

)sincos(

)sincos( 11111

pnpnpnpnnp

pppppppppp

ppppp

p

BGVV

BGVV

BGVV

δδ

δδ

δδ

δO

O

+−+

+

+−

=

)cossin(

0

)cossin( 11111

pnpnpnpnnp

ppppp

BGVV

BGVV

δδ

δδ

O

O

∑≠=

+−=n

pjjpjpjpjpjjp BGVV

,1)cossin( δδ

formXpQ

n

pjjpjpjpjpjjp BGVV

같은와)(,1

)cossin(∑≠=

−−= δδ

)10(

])cossin()cossin([)10(

,1

⋅−⋅+

−+−−=

⋅−⋅=≠=

pppppp

ppBppGpVpV

ppppppppppn

pjjpjpjpjpjjp

BGVV

BGVVBGVV444444 3444444 21

δδδδ

ppp

n

jpjpjpjpjjp BVBGVV 2

1)cossin( −−−= ∑

=

δδ

pppp BVXQ 2)( −−=

ⅱ) q

ppq V

XPJ

∂∂

=)(12

∑=

+∂

∂=≠

n

jpjpjpjpjjp

qBGVV

Vqp

1)sincos()( δδ

)sincos( pqpqpqpqqpq

BGVVV

δδ +∂∂

=

)sincos( pqpqpqpqp BGV δδ +=

∑=

+∂

∂=

∂==

n

jpjpjpjpjjp

pp

p BGVVVV

xPqp

1)sincos(

)()( δδ

Page 32: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

∑≠=

+=n

pjjpjpjpjpjj BGV

;1)sincos( δδ

)sincos( ppppppppppp

BGVVV

δδ +∂

∂+

)(2)sincos(;1

pppn

pjjpjpjpjpjj GVBGV ++= ∑

≠=δδ

ppp

completeto

n

pjjppppjpjpjpjj GVGVBGV +

+⋅++= ∑≠= 444444444 3444444444 21;1

)01()sincos( δδ

∑=

++=n

jppppjpjpjpjj GVBGV

1)sincos( δδ

ppppjpjpjpjjpp

GVBGVVV

++= ∑ )sincos(1 δδ

pppp

p GVV

XP+=

)(

iii) q

ppq

XQJ

δ∂

∂=

)(21

∑=

−∂∂

=≠n

jpjpjpjpjjp

q

BGVVqp1

)cossin()( δδδ

)cossin( pqpqpqpqqpq

BGVV δδδ

−∂∂

=

)1(*sin)1(*cos −+−= pqpqpqpqqp BGVV δδ

)sincos( pqpqpqpqqp BGVV δδ +−=

cf) ,)()(

),&( 2112

q

pq

q

p

VXP

VXQ

JJofdiagonaloffqp∂

∂−=

∂≠

δ

∑=

−∂

∂==

n

jpjpjpjpjjp

pBGVVqp

1)cossin()( δδ

δ

∑≠=

+=n

pjjpjpjpjpjjp BGVV

;1)sincos( δδ

Page 33: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

444444 3444444 210

)cossin(

=

+∂

∂+ pppppppppp

pBGVV δδ

δ

∑≠=

−+⋅++=n

pjjppppppppjpjpjpjjp GVGVVBGVV

;1

2)01()sincos( δδ

∑=

−+=n

jppppjpjpjpjjp GVBGVV

1

2)sincos( δδ

pppp GVxP 2)( −=

iv) q

ppq V

XQJ

∂=

)(22

)( qp ≠ ∑=

−∂

∂=

n

jpjpjpjpjjp

gBGVV

V 1)cossin( δδ

)cossin( pqpqpqpqqpg

BGVVV

δδ −∂

∂=

)cossin( pqpqpqpqp BGV δδ −=

)( qp = ∑=

−∂

∂=

n

jpjpjpjpjjp

pBGVV

V 1)cossin( δδ

44 344 21ppBpV

pppp

n

pjjpjpjpjpjj BV

VBGV

2

2

,1)0()cossin(

−=

≠=−

∂∂

+−= ∑ δδ

ppppppn

pjjpjpjpjpjj BVBVBGV −−+−= ∑

≠=)0()cossin(

,1δδ

pppn

jpjpjpjpjj BVBGV −−= ∑

=1)cossin( δδ

pppp

p BVV

XQ−=

)(

cf) Jacobian with polar admittance

ijijijijij YjBGY θ∠=+=

==

pqpqpq

pqpqpq

YBYG

θθ

sincos

→ (6.55)~(6.62) P.234

Page 34: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

q

ppq

XPJ

δ∂

∂=

)(11

)( qp ≠ )cossin( pqpqpqpqqp BGVV δδ −=

)cossinsincos( pqpqpqpqpqpqqp YYVV δθδθ −=

)cossinsin(cos pqpqpqpqpqqp YVV δθδθ −=

)sin( pqpqpqqp YVV θδ −= (6.56)

)( qp = pppn

jpjpjpjpjjp BVBGVV 2

1)cossin( −−−= ∑

=δδ

∑=

−−−=n

jppppppjpjpjpjpjjp YVYVV

1

2 sin)cossinsin(cos θδθδθ

pppppn

jpjpjpjjp YVYVV θθδ sin)sin( 2

1−−−= ∑

=

)sin()sin(1

ppppppppn

jpjpjpjjp YVVYVV δθδθ −−−= ∑

=

∑≠=

−=n

pjjpjpjpjjp YVV

,1)sin( δθ (6.55)

Ex1) A Two Bus System,

+

-

222 δ∠= VV111 δ∠= VV +

-

1I 2IjX

Sending Power

*111 IVS ⋅= ,

jXVV

I 211

−=

*2211

1

∠−∠=

jXVV

Vδδ

Page 35: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

jX

VVVjXVV

V−

−∠−=

−∠−−∠=

)( 21212

122111

δδδδ

−−−−=

XVjVVVV

j)sin()cos( 21212121

21 δδδδ

−−+

−=

XVVV

jX

VV )cos()sin( 21212

12121 δδδδ

111221

211221 cossin

jQPXVVV

jX

VV+=

−+=

δδ

Similary,

222112

222112*

222cossin

jQPXVVV

jX

VVIVS +=

−+=⋅=

δδ

XVV

XVVP 12211221

11

1 cossin δδδδ

=

∂∂

=∂∂

XVV

XVVP 12211221

22

1 cossin δδδδ

−=

∂∂

=∂∂

XV

XVV

VVP 1221221

11

1 sinsin δδ=

∂∂

=∂∂

Ex2) Result of ex1) from Jacobian.

−=

Xj

Xj

Xj

Xj

YBUS 11

11

XB

XB

XB

XB 1,1,1,1

22211211 −===−=

)1(,)()( 2

1

1 =−−=∂

∂pBVXQ

XPppppδ

Page 36: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

112

12

111111 )cossin( BVBGVV

jjjjjj −−−= ∑

=δδ

112

12

1111 cos BVBVV

jjjj −= ∑

112

11211221

1111111 coscos BVBVVBVV

X

−+===

δδ321

X

VV 121 cosδ=

)2,1(),cossin(2

1 ==−=∂∂

qpBGVVP

pqpqpqpqqp δδδ

121221 cosδBVV−=

X

VV 1221 cosδ−=

)1(,)()(

1

1 =+=∂

∂ pGVV

XPV

XPppp

p

p

∑=

++=2

11111111 )sincos(

jjjjjj GVBGV δδ

∑=

=2

111 sin

jjjj BV δ

1212211111 sinsin δδ BVBV +=

XV 122 sinδ

=

Page 37: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

< Decoupled power flow >

Jacobian matrix can be approximated simply.

=

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

=∂

∂=

22

11

2221

1211

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

00

)()(

)()(

)()(

)()(

)()(

)()(

)()(

)()(

)()(

JJ

JJJJ

VXQ

VXQ

VXQ

VXQ

XQXQ

XQXQV

XPV

XP

VXP

VXP

XPXP

XPXP

XXFXJ

n

nn

n

n

nn

n

n

nn

n

n

nn

n

L

M

L

L

M

L

L

M

L

L

M

L

δδ

δδ

δδ

δδ

i) Transmission line is mostly reactive. )0(,0 ≠≅ ijij BG ii) Voltage angle difference is small

)0(cos0sin10 ≠≅→°<< ijijij δδδ

0)sincos()(12 ≅+=

∂= pqpqpqpqp

q

ppq BGV

VxP

J δδ

0)sincos(1)(≅++=

∂= ∑ ppppjpjpjpjjp

pp

p GVBGVVVV

xPδδ

q

ppq

XQJ

δ∂

∂=

)(21 0)sincos( ≅+−= pqpqpqpqqp BGVV δδ

0)sincos()(

1

2 ≅−+=∂

∂= ∑

=

n

jppppjpjpjpjjp

p

p GVBGVVXQ

δδδ

Update rule can be decoupled.

)()(

)()(1

11

kkk

kkkk

XFXJX

CXFXJXX−

−+

−=

−−=

Page 38: Chapter 6. Power Flow (Load Flow) Analysis …cau.ac.kr/~powerlab/hyperlink/data/lecturedata...Chapter 6. Power Flow (Load Flow) Analysis (전력조류 해석) - Steady-state circuital

where, ],,,,,,,[ng) (nl

32

ng) (nl

32 444 3444 21444 3444 21++

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= nn VVVX δδδ

-> T

nX ],,,[ 32 δδδδ ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= , T

nV VVVX ],,,[ 32 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=

)()()( ,,111

,1, kkkk XFXJXX δδδδδ−

+ −=

)()()( ,,122

,1, kVVkVkVkV XFXJXX −+ −=

-> The decoupled power flow require more iteration, but less time per iteration.

Analysis problem of Power system can be decoupled also !

P depends on δ dominantly.

Q depends on V dominantly.