poten&al)for)characterizaon)of) transi&ng)planets)with)jwst) · poten&al)for)characterizaon)of)...

24
Poten&al for Characteriza&on of Transi&ng Planets with JWST Nick Cowan (Northwestern)

Upload: others

Post on 27-Jan-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Poten&al  for  Characteriza&on  of  Transi&ng  Planets  with  JWST  

    Nick  Cowan    (Northwestern)  

  • Study  Analysis  Group  10  (SAG-‐X)  1.  What  is  the  full  diversity  of  planet  proper&es  needed  

    to  characterize  and  understand  the  climate  of  short-‐period  exoplanets?    

    2.  Which  measurement  suites  and  how  much  observing  &me  are  needed  to  characterize  the  climate  of  transi&ng  planets?    

    3.   Will  JWST  be  able  to  characterize  the  atmospheres  of  transi8ng  terrestrial  planets?    

    4.   Which  cri8cal  measurements  will  be  too  expensive  or  inaccessible  to  JWST,  and  can  these  be  obtained  with  planned  observatories?      

  • SAG-‐X  Par&cipants  (so  far)  Daniel  Angerhausen  (RPI),  Natasha  Batalha  (Penn  State),  Adrian  Belu  (Bordeaux),  Knicole  Colon  (Lehigh),  Bill  Danchi  (Goddard),  Pieter  Deroo  (JPL),  Jonathan  Fortney  (UCSC),  ScoV  Gaudi  (Ohio  State),  Tom  Greene  (Ames),  MaV  Greenhouse  (Goddard),  Joe  Harrington  (UCF),  Lisa  Kaltenegger  (MPIA),  Nikole  Lewis  (MIT),  Chuck  Lillie  (Lillie  Consul&ng),  Mercedes  Lopez-‐Morales  (CfA),  Avi  Mandell  (Goddard),  Emily  Rauscher  (Princeton),  Aki  Roberge  (Goddard),  Franck  Selsis  (Bordeaux),  Kevin  Stevenson  (Chicago),  Mark  Swain  (JPL)    

  • 1D  Climate  Cartoon  He

    ight  

    Temperature   Tsurf  

    Tropopause  

    Tstrat  

    Γ  Troposphere  

    Stratosphere  

    Thermal  Emission  Probes  Near  Tropopause  

    Reflected  Light  Probes  Near  Surface    

  • 1D  Climate  Cartoon  

    Temperature  

    Height  

    Increase  Insola&on  and/or  Decrease  Albedo  

  • 1D  Climate  Cartoon  

    Temperature  

    Height  

    Increase    Longwave    Opacity  

  • 1D  Climate  Cartoon  

    Temperature  

    Height  

    Decrease  Specific  Heat  Capacity  

  • Advec&on  

    2D  Climate  Cartoon  (eg:  height  +  la&tude)  

    Temperature  

    Height  

    To  learn  from  exoplanets,    we  need  to  measure:  •   Planetary  Albedo  •   Albedo  Gradients  •   Emiang  Temperature  •   Temperature  Gradients        (ver&cal  and  horizontal)  

    Unfortunately  we  don’t  have  robust  predic&ve  models  for:  •   Clouds  •   Atmospheric  Loss  •   Photochemistry  •   Geochemical  Cycling    •   Wind  Veloci&es  

  • Predic&ng  vs  Measuring    Planetary  Climate  

    Model  Inputs  •  Insola&on  •  Eccentricity  •  Obliquity  •  Surface  Albedo  •  Greenhouse  Gases  •  Specific  Heat  Capacity  •  Surface  Gravity  •  Surface  Pressure  •  Thermal  Iner&a  

    Model  Outputs  •  Emiang  Temperature  •  Temperature  Gradients  •  Diurnal  Response  •  Seasonal  Response  •  Cloudiness  •  Surface  Temperature  •  Precipita&on  

  • Transit  Phase  Varia&ons  

  • Archetypal  Short-‐Period  Planets    

    Hot  Earth  (CoRoT-‐7b,  Kepler  10b,  α  Cen  Bb)      Temperate  Super-‐Earth  (HD  85512  b,  GJ  163  c)      Warm  Neptune  (GJ  1214b,  GJ  436b)      Hot  Jupiter  (HD  209458b,  HD  189733b,  WASP-‐12b)  

  • Transit  

  • Thermal  Light  Curve  Brightness  

    Time  

    100%  

    99%  Transit  

    Transit  Depth  =  (Rp/R*)2  

  • Some  Transit  Depths  

    Hot  Jupiter:  8.8E-‐3  

    Hot  Earth:  7.3E-‐5  

    Temperate  Super-‐Earth:  7.3E-‐3  

    Warm  Neptune:  2.7E-‐2  

  • Thermal  Light  Curve  Brightness  

    Time  

    100%  

    99%  Transit  

    Transit  depth  is  different    at  different  wavelengths  

    Annulus/Stellar  Area  =  2RpH/R*2  (where  scale  height  H  =  kBT/μg)  

  • Some  Transit  Spectral  Features  

    Hot  Jupiter:  1.2E-‐4  

    Hot  Earth:  2.0E-‐6  

    Temperate  Super-‐Earth:  6.5E-‐6  

    Warm  Neptune:  2.4E-‐4  

  • Eclipse  

  • Thermal  Light  Curve  

    Brightness  

    Time  

    100.3%  

    99%  Transit  

    Eclipse  100%  

    Eclipse  Depth  ≈  (Rp/R*)2  (Tday/T*)  

    Star  +  Planet  Star  

  • Some  Eclipse  Depths  

    Hot  Jupiter:  4.0E-‐3  

    Hot  Earth:  3.3E-‐5  

    Temperate  Super-‐Earth:  7.0E-‐4  

    Warm  Neptune:  8.1E-‐3  

  • Thermal  Light  Curve  

    Brightness  

    Time  

    100.3%  

    99%  

    Transit  100%  

    Star  +  Planet  Star  

    Eclipse  depth  is  different    at  different  wavelengths  

    Eclipse  Spectrum  ≈  (Rp/R*)2  (Tsurf  -‐  Ttrop)/T*  

  • Thermal  Phases  

  • Thermal  Light  Curve  

    Brightness  

    Time  

    100%  

    Transit  Eclipse  

    100.3%  

    Star  +  Planet  Star  

    100.1%  

    Phase  Amplitude  ≈  (Rp/R*)2  (Tday  -‐  Tnight)/T*  

  • Eclipse  Spectroscopy    vs.  Phase  Varia&ons  

    •  Differences  in  temperature    – Ver&cal  (33-‐200  K)  – Zonal  (60-‐2000  K)  

    •  Spectroscopy  has  to  achieve  S/N  with  rela&vely  narrow  bandwidth  (R>10)  

    •  Phase  varia&ons  require  long-‐term  stability  

  • Predic&ng  vs  Measuring    Planetary  Climate  

    Model  Inputs  •  Insola&on  •  Eccentricity  •  Obliquity  •  Surface  Albedo  •  Greenhouse  Gases  •  Specific  Heat  Capacity  •  Surface  Gravity  •  Surface  Pressure  •  Thermal  Iner&a  

    Model  Outputs  •  Emiang  Temperature  •  Temperature  Gradients  •  Diurnal  Response  •  Seasonal  Response  •  Cloudiness  •  Surface  Temperature  •  Precipita&on