portfolio optimization in stochastic...

82
Portfolio Optimization in Stochastic Environment Jean-Pierre Fouque University of California Santa Barbara http://www.pstat.ucsb.edu/faculty/fouque Joint work with Ronnie Sircar and Thaleia Zariphopoulou UNSW-CSIRO Workshop Risk: Modelling, Optimization, Inference. Sydney, December 11-12, 2014 1

Upload: others

Post on 31-May-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Portfolio Optimization in StochasticEnvironment

Jean-Pierre Fouque

University of California Santa Barbarahttp://www.pstat.ucsb.edu/faculty/fouque

Joint work with Ronnie Sircar and Thaleia Zariphopoulou

UNSW-CSIRO WorkshopRisk: Modelling, Optimization, Inference.

Sydney, December 11-12, 2014

1

Page 2: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Introduction◮ We are interested in the problem of portfolio optimization

under uncertainty in incomplete markets, particularly understochastic volatility.

2

Page 3: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Introduction◮ We are interested in the problem of portfolio optimization

under uncertainty in incomplete markets, particularly understochastic volatility.

◮ Related are risk management problems of optimalhedging, particularly of risks from derivative securities.

3

Page 4: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Introduction◮ We are interested in the problem of portfolio optimization

under uncertainty in incomplete markets, particularly understochastic volatility.

◮ Related are risk management problems of optimalhedging, particularly of risks from derivative securities.

◮ In the context of continuous-time stochastic models, datesback to Merton (1969,1971): solved the HJB dynamicprogramming PDE for specific utility functions and constantvolatilities.

4

Page 5: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Introduction◮ We are interested in the problem of portfolio optimization

under uncertainty in incomplete markets, particularly understochastic volatility.

◮ Related are risk management problems of optimalhedging, particularly of risks from derivative securities.

◮ In the context of continuous-time stochastic models, datesback to Merton (1969,1971): solved the HJB dynamicprogramming PDE for specific utility functions and constantvolatilities.

◮ Too many developments since then to list exhaustively, butthe revolution in thinking has been through duality theory(martingale method): Pliska (1986), Karatzas, Lehoczky &Shreve (1987), Cox-Huang (1989).

5

Page 6: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Introduction◮ We are interested in the problem of portfolio optimization

under uncertainty in incomplete markets, particularly understochastic volatility.

◮ Related are risk management problems of optimalhedging, particularly of risks from derivative securities.

◮ In the context of continuous-time stochastic models, datesback to Merton (1969,1971): solved the HJB dynamicprogramming PDE for specific utility functions and constantvolatilities.

◮ Too many developments since then to list exhaustively, butthe revolution in thinking has been through duality theory(martingale method): Pliska (1986), Karatzas, Lehoczky &Shreve (1987), Cox-Huang (1989).

◮ Very general analysis for semimartingale models: Kramkov& Schachermayer (1999).

6

Page 7: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Asymptotic Methods

◮ On the other hand, asymptotic analysis has beendeveloped to simplify option pricing problems in incompletemarkets, for instance under stochastic volatility.

7

Page 8: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Asymptotic Methods

◮ On the other hand, asymptotic analysis has beendeveloped to simplify option pricing problems in incompletemarkets, for instance under stochastic volatility.

◮ How can these methods help to compute (or approximate)value functions and optimal policies?

8

Page 9: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Asymptotic Methods

◮ On the other hand, asymptotic analysis has beendeveloped to simplify option pricing problems in incompletemarkets, for instance under stochastic volatility.

◮ How can these methods help to compute (or approximate)value functions and optimal policies?

◮ How can they be used to relate market data (e.g. impliedvolatility skews) to optimal strategies; or to inform choice ofrisk measure? What effective parameters are identified?

9

Page 10: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Asymptotic Methods

◮ On the other hand, asymptotic analysis has beendeveloped to simplify option pricing problems in incompletemarkets, for instance under stochastic volatility.

◮ How can these methods help to compute (or approximate)value functions and optimal policies?

◮ How can they be used to relate market data (e.g. impliedvolatility skews) to optimal strategies; or to inform choice ofrisk measure? What effective parameters are identified?

◮ The dual optimization problem is typically as difficult as theprimal. What progress can we make with dynamicprogramming in the primal?

10

Page 11: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Asymptotic Methods

◮ On the other hand, asymptotic analysis has beendeveloped to simplify option pricing problems in incompletemarkets, for instance under stochastic volatility.

◮ How can these methods help to compute (or approximate)value functions and optimal policies?

◮ How can they be used to relate market data (e.g. impliedvolatility skews) to optimal strategies; or to inform choice ofrisk measure? What effective parameters are identified?

◮ The dual optimization problem is typically as difficult as theprimal. What progress can we make with dynamicprogramming in the primal?

◮ Viewing the incomplete market problem as a perturbationaround a complete markets problem.

11

Page 12: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Merton Problem in Stochastic Environment◮ We are interested in the Merton problem of portfolio

optimization over a horizon T when volatility is stochasticand characterized by its speed of fluctuation relative to T .

12

Page 13: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Merton Problem in Stochastic Environment◮ We are interested in the Merton problem of portfolio

optimization over a horizon T when volatility is stochasticand characterized by its speed of fluctuation relative to T .

◮ Start with one fast stochastic factor:

dSt = µ(Yt)St dt + σ(Yt)St dW (1)t

dYt =1ε

b(Yt) dt +1√ε

a(Yt)(ρ dW (1)

t +√

1 − ρ2 dW (2)t

),

where W (1) and W (2) are independent Brownian motions.◮

13

Page 14: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Merton Problem in Stochastic Environment◮ We are interested in the Merton problem of portfolio

optimization over a horizon T when volatility is stochasticand characterized by its speed of fluctuation relative to T .

◮ Start with one fast stochastic factor:

dSt = µ(Yt)St dt + σ(Yt)St dW (1)t

dYt =1ε

b(Yt) dt +1√ε

a(Yt)(ρ dW (1)

t +√

1 − ρ2 dW (2)t

),

where W (1) and W (2) are independent Brownian motions.◮ Here the process Yt = Y 1

t/ε, where we assume that Y 1 isan ergodic process with unique invariant distribution whichhas a density Φ, and 〈g〉 =

∫g(y)Φ(y) dy .

14

Page 15: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Merton Problem in Stochastic Environment◮ We are interested in the Merton problem of portfolio

optimization over a horizon T when volatility is stochasticand characterized by its speed of fluctuation relative to T .

◮ Start with one fast stochastic factor:

dSt = µ(Yt)St dt + σ(Yt)St dW (1)t

dYt =1ε

b(Yt) dt +1√ε

a(Yt)(ρ dW (1)

t +√

1 − ρ2 dW (2)t

),

where W (1) and W (2) are independent Brownian motions.◮ Here the process Yt = Y 1

t/ε, where we assume that Y 1 isan ergodic process with unique invariant distribution whichhas a density Φ, and 〈g〉 =

∫g(y)Φ(y) dy .

◮ That is: fast mean-reverting stochastic factor as illustratednext:

15

Page 16: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Fast Mean-Reverting Stochastic Volatility: κ = 1/ε

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

κ = 1

κ = 20

κ = 100

Time t

Figure: Simulated CIR Stochastic Volatility (Heston) 16

Page 17: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Summary of Option Pricing Asymptotics◮ Assume a market-selected risk-neutral pricing measure IP⋆

under which S is a martingale, (S, Y ) are jointly Markovand Y is Markov by itself:

dSt = σ(Yt)St dW ⋆(1)t

dYt =

(1ε

b(Yt) −1√ε

a(Yt)Λ(Yt)

)dt

+1√ε

a(Yt)(ρ dW ⋆(1)

t +√

1 − ρ2 dW ⋆(2)t

),

where W ⋆(1) and W ⋆(2) are independent IP⋆-Brownianmotions and r = 0. Here Λ is the volatility risk premium.

17

Page 18: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Summary of Option Pricing Asymptotics◮ Assume a market-selected risk-neutral pricing measure IP⋆

under which S is a martingale, (S, Y ) are jointly Markovand Y is Markov by itself:

dSt = σ(Yt)St dW ⋆(1)t

dYt =

(1ε

b(Yt) −1√ε

a(Yt)Λ(Yt)

)dt

+1√ε

a(Yt)(ρ dW ⋆(1)

t +√

1 − ρ2 dW ⋆(2)t

),

where W ⋆(1) and W ⋆(2) are independent IP⋆-Brownianmotions and r = 0. Here Λ is the volatility risk premium.

◮ European option price:

Cε(t , S, y) = IE⋆{h(ST ) | St = S, Yt = y}.

18

Page 19: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Reference on Option Pricing Asymptotics

Multiscale Stochastic Volatility for Equity, Interest-Rate andCredit DerivativesJ.-P. Fouque, G. Papanicolaou, R. Sircar, and K. Sølna

Cambridge University Press 2011

19

Page 20: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Option Pricing Asymptotics◮ Then for small ε, Cε(t , S, y) ≈ CBS(t , S) + C1(t , S), where

CBS is the Black-Scholes price with the stochastic volatilityreplaced by the average σ̄: σ̄2 = 〈σ(·)2〉.

20

Page 21: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Option Pricing Asymptotics◮ Then for small ε, Cε(t , S, y) ≈ CBS(t , S) + C1(t , S), where

CBS is the Black-Scholes price with the stochastic volatilityreplaced by the average σ̄: σ̄2 = 〈σ(·)2〉.

◮ That is, LBSCBS = 0, with CBS(T , S) = h(S), where

LBS =∂

∂t+

12σ̄2D2, Dk = Sk ∂k

∂Sk .

21

Page 22: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Option Pricing Asymptotics◮ Then for small ε, Cε(t , S, y) ≈ CBS(t , S) + C1(t , S), where

CBS is the Black-Scholes price with the stochastic volatilityreplaced by the average σ̄: σ̄2 = 〈σ(·)2〉.

◮ That is, LBSCBS = 0, with CBS(T , S) = h(S), where

LBS =∂

∂t+

12σ̄2D2, Dk = Sk ∂k

∂Sk .

◮ The correction C1 solves

LBSC1 = − (V ε2D2 + V ε

3D1D2) CBS, C1(T , S) = 0,

where V ε2 , V ε

3 ∝ √ε. The V ε

2 contains the volatility riskpremium; the V ε

3 contains the correlation (or skew) ρ.◮

22

Page 23: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Option Pricing Asymptotics◮ Then for small ε, Cε(t , S, y) ≈ CBS(t , S) + C1(t , S), where

CBS is the Black-Scholes price with the stochastic volatilityreplaced by the average σ̄: σ̄2 = 〈σ(·)2〉.

◮ That is, LBSCBS = 0, with CBS(T , S) = h(S), where

LBS =∂

∂t+

12σ̄2D2, Dk = Sk ∂k

∂Sk .

◮ The correction C1 solves

LBSC1 = − (V ε2D2 + V ε

3D1D2) CBS, C1(T , S) = 0,

where V ε2 , V ε

3 ∝ √ε. The V ε

2 contains the volatility riskpremium; the V ε

3 contains the correlation (or skew) ρ.◮ The solution is given by

C1 = (T − t) (V ε2D2 + V ε

3D1D2) CBS

because LBSD2 = D2LBS .23

Page 24: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Merton Problem: Wealth Process, Value Function(Work with Ronnie Sircar & Thaleia Zariphopoulou)

◮ Let X denote the wealth process:

dXt = πtdSt

St+ r(Xt − πt) dt ,

that is, taking r = 0 for simplicity,

dXt = πtµ(Yt) dt + πtσ(Yt) dW (1)t .

24

Page 25: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Merton Problem: Wealth Process, Value Function(Work with Ronnie Sircar & Thaleia Zariphopoulou)

◮ Let X denote the wealth process:

dXt = πtdSt

St+ r(Xt − πt) dt ,

that is, taking r = 0 for simplicity,

dXt = πtµ(Yt) dt + πtσ(Yt) dW (1)t .

◮ Given a utility function U(x) on R+ with

U ′(0+) = ∞, U ′(∞) = 0 and AE[U] := limx→∞

xU ′(x)

U(x)< 1,

define the value function

V (t , x , y) = supπ

E {U(XT ) | Xt = x , Yt = y}.

25

Page 26: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Hamilton-Jacobi-Bellman PDE (quadratic in π)Injecting π∗, the associated HJB equation is

Vt +1εL0V −

(λ(y)Vx + ρa(y)√

εVxy

)2

2Vxx= 0,

with V (T , x , y) = U(x), and where

◮ λ(y) = µ(y)σ(y) is the Sharpe Ratio,

◮ and

L0 =12

a(y)2 ∂2

∂y2 + b(y)∂

∂y,

so 1εL0 is the generator of Y .

26

Page 27: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Asymptotic Expansion in ε

◮ Look for an expansion (asymptotic as ε ↓ 0):

V (t , x , y) = v (0)(t , x , y)+√

ε v (1)(t , x , y)+εv (2)(t , x , y)+· · · .

27

Page 28: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Asymptotic Expansion in ε

◮ Look for an expansion (asymptotic as ε ↓ 0):

V (t , x , y) = v (0)(t , x , y)+√

ε v (1)(t , x , y)+εv (2)(t , x , y)+· · · .

◮ At highest order ε−1,

L0v (0) − 12ρ2a(y)2 (v (0)

xy )2

v (0)xx

= 0,

and we choose v (0) = v (0)(t , x).◮

28

Page 29: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Asymptotic Expansion in ε

◮ Look for an expansion (asymptotic as ε ↓ 0):

V (t , x , y) = v (0)(t , x , y)+√

ε v (1)(t , x , y)+εv (2)(t , x , y)+· · · .

◮ At highest order ε−1,

L0v (0) − 12ρ2a(y)2 (v (0)

xy )2

v (0)xx

= 0,

and we choose v (0) = v (0)(t , x).◮ At next order ε−1/2,

L0v (1) − ρλ(y)a(y)����

0

v (0)xy v (0)

x

v (0)xx

= 0.

Again, we choose v (1) = v (1)(t , x), independent of y ,which satisfies L0v (1) = 0.

29

Page 30: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Principal Term v (0)

◮ At order one:

v (0)t + L0v (2) − 1

2λ(y)2 (v (0)

x )2

v (0)xx

= 0.

30

Page 31: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Principal Term v (0)

◮ At order one:

v (0)t + L0v (2) − 1

2λ(y)2 (v (0)

x )2

v (0)xx

= 0.

◮ This is a Poisson equation for v (2) whose solvabilitycondition (Fredholm alternative) requires that

v (0)t − 1

2λ̄2 (v (0)

x )2

v (0)xx

= 0, v (0)(T , x) = U(x).

where λ̄2 is the square-averaged Sharpe ratio: λ̄2 =⟨

µ2

σ2

⟩.

The limit problem is constant Sharpe ratio Merton.◮

31

Page 32: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Principal Term v (0)

◮ At order one:

v (0)t + L0v (2) − 1

2λ(y)2 (v (0)

x )2

v (0)xx

= 0.

◮ This is a Poisson equation for v (2) whose solvabilitycondition (Fredholm alternative) requires that

v (0)t − 1

2λ̄2 (v (0)

x )2

v (0)xx

= 0, v (0)(T , x) = U(x).

where λ̄2 is the square-averaged Sharpe ratio: λ̄2 =⟨

µ2

σ2

⟩.

The limit problem is constant Sharpe ratio Merton.◮ The averaging result is that the effective parameter for the

value function in the limit is λ̄2. When µ is constant,stochastic volatility is harmonically averaged:

λ̄2 =µ

σ2⋆

,1σ2

=

⟨1σ2

⟩.

32

Page 33: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Principal Linear Operator◮ Introduce the (0th order) risk-tolerance function:

R(0)(t , x) = −v (0)x (t , x)

v (0)xx (t , x)

,

and the differential operators

Dk = R(0)(t , x)k ∂k

∂xk , k = 1, 2, · · · .

33

Page 34: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Principal Linear Operator◮ Introduce the (0th order) risk-tolerance function:

R(0)(t , x) = −v (0)x (t , x)

v (0)xx (t , x)

,

and the differential operators

Dk = R(0)(t , x)k ∂k

∂xk , k = 1, 2, · · · .

◮ Can write nonlinear term as a “diffusion”:

(v (0)x )2

v (0)xx

=

(v (0)

x

v (0)xx

)2

v (0)xx = (R(0))2v (0)

xx = D2v (0),

or as a “drift”:

(v (0)x )2

v (0)xx

=

(v (0)

x

v (0)xx

)v (0)

x = −R(0)v (0)x = −D1v (0).

34

Page 35: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Principal Linear Operator◮ Convenient to write it as the drift diffusion combination

−12λ̄2 (v (0)

x )2

v (0)xx

=

(12λ̄2D2 + λ̄2D1

)v (0).

◮ Introducing,

Lt,x =∂

∂t+

12

λ̄2D2 + λ̄2D1,

we have Lt,xv (0) = 0. (NONLINEAR PDE, in disguise.)◮

35

Page 36: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Principal Linear Operator◮ Convenient to write it as the drift diffusion combination

−12λ̄2 (v (0)

x )2

v (0)xx

=

(12λ̄2D2 + λ̄2D1

)v (0).

◮ Introducing,

Lt,x =∂

∂t+

12

λ̄2D2 + λ̄2D1,

we have Lt,xv (0) = 0. (NONLINEAR PDE, in disguise.)◮ Next order ε1/2:

Lt,xv (1) = −BD1D2v (0), B =12

ρ⟨λ(y)a(y)φ′(y)

⟩,

L0φ = λ(y)2 − λ̄2, corrector eqn.

The terminal condition is: v (1)(T , x) = 0. LINEAR PDE.36

Page 37: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Solution for v (1)

◮ The risk-tolerance function R(0) satisfies Black’s (fastdiffusion) equation (1968):

R(0)t +

12

λ̄2(R(0))2R(0)xx = 0.

◮ Consequently, the operators Lt,x and D1 acting on smoothfunctions of (t , x) commute: Lt,xD1 = D1Lt,x .

37

Page 38: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Solution for v (1)

◮ The risk-tolerance function R(0) satisfies Black’s (fastdiffusion) equation (1968):

R(0)t +

12

λ̄2(R(0))2R(0)xx = 0.

◮ Consequently, the operators Lt,x and D1 acting on smoothfunctions of (t , x) commute: Lt,xD1 = D1Lt,x .

◮ Therefore v (1) is given by

v (1)(t , x) = (T − t)BD1D2v (0)(t , x).

◮ This is as with option pricing asymptotics, even with the(t , x)-dependent coefficients (R(0))k , but those are comingfrom solutions to Black’s equation.

38

Page 39: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Example I: Power Utility with risk-aversion γ

U(x) = cx1−γ

1 − γ, c, γ > 0, γ 6= 1.

39

Page 40: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Example I: Power Utility with risk-aversion γ

U(x) = cx1−γ

1 − γ, c, γ > 0, γ 6= 1.

◮ Arrow-Pratt measure of relative risk aversion:

AP[U] := −xU ′′(x)

U ′(x)= γ.

40

Page 41: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Example I: Power Utility with risk-aversion γ

U(x) = cx1−γ

1 − γ, c, γ > 0, γ 6= 1.

◮ Arrow-Pratt measure of relative risk aversion:

AP[U] := −xU ′′(x)

U ′(x)= γ.

◮ Asymptotic elasticity: AE[U] := limx→∞ x U′(x)U(x) = 1 − γ < 1.

41

Page 42: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Example I: Power Utility with risk-aversion γ

U(x) = cx1−γ

1 − γ, c, γ > 0, γ 6= 1.

◮ Arrow-Pratt measure of relative risk aversion:

AP[U] := −xU ′′(x)

U ′(x)= γ.

◮ Asymptotic elasticity: AE[U] := limx→∞ x U′(x)U(x) = 1 − γ < 1.

◮ Risk-tolerance function:

R(0) |t=T = − U ′

U ′′ =1γ

x .

42

Page 43: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Example I: Power Utility with risk-aversion γ

U(x) = cx1−γ

1 − γ, c, γ > 0, γ 6= 1.

◮ Arrow-Pratt measure of relative risk aversion:

AP[U] := −xU ′′(x)

U ′(x)= γ.

◮ Asymptotic elasticity: AE[U] := limx→∞ x U′(x)U(x) = 1 − γ < 1.

◮ Risk-tolerance function:

R(0) |t=T = − U ′

U ′′ =1γ

x .

v (0) = cx1−γ

1 − γg(t), g(t) = exp

(12

λ̄2(

1 − γ

γ

)(T − t)

).

v (1) = (T − t)BD1D2v (0) = −(T − t)B(

1 − γ

γ

)2

v (0).

43

Page 44: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Example II: Mixture of Power Utilities

U(x) = c1x1−γ1

1 − γ1+c2

x1−γ2

1 − γ2, c1, c2 ≥ 0, γ1 > γ2 > 0, γ1,2 6= 1.

◮ Arrow-Pratt measure of relative risk aversion:

AP[U] =c1γ1x−(γ1−γ2) + c2γ2

c1x−(γ1−γ2) + c2.

◮ Asymptotic elasticity:

AE[U] = limx→∞

c1x−(γ1−γ2) + c2(

c11−γ1

)x−(γ1−γ2) +

(c2

1−γ2

)

= 1 − γ2 < 1.

◮ Risk-tolerance function:

R(0) |t=T =

(c1x−(γ1−γ2) + c2

c1γ1x−(γ1−γ2) + c2γ2

)x ∼

{1γ2

x as x → ∞1γ1

x as x → 0.

44

Page 45: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Mixture I: γ1 = 1.2 and γ2 = 0.25, c1 = c2 = 0.5

0 2 4 6 8 10 12 14 16 18 20−15

−10

−5

0

5

10

15

Wealth x

UTILITIES

γ1=1.2

γ2=0.25

Mixture

Figure: Utility Functions

45

Page 46: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Mixture I: γ1 = 1.2 and γ2 = 0.25, c1 = c2 = 0.5

0 2 4 6 8 10 12 14 16 18 200

0.2

0.4

0.6

0.8

1

1.2

1.4

Wealth x

ARROW−PRATT RISK AVERSION

γ1=1.2

γ2=0.25

Mixture

Figure: Arrow-Pratt −xU ′′/U ′

46

Page 47: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Mixture I: γ1 = 1.2 and γ2 = 0.25, c1 = c2 = 0.5

0 2 4 6 8 10 12 14 16 18 200

10

20

30

40

50

60

70

80

Wealth x

RISK TOLERANCE

γ1=1.2

γ2=0.25

Mixture

Figure: Risk-Tolerances −U ′/U ′′

47

Page 48: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Mixture II: γ1 = 0.85 and γ2 = 0.15, c1 = c2 = 0.5

0 2 4 6 8 10 12 14 16 18 200

2

4

6

8

10

12

14

16

Wealth x

UTILITIES

γ1=0.85

γ2=0.15

Mixture

Figure: Utility Functions48

Page 49: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Mixture II: γ1 = 0.85 and γ2 = 0.15, c1 = c2 = 0.5

0 2 4 6 8 10 12 14 16 18 200

0.2

0.4

0.6

0.8

1

1.2

Wealth x

ARROW−PRATT RISK AVERSION

γ1=0.85

γ2=0.15

Mixture

Figure: Arrow-Pratt −xU ′′/U ′

49

Page 50: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Mixture II: γ1 = 0.85 and γ2 = 0.15, c1 = c2 = 0.5

0 2 4 6 8 10 12 14 16 18 200

20

40

60

80

100

120

140

Wealth x

RISK TOLERANCE

γ1=0.85

γ2=0.15

Mixture

Figure: Risk-Tolerances −U ′/U ′′

50

Page 51: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Numerical Solution of zeroth order Merton Problem

◮ Discretization of the Merton PDE for v (0)(t , x) on [0, xmax]

v (0)t − 1

2λ̄2 (v (0)

x )2

v (0)xx

= 0, v (0)(T , x) = U(x)

has potentially small divisor problem for large x andsingular boundary conditions at x = 0 and x = xmax.

51

Page 52: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Numerical Solution of zeroth order Merton Problem

◮ Discretization of the Merton PDE for v (0)(t , x) on [0, xmax]

v (0)t − 1

2λ̄2 (v (0)

x )2

v (0)xx

= 0, v (0)(T , x) = U(x)

has potentially small divisor problem for large x andsingular boundary conditions at x = 0 and x = xmax.

◮ Better: numerically solve the fast diffusion equation:

R(0)t +

12λ̄2(R(0))2R(0)

xx = 0, R(0)(T , x) = − U ′(x)

U ′′(x),

and then integrate:

v (0)x (t , x) = v (0)

x (t , xmax) exp(∫ xmax

x

1R(0)(t , ξ)

)

52

Page 53: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Numerical Solution of zeroth order Merton Problem◮ Discretization of the Merton PDE for v (0)(t , x) on [0, xmax]

v (0)t − 1

2λ̄2 (v (0)

x )2

v (0)xx

= 0, v (0)(T , x) = U(x)

has potentially small divisor problem for large x andsingular boundary conditions at x = 0 and x = xmax.

◮ Better: numerically solve the fast diffusion equation:

R(0)t +

12λ̄2(R(0))2R(0)

xx = 0, R(0)(T , x) = − U ′(x)

U ′′(x),

and then integrate:

v (0)x (t , x) = v (0)

x (t , xmax) exp(∫ xmax

x

1R(0)(t , ξ)

)

◮ For mixture power utilities, R(0)(t , 0) = 0,R(0)

x (t , xmax) = 1γ2

, and we know behavior of v (0) for large x .◮ Recall asymptotic theory just needs v (0) and stochastic

volatility effects are gotten from its derivatives (“Greeks”).53

Page 54: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Mixture I: Value function

0 2 4 6 8 10 12 14 16 18 20−10

−5

0

5

10

15

20

Wealth x

UTILITIES

v(0)(0,x)

v(0)(T,x)=U(x)v(0)(0,x) with γ

1

v(0)(0,x) with γ2

54

Page 55: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Mixture II: Value function

0 2 4 6 8 10 12 14 16 18 200

5

10

15

20

25

Wealth x

UTILITIES

v(0)(0,x)

v(0)(T,x)=U(x)v(0)(0,x) with γ

1

v(0)(0,x) with γ2

55

Page 56: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Mixture I: Value Function

0 2 4 6 8 10 12 14 16 18 20−6

−4

−2

0

2

4

6

8

Wealth x

VALUE FUNCTION

v(0)

with SV correction

Figure: Here we plot the correction with√

ε B = 0.01.56

Page 57: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Mixture II: Value Functions

0 2 4 6 8 10 12 14 16 18 200

2

4

6

8

10

12

14

16

Wealth x

VALUE FUNCTION

v(0)

with SV correction

Figure: Here we plot the correction with√

ε B = 0.005.57

Page 58: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Optimal Portfolios◮ Fast Volatility: π∗ ≈ π̃ε, where

π̃ε = π(0) +

ρ√

ε

2σ(y)v (0)x

{Bλ(y)(T − t) (D1 + D2) + a(y)φ′(y)

}D1D2v (0).

58

Page 59: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Optimal Portfolios◮ Fast Volatility: π∗ ≈ π̃ε, where

π̃ε = π(0) +ρ√

ε

2σ(y)v (0)x

{Bλ(y)(T − t) (D1 + D2) + a(y)φ′(y)

}D1D2v (0).

◮ Zeroth Order: “Hybrid Merton"

π(0)(t , x , y) :=λ(y)

σ(y)R(0)(t , x ;λ),

as opposed to “Merton" π(M)(t , x) := λcσc

R(0)(t , x ;λc) or

“Moving Merton" π(MM)(t , x , y) := λ(y)σ(y)R(0)(t , x ;λ(y)).

59

Page 60: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Optimal Portfolios◮ Fast Volatility: π∗ ≈ π̃ε, where

π̃ε = π(0) +ρ√

ε

2σ(y)v (0)x

{Bλ(y)(T − t) (D1 + D2) + a(y)φ′(y)

}D1D2v (0).

◮ Zeroth Order: “Hybrid Merton"

π(0)(t , x , y) :=λ(y)

σ(y)R(0)(t , x ;λ),

as opposed to “Merton" π(M)(t , x) := λcσc

R(0)(t , x ;λc) or

“Moving Merton" π(MM)(t , x , y) := λ(y)σ(y)R(0)(t , x ;λ(y)).

◮ Using the “Hybrid Merton” 0th order suboptimal strategyresults in the optimal value up to first order (

√ε), and so

the corrections to the strategy impact the value function atthe v (2) term (order ε).

60

Page 61: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Practical (or “lazy") Merton◮ For the fast volatility problem, we propose a practical

strategy whose principal terms do not depend on trackingthe fast moving volatility factor Y . Here, take µ = constant.

◮ We look for an expansion of the value function

V̄ (t , x , y) = v̄ (0)(t , x , y)+√

ε v̄ (1)(t , x , y)+εv̄ (2)(t , x , y)+· · · ,

and of the controls:

π̄ = π̄(0)(t , x) +√

ε π̄(1)(t , x) + · · · ,

where the principal terms do not depend on y .◮ At order one,

v̄ (0)t + L0v̄ (2) + max

π̄(0)

(12σ(y)2(π̄(0))2v̄ (0)

xx + π̄(0)µv̄ (0)x

)= 0.

For the maximizer π̄(0) to not depend on y , the quantitybeing maximized must be y-independent.

61

Page 62: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Portfolio Optimization without Volatility Tracking◮ Choose v̄ (2) to solve

L0v̄ (2) +

(v̄ (0)

t +12σ(y)2(π̄(0))2v̄ (0)

xx + π̄(0)µv̄ (0)x

)

−(

v̄ (0)t +

12σ̄2(π̄(0))2v̄ (0)

xx + π̄(0)µv̄ (0)x

)= 0,

where σ̄2 = 〈σ(·)2〉. Then

v̄ (0)t − 1

2µ2

σ̄2

((v̄ (0)

x )2

v̄ (0)xx

)= 0, v̄ (0)(T , x) = U(x).

Merton with average volatility σ̄.◮ We also have:

π̄(0)(t , x) = − µ

σ̄2

v̄ (0)x

v̄ (0)xx

σ̄R(0)(t , x ;λ).

The principal Y -independent strategy is Merton withaverage volatility σ̄, NOT σ⋆. More conservative.Suboptimality is quantified to principal order by |v (0) − v̄ (0)|.

62

Page 63: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Next Order◮ Choosing v̄ (3) to allow π̄(1) to not depend on y leads to

√ε v̄ (1) = −(T − t)

( µ

σ̄2

)3V ε

3 D1D2v̄ (0),

where V ε3 was exactly what showed up in the option pricing

asymptotics.

63

Page 64: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Next Order◮ Choosing v̄ (3) to allow π̄(1) to not depend on y leads to

√ε v̄ (1) = −(T − t)

( µ

σ̄2

)3V ε

3 D1D2v̄ (0),

where V ε3 was exactly what showed up in the option pricing

asymptotics.◮ But V ε

3 can be calibrated from the implied vol skew:

I ≈ alog(K/S)

(T − t)+ b, V ε

3 =aσ̄3 .

◮ So the sub-optimality of the practical strategy is governedby the vol-stock correlation seen in the implied volatilityskew slope.

◮ Can use the market implied volatility skew to gauge theperformance of following the practical Merton strategy.

64

Page 65: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Performance◮ We looked at relative disutility of the practical strategy:

RD = 1 − V ε(σ̄)

V ε(σ⋆)

which depends on σ⋆/σ̄ and V ε3 (skew of implied vol).

65

Page 66: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Performance◮ We looked at relative disutility of the practical strategy:

RD = 1 − V ε(σ̄)

V ε(σ⋆)

which depends on σ⋆/σ̄ and V ε3 (skew of implied vol).

◮ In fact, the ratio σ⋆/σ̄ is fairly constant:

Dates σ̄ σ⋆ σ⋆/σ̄1/1/2009 − 12/31/2011 28.26% 23.91% 1.1861/1/2011 − 3/19/2013 21.43% 18.07% 1.186

66

Page 67: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Performance◮ We looked at relative disutility of the practical strategy:

RD = 1 − V ε(σ̄)

V ε(σ⋆)

which depends on σ⋆/σ̄ and V ε3 (skew of implied vol).

◮ In fact, the ratio σ⋆/σ̄ is fairly constant:

Dates σ̄ σ⋆ σ⋆/σ̄1/1/2009 − 12/31/2011 28.26% 23.91% 1.1861/1/2011 − 3/19/2013 21.43% 18.07% 1.186

◮ BUT: the skew is more pronounced in the first period(closer to the crisis), which lowers the disutility

67

Page 68: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Performance◮ We looked at relative disutility of the practical strategy:

RD = 1 − V ε(σ̄)

V ε(σ⋆)

which depends on σ⋆/σ̄ and V ε3 (skew of implied vol).

◮ In fact, the ratio σ⋆/σ̄ is fairly constant:

Dates σ̄ σ⋆ σ⋆/σ̄1/1/2009 − 12/31/2011 28.26% 23.91% 1.1861/1/2011 − 3/19/2013 21.43% 18.07% 1.186

◮ BUT: the skew is more pronounced in the first period(closer to the crisis), which lowers the disutility

◮ Conclusion: conservatism of the practical strategy is ofgreater benefit in turbulent times

68

Page 69: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Slow Scale Volatility Asymptotics◮ Now suppose stochastic volatility is slowly fluctuating:

dSt = µ(Zt)St dt + σ(Zt)St dW (1)t

dZt = δc(Zt ) dt +√

δg(Zt)(ρ dW (1)

t +√

1 − ρ2 dW (2)t

),

where δ is the small parameter for expansion:

V (t , x , z) = v (0)(t , x , z)+√

δ v (1)(t , x , z)+δv (2)(t , x , z)+· · · .

Then v (0) is the Merton value function with frozen Sharperatio λ(z). Let R(0)(t , x , z) = −v (0)

x (t , x , z)/v (0)xx (t , x , z).

Lt,x =∂

∂t+

12λ(z)2D2 + λ(z)2D1, Dk = (R(0))k ∂k

∂xk

where now Lt,x has coefficients depending on z.◮

69

Page 70: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Slow Scale Volatility Asymptotics◮ Now suppose stochastic volatility is slowly fluctuating:

dSt = µ(Zt)St dt + σ(Zt)St dW (1)t

dZt = δc(Zt ) dt +√

δg(Zt)(ρ dW (1)

t +√

1 − ρ2 dW (2)t

),

where δ is the small parameter for expansion:

V (t , x , z) = v (0)(t , x , z)+√

δ v (1)(t , x , z)+δv (2)(t , x , z)+· · · .

Then v (0) is the Merton value function with frozen Sharperatio λ(z). Let R(0)(t , x , z) = −v (0)

x (t , x , z)/v (0)xx (t , x , z).

Lt,x =∂

∂t+

12λ(z)2D2 + λ(z)2D1, Dk = (R(0))k ∂k

∂xk

where now Lt,x has coefficients depending on z.◮ Then Lt,xv (0) = 0 with v (0)(T , x , z) = U(x).◮ Taking the order

√δ terms leads to

Lt,xv (1) = −ρλ(z)g(z)D1v (0)z , v (1)(T , x , z) = 0.

70

Page 71: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Vega-Gamma Relationship◮ In European option pricing under constant volatility :

∂CBS

∂σ= (T − t)σS2 ∂2CBS

∂S2 .

Long convexity ⇒ long volatility .◮

71

Page 72: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Vega-Gamma Relationship◮ In European option pricing under constant volatility :

∂CBS

∂σ= (T − t)σS2 ∂2CBS

∂S2 .

Long convexity ⇒ long volatility .◮ Let M(t , x ;λ) be the Merton value function corresponding

to GBM with Sharpe ratio λ, so thatv (0)(t , x , z) = M(t , x ;λ(z)). Then we have

∂M∂λ

= −(T − t)λR2 ∂2M∂x2 ,

where by R we mean R = −Mx/Mxx .◮

72

Page 73: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Vega-Gamma Relationship◮ In European option pricing under constant volatility :

∂CBS

∂σ= (T − t)σS2 ∂2CBS

∂S2 .

Long convexity ⇒ long volatility .◮ Let M(t , x ;λ) be the Merton value function corresponding

to GBM with Sharpe ratio λ, so thatv (0)(t , x , z) = M(t , x ;λ(z)). Then we have

∂M∂λ

= −(T − t)λR2 ∂2M∂x2 ,

where by R we mean R = −Mx/Mxx .◮ Therefore

Lt,xv (1) = −ρλ(z)g(z)D1v (0)z = ρλ(z)g(z)D1

((T − t)λλ′D2v (0)

)

⇒ v (1)(t , x , z) =12(T − t)ρλ(z)g(z)D1v (0)

z .

73

Page 74: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Optimal Portfolios

◮ Slow Volatility: π∗ ≈ π̃δ, where

π̃δ = π(0) +

ρ√

δg(z)

σ(z)v (0)x

{12(T − t)λ2(z) (D2 + D1) + Id

}D1v (0)

z .

74

Page 75: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Optimal Portfolios

◮ Slow Volatility: π∗ ≈ π̃δ, where

π̃δ = π(0) +

ρ√

δg(z)

σ(z)v (0)x

{12(T − t)λ2(z) (D2 + D1) + Id

}D1v (0)

z .

◮ Zeroth Order: “Moving Merton"

π(0)(t , x , z) :=λ(z)

σ(z)R(0)(t , x ;λ(z)),

75

Page 76: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Optimal Portfolios

◮ Slow Volatility: π∗ ≈ π̃δ, where

π̃δ = π(0) +

ρ√

δg(z)

σ(z)v (0)x

{12(T − t)λ2(z) (D2 + D1) + Id

}D1v (0)

z .

◮ Zeroth Order: “Moving Merton"

π(0)(t , x , z) :=λ(z)

σ(z)R(0)(t , x ;λ(z)),

◮ Using the “Moving Merton” 0th order suboptimal strategyresults in the optimal value up to first order (

√δ), and so

the corrections to the strategy impact the value function atthe v (2) term (order δ).

76

Page 77: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Multiscale: fast and slow factors◮ π∗ ≈ π̃ε,δ, where

π̃ε,δ = π(0) +

ρ1√

ε

2σ(y , z)v (0)x

{B(z)λ(y , z)(T − t) (D1 + D2) + a(y)φy (y , z)}D1D2v (0)

+ρ2√

δg(z)

σ(y , z)v (0)x

{12(T − t)λ(y , z)λ̂(z) (D2 + D1) + Id

}D1v (0)

z .

77

Page 78: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Multiscale: fast and slow factors◮ π∗ ≈ π̃ε,δ, where

π̃ε,δ = π(0) +

ρ1√

ε

2σ(y , z)v (0)x

{B(z)λ(y , z)(T − t) (D1 + D2) + a(y)φy (y , z)}D1D2v (0)

+ρ2√

δg(z)

σ(y , z)v (0)x

{12(T − t)λ(y , z)λ̂(z) (D2 + D1) + Id

}D1v (0)

z .

◮ Zeroth Order: “Hybrid Moving Merton"

π(0)(t , x , y , z) :=λ(y , z)

σ(y , z)R(0)(t , x ;λ(z)),

78

Page 79: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

Multiscale: fast and slow factors◮ π∗ ≈ π̃ε,δ, where

π̃ε,δ = π(0) +

ρ1√

ε

2σ(y , z)v (0)x

{B(z)λ(y , z)(T − t) (D1 + D2) + a(y)φy (y , z)}D1D2v (0)

+ρ2√

δg(z)

σ(y , z)v (0)x

{12(T − t)λ(y , z)λ̂(z) (D2 + D1) + Id

}D1v (0)

z .

◮ Zeroth Order: “Hybrid Moving Merton"

π(0)(t , x , y , z) :=λ(y , z)

σ(y , z)R(0)(t , x ;λ(z)),

◮ Using the “Hybrid Moving Merton” 0th order suboptimalstrategy results in the optimal value up to first order (

√δ

and√

ε), and so the corrections to the strategy impact thevalue function at the v (2) term (order δ and ε).

79

Page 80: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

◮ Accuracy Proof: so far with power utilities and one factor,by linearizing the problem using a distortiontransformation. Work in progress with general utilitiesusing sub and super solutions.

80

Page 81: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

◮ Accuracy Proof: so far with power utilities and one factor,by linearizing the problem using a distortiontransformation. Work in progress with general utilitiesusing sub and super solutions.

◮ Filtering: see joint work with Andrew Papanicolaou in thecontext of stochastic unobserved drift in asset returns.

81

Page 82: Portfolio Optimization in Stochastic Environmentconferences.science.unsw.edu.au/risk2014/portfolio_asymp-JPFouque.pdfReference on Option Pricing Asymptotics Multiscale Stochastic Volatility

◮ Accuracy Proof: so far with power utilities and one factor,by linearizing the problem using a distortiontransformation. Work in progress with general utilitiesusing sub and super solutions.

◮ Filtering: see joint work with Andrew Papanicolaou in thecontext of stochastic unobserved drift in asset returns.

THANK YOU FOR YOUR ATTENTION

82