stochastic multiscale analysis - mediatum.ub.tum.de · 1r. zwanzig, nonequilibrium statistical...

69
Stochastic Multiscale Analysis Continuum Mechanics Group Faculty of Mechanical Engineering Technical University Munich September 4 2014 Modeling and Numerical Methods for Uncertainty Quantification MNMUQ 2014 - Porquerolles Island, France www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 1 / 39

Upload: trannhu

Post on 28-Aug-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Stochastic Multiscale Analysis

Continuum Mechanics GroupFaculty of Mechanical Engineering

Technical University Munich

September 4 2014Modeling and Numerical Methods for Uncertainty Quantification

MNMUQ 2014 - Porquerolles Island, France

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 1 / 39

Page 2: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Overview

Motivation

Why Multiscale ?

all physical processes involve a synergy of multiple scales

often we can/choose to ignore finer-scales and employ coarsened

descriptions (e.g. continuum models)

in a lot of problems we cannot ignore the fine-scale and we have to work

with fine-scale or multi-scale models

Why Stochastic?

the finer the scale we consider the less we know

when we coarse-grain, we loose information and information loss leads to

uncertainty

Coarse-grained models of complex, many-body systems areuseful in at least two ways:

They enhance our understanding of the salient physical/chemical/bio

mechanisms

They enable efficient computations in multiscale/multiphysics regimes

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 2 / 39

Page 3: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Molecular Dynamics

Molecular Dynamics aim to estimate numerically macroscopicquatities

equilibrium

non-equilibrium

Atomistic Simulation is a commonly-used tool in many fields

biology

material science

chemistry a

engineering

a2013 Nobel Prize in Chemistry to Karplus & Levitt & Warshel for the “developmentof multiscale models for complex chemical systems”

Mature software exists

LAMMPS, GROMACS (free)

AMBER, CHARMMwww.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 3 / 39

Page 4: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Molecular Dynamics

If q i is the position of atom i :

Newton’s law:

mi q i = f i = −∂

∂q i

j 6=i

V (q i ,q j)

For an isolated system with N atoms, the total energy is theHamiltonian H:

H(q, p) =∑

i

1

2

p2i

mi

︸ ︷︷ ︸

kinetic energy

+V (q1,q2, . . .qN)︸ ︷︷ ︸

potential energy

where pi = mq i are the momenta

Hamiltonian equations:

q i =∂H

∂pi

, pi = −∂H

∂q i

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 4 / 39

Page 5: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Molecular Dynamics

One would need only to integrate in time (chaotic, non-linearequations):

Newtonian equations:

mi q i = f i = −∂V (q)

∂q i

Hamiltonian equations:

q i =∂H

∂pi

, pi = −∂H

∂q i

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 5 / 39

Page 6: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Molecular Dynamics

There are two + one problems with that:

The number of atoms is very large, N → 1023

The dynamics is too fast, ∆t → 10−12 − 10−15

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 5 / 39

Page 7: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Molecular Dynamics

There are two + one problems with that:

The number of atoms is very large, N → 1023

The dynamics is too fast, ∆t → 10−12 − 10−15

The evolution of MD simulations (from T. Schlick. Molecular Modeling: An

Interdisciplinary Guide, 2010)

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 5 / 39

Page 8: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Molecular Dynamics

There are two + one problems with that:

The number of atoms is very large, N → 1023

The dynamics is too fast, ∆t → 10−12 − 10−15

The evolution of MD simulations (from T. Schlick. Molecular Modeling: An

Interdisciplinary Guide, 2010)

We do not know (exactly) the initial conditions i.e. there is uncertainty

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 5 / 39

Page 9: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Statistical Mechanics

We do not know (exactly) the initial conditions for all DoFs

q i ,pi , i = 1, 2 . . .N.

We prescribe an initital probability density of microstates ρ0(q, p) whichis consistent with the initial macroscopic conditions

This density will evolve in time, ρ(q, p; t) 1 :

∂ρ

∂t= −

∂H

∂p·∂ρ

∂q+

∂H

∂q·∂ρ

∂p(Liouville’s equation)

Is there an equilibrium/stationary distribution ρeq(q, p) = limt→∞ ρ(q, p; t)?

1R. Zwanzig, Nonequilibrium Statistical Mechanics

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 6 / 39

Page 10: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Statistical Mechanics

We do not know (exactly) the initial conditions for all DoFs

q i ,pi , i = 1, 2 . . .N.

We prescribe an initital probability density of microstates ρ0(q, p) whichis consistent with the initial macroscopic conditions

This density will evolve in time, ρ(q, p; t) 1 :

∂ρ

∂t= −

∂H

∂p·∂ρ

∂q+

∂H

∂q·∂ρ

∂p(Liouville’s equation)

Is there an equilibrium/stationary distribution ρeq(q, p) = limt→∞ ρ(q, p; t)?

1R. Zwanzig, Nonequilibrium Statistical Mechanics

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 6 / 39

Page 11: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Statistical Mechanics

Equilibrium Statistical Mechanics

Microcanonical ensmble (isolated system):

ρeq(q, p) ∝ δ(H(q, p)− H0)

Canonical ensemble (system in a heat bath with temperature T ):

ρeq(q, p) =exp{− 1

kBTH(q, p)}

Z

Grand-canonical ensemble . . .

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 7 / 39

Page 12: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Statistical Mechanics

Equilibrium Statistical Mechanics

Microcanonical ensmble (isolated system):

ρeq(q, p) ∝ δ(H(q, p)− H0)

Canonical ensemble (system in a heat bath with temperature T ):

ρeq(q, p) =exp{− 1

kBTH(q, p)}

Z

Grand-canonical ensemble . . .

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 7 / 39

Page 13: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Statistical Mechanics

Equilibrium Statistical Mechanics

Microcanonical ensmble (isolated system):

ρeq(q, p) ∝ δ(H(q, p)− H0)

Canonical ensemble (system in a heat bath with temperature T ):

ρeq(q, p) =exp{− 1

kBTH(q, p)}

Z

Grand-canonical ensemble . . .

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 7 / 39

Page 14: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Statistical Mechanics

Equilibrium Statistical Mechanics

Microcanonical ensmble (isolated system):

ρeq(q, p) ∝ δ(H(q, p)− H0)

Canonical ensemble (system in a heat bath with temperature T ):

ρeq(q, p) =exp{− 1

kBTH(q, p)}

Z

Grand-canonical ensemble . . .

Maximum Entropy connection a

aE.T. Jaynes, Information Theory and Statistical Mechanics, 1957

Entropy increases with time t

The equilibrium density is the one that maximizes the entropy:

S = −

ρeq(q, p) log ρeq(q, p) dqdp

subject to any constraints.www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 7 / 39

Page 15: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Equilibrium Statistical Mechanics

The objective of equilibrium statistical mechanics is to computeaverages :

E.g.:

E [f (q, p)] =

f (q, p)ρeq(q, p)dqdp

Other notations: < f (q, p) >, Eeq[f ] ....

These averages correspond to macroscopic thermodynamic quantitiese.g.:

stress,

pressure

diffusivity,

viscosity,

specific heat etc.

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 8 / 39

Page 16: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Equilibrium Statistical Mechanics

The objective of equilibrium statistical mechanics is to computeaverages :

E [f (q, p)] =

f (q, p)ρeq(q, p)dqdp

Deterministic methods

Generate a trajectory (q(t),p(t), x(t))The auxiliary variables x(t) are appropriately selected to ensure states

consistent with the canonical ensemble

Typical examples: Nosé-Hoover, Nosé-Poincaré

Stochastic Methods (Monte Carlo)

Generate random samples q i ,pi or sample trajectories (q(t),p(t)) from

appropriately selected Stochastic PDEs.

Typical examples: Importance Sampling, Markov Chain Monte Carlo,

Sequential Monte Carlo

Strong convergence results, increased flexibility that can incorporate

deterministic methods.

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 9 / 39

Page 17: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Equilibrium Statistical Mechanics

The objective of equilibrium statistical mechanics is to computeaverages :

E [f (q, p)] =

f (q, p)ρeq(q, p)dqdp

Deterministic methods

Generate a trajectory (q(t),p(t), x(t))The auxiliary variables x(t) are appropriately selected to ensure states

consistent with the canonical ensemble

Typical examples: Nosé-Hoover, Nosé-Poincaré

Stochastic Methods (Monte Carlo)

Generate random samples q i ,pi or sample trajectories (q(t),p(t)) from

appropriately selected Stochastic PDEs.

Typical examples: Importance Sampling, Markov Chain Monte Carlo,

Sequential Monte Carlo

Strong convergence results, increased flexibility that can incorporate

deterministic methods.

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 9 / 39

Page 18: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Equilibrium Statistical Mechanics

Some considerations for Monte Carlo samplers:

Suppose we wish to sample from:

ρeq(q, p) =exp{− 1

kBTH(q, p)}

Z

where H(q, p) =∑N

i=112

p2i

mi+ V (q1,q2, . . .qN)

N is very large i.e. we can afford algorithms that scale O(N) but probablynot O(N2)

Correlations between q and p are strong (i.e. no random-walk schemewould work)

Sampling p is easy (i.e. multivariate Gaussian)

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 10 / 39

Page 19: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Equilibrium Statistical Mechanics

Some considerations for Monte Carlo samplers:

Suppose we wish to sample from:

ρeq(q, p) =exp{− 1

kBTH(q, p)}

Z

where H(q, p) =∑N

i=112

p2i

mi+ V (q1,q2, . . .qN)

N is very large i.e. we can afford algorithms that scale O(N) but probablynot O(N2)

Correlations between q and p are strong (i.e. no random-walk schemewould work)

Sampling p is easy (i.e. multivariate Gaussian)

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 10 / 39

Page 20: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Equilibrium Statistical Mechanics

Some considerations for Monte Carlo samplers:

Suppose we wish to sample from:

ρeq(q, p) =exp{− 1

kBTH(q, p)}

Z

where H(q, p) =∑N

i=112

p2i

mi+ V (q1,q2, . . .qN)

N is very large i.e. we can afford algorithms that scale O(N) but probablynot O(N2)

Correlations between q and p are strong (i.e. no random-walk schemewould work)

Sampling p is easy (i.e. multivariate Gaussian)

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 10 / 39

Page 21: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Equilibrium Statistical Mechanics

Some considerations for Monte Carlo samplers:

Suppose we wish to sample from:

ρeq(q, p) =exp{− 1

kBTH(q, p)}

Z

where H(q, p) =∑N

i=112

p2i

mi+ V (q1,q2, . . .qN)

N is very large i.e. we can afford algorithms that scale O(N) but probablynot O(N2)

Correlations between q and p are strong (i.e. no random-walk schemewould work)

Sampling p is easy (i.e. multivariate Gaussian)

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 10 / 39

Page 22: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Equilibrium Statistical Mechanics

Some considerations for Monte Carlo samplers:

Suppose we wish to sample from:

ρeq(q, p) =exp{− 1

kBTH(q, p)}

Z

where H(q, p) =∑N

i=112

p2i

mi+ V (q1,q2, . . .qN)

Techniques that employ first-order derivatives of H are generally

employed. Their cost is generally determined by the number of timesforce evalautions have to be performed i.e. ∂V

∂q.

Increasing the temperature T “flattens” the target density

ρeq is generally multi-modal. It is very difficult for usual MCMC schemesto escape these modes.

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 11 / 39

Page 23: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Equilibrium Statistical Mechanics

Some considerations for Monte Carlo samplers:

Suppose we wish to sample from:

ρeq(q, p) =exp{− 1

kBTH(q, p)}

Z

where H(q, p) =∑N

i=112

p2i

mi+ V (q1,q2, . . .qN)

Techniques that employ first-order derivatives of H are generallyemployed. Their cost is generally determined by the number of times

force evalautions have to be performed i.e. ∂V∂q

.

Increasing the temperature T “flattens” the target density

ρeq is generally multi-modal. It is very difficult for usual MCMC schemesto escape these modes.

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 11 / 39

Page 24: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Equilibrium Statistical Mechanics

Some considerations for Monte Carlo samplers:

Suppose we wish to sample from:

ρeq(q, p) =exp{− 1

kBTH(q, p)}

Z, H(q, p) =

N∑

i=1

1

2

p2i

mi

+ V (q1,q2, . . .qN)

Hybrid or Hamiltonian Monte Carlo (R. Neal, 2012)

Given the current state (qold ,pold )

Draw new p from multivariate Gaussian

Perform L time-integration steps with your favorite, explicit (volume-perserving,

reversible) integrator e.g. velocity Verlet:

(qold , p)→ . . .q = ∂H

∂p

p = −∂H∂q

. . .→

︸ ︷︷ ︸

L−steps

(qnew ,pnew )

M-H accept/reject based on: exp{− 1kBT

(H(qnew ,pnew )− H(qold , p)}

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 12 / 39

Page 25: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Equilibrium Statistical Mechanics

Hybrid/Hamiltonian Monte Carlo (R. Neal, 2012)

Samples of q1 for a 2-dimensional problem using Random Walk Metropolis (left) and

HMC (right)

Samples of q1 for a 100-dimensional problem using Random Walk Metropolis (left) and

HMC (right)

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 13 / 39

Page 26: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Coarse-graining in Equilibrium statistical Mechanics

i = 1i = N

l

F F

Consider a very long (N >> 1) one-dimensional chain of atoms at

equilibruim temperature T

We want to predict the macroscopic behavior of the chain i.e. the (force)F - (length) l relation.

Suppose we fix q1 ≡ 0 and l = l(q) = qN .

qN ≡ l

F micro(q) F F = − < F micro >qN=l=<∂V (q)∂qN

>qN=l

=∫ ∂V (q)

∂qNρeq(q|qN = l) dq

What is ρeq(q|qN = l)?

Let:

Z (l) =

ρeq(q)δ(l − qN) dq

i.e. the probability that the length of chain is l .

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 14 / 39

Page 27: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Coarse-graining in Equilibrium statistical Mechanics

i = 1i = N

l

F F

Consider a very long (N >> 1) one-dimensional chain of atoms at

equilibruim temperature T

We want to predict the macroscopic behavior of the chain i.e. the (force)F - (length) l relation.

Suppose we fix q1 ≡ 0 and l = l(q) = qN .

qN ≡ l

F micro(q) F F = − < F micro >qN=l=<∂V (q)∂qN

>qN=l

=∫ ∂V (q)

∂qNρeq(q|qN = l) dq

What is ρeq(q|qN = l)?

Let:

Z (l) =

ρeq(q)δ(l − qN) dq

i.e. the probability that the length of chain is l .

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 14 / 39

Page 28: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Coarse-graining in Equilibrium statistical Mechanics

Then:

ρeq(q|qN = l) =1

Z (l)ρeq(q)δ(l − qN) =

1

Z (l)e−βV (q)δ(l − qN)

Note that:F =

∫ ∂V (q)∂qN

ρeq(q|qN = l) dq

=∫ ∂V (q)

∂qN

e−βV (q)δ(l−qN)Z (l) dq

= ∂∂qN

(

− 1β log Z (l)

)

(β = 1kBT

)

The quantity:

A(l) = −1

βlog Z (l) = −

1

βlog

e−βV (q)δ(l − qN)dq

is called Helmholtz Free Energy.

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 15 / 39

Page 29: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Coarse-graining in Equilibrium statistical Mechanics

Helmholtz Free Energy

A(l) = −1

βlog Z (l) = −

1

βlog

e−βV (q)δ(l − qN)dq

Note that:

e−βA(l) = Z (l) ≡ probability that the length of chain is l

Hence A(l) is the effective potential for the marginal distribution of themacroscopic variable l .

Since A(l) gives the exact marginal of l , there is no coarse-graining errori.e. we do not lose any information by “integrating out” the atomisticdegreees of freedom.

One can, in principle, compute free energies w.r.t to any macroscopic

variables Q = ξ(q) (e.g. strain) i.e.:

A(Q) = −1

βlog

δ(Q − ξ(q)) e−βV (q) dq

in order to perfectly coarse-grain any atomistic ensemble!www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 16 / 39

Page 30: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Coarse-graining in Equilibrium statistical Mechanics

Helmholtz Free Energy

A(l) = −1

βlog Z (l) = −

1

βlog

e−βV (q)δ(l − qN)dq

Note that:

e−βA(l) = Z (l) ≡ probability that the length of chain is l

Hence A(l) is the effective potential for the marginal distribution of themacroscopic variable l .

Since A(l) gives the exact marginal of l , there is no coarse-graining errori.e. we do not lose any information by “integrating out” the atomisticdegreees of freedom.

One can, in principle, compute free energies w.r.t to any macroscopic

variables Q = ξ(q) (e.g. strain) i.e.:

A(Q) = −1

βlog

δ(Q − ξ(q)) e−βV (q) dq

in order to perfectly coarse-grain any atomistic ensemble!www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 16 / 39

Page 31: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Coarse-graining in Equilibrium statistical Mechanics

Helmholtz Free Energy

A(l) = −1

βlog Z (l) = −

1

βlog

e−βV (q)δ(l − qN)dq

Note that:

e−βA(l) = Z (l) ≡ probability that the length of chain is l

Hence A(l) is the effective potential for the marginal distribution of themacroscopic variable l .

Since A(l) gives the exact marginal of l , there is no coarse-graining errori.e. we do not lose any information by “integrating out” the atomisticdegreees of freedom.

One can, in principle, compute free energies w.r.t to any macroscopic

variables Q = ξ(q) (e.g. strain) i.e.:

A(Q) = −1

βlog

δ(Q − ξ(q)) e−βV (q) dq

in order to perfectly coarse-grain any atomistic ensemble!www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 16 / 39

Page 32: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Coarse-graining in Equilibrium statistical Mechanics

Free Energy comprises contributions from:

Energy/Potential

Entropy

Energetic contributions

Suppose:

V (q) = W (qN) + V (q1, . . . , qN−1)

Then for Q = qN :

A(Q) = − 1β log

∫e−βV (q)δ(Q − qN) dq

= − 1β log e−βW (Q)

∫e−βV (q1,...,qN−1)) dq1 . . .dqN−1

= W (Q)

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 17 / 39

Page 33: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Coarse-graining in Equilibrium statistical Mechanics

Free Energy comprises contributions from:

Energy/Potential

Entropy

Entropic contributions

Suppose V (x , y) is 0 inside the box and +∞ outside. For Q = x :

(a) V (x , y) (b) A(x)

From Lelievre et al. 2010. Free Energy Computations: A mathematical

perspectivewww.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 18 / 39

Page 34: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Free Energy in Equilibrium statistical Mechanics

Some considerations:

A(Q) = −1

βlog

δ(Q − ξ(q)) e−βV (q) dq

The Helmholtz Free Energy A(Q) provides a principled and exactrepresentation of the equilibrium atomistic ensemble w.r.t the reducedcoordinates Q = ξ(q).

If A(Q) is known we can reproduce exactly any macroscopic property

depending on Q.

A(Q) is really A(Q, β) i.e. it depends on the temperature

Free energy differences are of interest.

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 19 / 39

Page 35: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Coarse-graining in Equilibrium statistical Mechanics

Helmholtz Free energy A(Q):

A(Q) = −1

βlog

δ(Q − ξ(q)) e−βV (q) dq

How can one estimate A(Q)?

Suppose Q ≡ q1 and ρeq(q1, q2) is bimodal.

(a)ρeq(q1, q2)

Convergence is very, very slow - q1 is the slow variable

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 20 / 39

Page 36: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Coarse-graining in Equilibrium statistical Mechanics

Helmholtz Free energy A(Q):

A(Q) = −1

βlog

δ(Q − ξ(q)) e−βV (q) dq

How can one estimate A(Q)?

Suppose Q ≡ q1 and ρeq(q1, q2) is bimodal.

(b) ρeq(q1, q2)

0 10000 20000 30000 40000 50000-2

-1

0

1

2

q1

(c) Metastability

Convergence is very, very slow - q1 is the slow variable

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 20 / 39

Page 37: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Coarse-graining in Equilibrium statistical Mechanics

Helmholtz Free energy A(Q):

A(Q) = −1

βlog

δ(Q − ξ(q)) e−βV (q) dq

How can one estimate A(Q)?

Suppose Q ≡ q1 and ρeq(q1, q2) is bimodal.

(d) ρeq(q1, q2)

0 10000 20000 30000 40000 50000-2

-1

0

1

2

q1

(e) Metastability

Convergence is very, very slow - q1 is the slow variable

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 20 / 39

Page 38: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Free Energy Computations

Coarse-grained variables Q = ξ(q):

Other names: relevant variables, macrostates, macroscopic variables,collective variables, reaction coordinates, internal variables, order

parameters etc.

How does one find the most appropriate coarse-grained variables Q a?

based on the macroscopic prediction objectives.

based on physical insight

based on (principled) processing of computational data (machine learnining)

In the following we will assume that Q = ξ(q) is given.

aRohrdanz et al. 2013 Discovering mountain passes via torchlight: methods for thedefinition of reaction coordinates and pathways in complex macromolecular reactions

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 21 / 39

Page 39: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Free Energy Computations

Coarse-grained variables Q = ξ(q):

Other names: relevant variables, macrostates, macroscopic variables,collective variables, reaction coordinates, internal variables, order

parameters etc.

How does one find the most appropriate coarse-grained variables Q a?

based on the macroscopic prediction objectives.

based on physical insight

based on (principled) processing of computational data (machine learnining)

In the following we will assume that Q = ξ(q) is given.

aRohrdanz et al. 2013 Discovering mountain passes via torchlight: methods for thedefinition of reaction coordinates and pathways in complex macromolecular reactions

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 21 / 39

Page 40: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Free Energy Computations

Given good Q = ξ(q) the compuation of free energy(differences) A(Q) amounts to:

sampling efficiently a multi-modal density

computing the marginal w.r.t. Q.

Some techniques:

Thermodynamic integration (Kirkwood 1935)

Equilibrium methods

Nonequilibrium methods (Jarzynski 1997)

Adaptive Biasing Potential (ABP) or Force (ABF) methods (Wang-Landau

2001)

Keep in mind that a lot of these techniques can be used in completeleydifferent contexts in UQ e.g. Bayesian inference (Chopin et al. 2012)

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 22 / 39

Page 41: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

A unifying ABP framework for Free Energy

Computations

Recall that the marginal ρQ(Q) w.r.t the coarse-grained variablesQ = ξ(q) is:

ρQ(Q) ∝ e−βA(Q) =

e−βV (q)δ(Q − ξ(q)) dq

Define an auxiliary density ρ(q) as:

ρ(q) =e−β(V (q)−A(ξ(q);φ))

Z (φ)

where A(Q;φ) is a function of the coarse-grained variables Q that isparameterized by φ.

The corresponding marginal ρQ(Q) will be:

ρQ(Q) =∫ρ(q)δ(Q − ξ(q)) dq

= e−β(A(Q)−A(Q;φ))

Z (φ)

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 23 / 39

Page 42: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

A unifying ABP framework for Free Energy

Computations

Recall that the marginal ρQ(Q) w.r.t the coarse-grained variablesQ = ξ(q) is:

ρQ(Q) ∝ e−βA(Q) =

e−βV (q)δ(Q − ξ(q)) dq

Define an auxiliary density ρ(q) as:

ρ(q) =e−β(V (q)−A(ξ(q);φ))

Z (φ)

where A(Q;φ) is a function of the coarse-grained variables Q that isparameterized by φ.

The corresponding marginal ρQ(Q) will be:

ρQ(Q) =∫ρ(q)δ(Q − ξ(q)) dq

= e−β(A(Q)−A(Q;φ))

Z (φ)

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 23 / 39

Page 43: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

A unifying ABP framework for Free Energy

Computations

Note that if A(Q) = A(Q;φ)) + constant then:

ρQ(Q) =e−β(A(Q)−A(Q;φ))

Z (φ)≡ (uniform)

In practice we define a (small or large) subset of Q-values, say D, that isof interest. Let π(Q) ∝ 1D(Q) be the uniform on D

Hence the optimal free energy approximation A(Q;φ)) is found by:

φopt = arg minφ

f (φ) = DISTANCE( π(Q)︸ ︷︷ ︸

uniform on D

, ρQ(Q))

We propose using the Kullback-Leibler divergence to measure thedistance between densities i.e.:

f (φ) = KL(π(Q)||ρQ(Q)) = −∫π(Q) log

ρQ (Q)

π(Q)dQ

= −∫π(Q)

(

−β(A(Q)− A(Q;φ))

dQ + log Z (φ) + . . .

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 24 / 39

Page 44: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

A unifying ABP framework for Free Energy

Computations

Note that if A(Q) = A(Q;φ)) + constant then:

ρQ(Q) =e−β(A(Q)−A(Q;φ))

Z (φ)≡ (uniform)

In practice we define a (small or large) subset of Q-values, say D, that isof interest. Let π(Q) ∝ 1D(Q) be the uniform on D

Hence the optimal free energy approximation A(Q;φ)) is found by:

φopt = arg minφ

f (φ) = DISTANCE( π(Q)︸ ︷︷ ︸

uniform on D

, ρQ(Q))

We propose using the Kullback-Leibler divergence to measure thedistance between densities i.e.:

f (φ) = KL(π(Q)||ρQ(Q)) = −∫π(Q) log

ρQ (Q)

π(Q)dQ

= −∫π(Q)

(

−β(A(Q)− A(Q;φ))

dQ + log Z (φ) + . . .

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 24 / 39

Page 45: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

A unifying ABP framework for Free Energy

Computations

Note that if A(Q) = A(Q;φ)) + constant then:

ρQ(Q) =e−β(A(Q)−A(Q;φ))

Z (φ)≡ (uniform)

In practice we define a (small or large) subset of Q-values, say D, that is

of interest. Let π(Q) ∝ 1D(Q) be the uniform on D

Hence the optimal free energy approximation A(Q;φ)) is found by:

φopt = arg minφ

f (φ) = DISTANCE( π(Q)︸ ︷︷ ︸

uniform on D

, ρQ(Q))

We propose using the Kullback-Leibler divergence to measure thedistance between densities i.e.:

f (φ) = KL(π(Q)||ρQ(Q)) = −∫π(Q) log

ρQ (Q)

π(Q)dQ

= −∫π(Q)

(

−β(A(Q)− A(Q;φ))

dQ + log Z (φ) + . . .

= −β∫π(Q)A(Q;φ) dQ + log Z (φ) + . . .

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 24 / 39

Page 46: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

A unifying ABP framework for Free Energy

Computations

Note that if A(Q) = A(Q;φ)) + constant then:

ρQ(Q) =e−β(A(Q)−A(Q;φ))

Z (φ)≡ (uniform)

In practice we define a (small or large) subset of Q-values, say D, that isof interest. Let π(Q) ∝ 1D(Q) be the uniform on D

Hence the optimal free energy approximation A(Q;φ)) is found by:

φopt = arg minφ

f (φ) = DISTANCE( π(Q)︸ ︷︷ ︸

uniform on D

, ρQ(Q))

We propose using the Kullback-Leibler divergence to measure thedistance between densities i.e.:

f (φ) = KL(π(Q)||ρQ(Q)) = −∫π(Q) log

ρQ (Q)

π(Q)dQ

= −∫π(Q)

(

−β(A(Q)− A(Q;φ))

dQ + log Z (φ) + . . .

= −β

π(Q)A(Q;φ) dQ

︸ ︷︷ ︸

easy

+ log Z (φ)︸ ︷︷ ︸

difficult

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 24 / 39

Page 47: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

A unifying ABP framework for Free Energy

Computations

Objective:

minφ

f (φ) = −β

π(Q)A(Q;φ) dQ + log Z (φ)

Suppose one expresses:

A(Q;φ) =

M∑

i=1

φiKi(Q)

where Ki(Q) are some given basis/kernel functions 2.

Derivatives:

∂f∂φi

= −βEπ[∂A(Q;φ)

∂φi] + d log Z (φ)

∂φi

= −β (Eπ[Ki(Q)]− EρQ[Ki(Q)]) , ρQ(Q) = e−β(A(Q)−A(Q;φ))

Z (φ)

∂2f∂φi∂φj

= β2CovρQ[Ki(Q),Kj(Q)] > 0 −→ CONVEX

2You will ask how did you pick Ki and how do you know how many M you must use?

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 25 / 39

Page 48: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

A unifying ABP framework for Free Energy

Computations

Objective:

minφ

f (φ) = −β

π(Q)A(Q;φ) dQ + log Z (φ)

Suppose one expresses:

A(Q;φ) =

M∑

i=1

φiKi(Q)

where Ki(Q) are some given basis/kernel functions 2.

Derivatives:

∂f∂φi

= −βEπ[∂A(Q;φ)

∂φi] + d log Z (φ)

∂φi

= −β (Eπ[Ki(Q)]− EρQ[Ki(Q)]) , ρQ(Q) = e−β(A(Q)−A(Q;φ))

Z (φ)

∂2f∂φi∂φj

= β2CovρQ[Ki(Q),Kj(Q)] > 0 −→ CONVEX

2You will ask how did you pick Ki and how do you know how many M you must use?

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 25 / 39

Page 49: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

A unifying ABP framework for Free Energy

Computations

∂f∂φi

= −β (Eπ[Ki(Q)]− EρQ[Ki(Q)]) , ρQ(Q) = e−β(A(Q)−A(Q;φ))

Z (φ)

Q: But one does not know ρQ(Q), after all, isn’t A(Q) is what we are looking for?

A: We will use the auxiliary (joint) density ρ(q) of which ρQ(Q) is the marginal:

ρ(q) =e−β(V (q)−A(ξ(q);φ))

Z (φ)

Q: Even if you do Monte Carlo for ρ(q) you will get a very poor estimates

(especially in the begining i.e. when A ≡ 0)?

A: Stochastic Approximation (Robbins-Monro, 1951)

φ(m+1) = φ

(m) − ηm˜∇f (φ(m))

It is OK if ˜∇f (φ(m)) is a noisy estimate of ∇f (φ(m)) as long as∑

m=0 ηm = +∞,∑

m=0 η2m < +∞

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 26 / 39

Page 50: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

A unifying ABP framework for Free Energy

Computations

∂f∂φi

= −β (Eπ[Ki(Q)]− EρQ[Ki(Q)]) , ρQ(Q) = e−β(A(Q)−A(Q;φ))

Z (φ)

Q: But one does not know ρQ(Q), after all, isn’t A(Q) is what we are looking for?

A: We will use the auxiliary (joint) density ρ(q) of which ρQ(Q) is the marginal:

ρ(q) =e−β(V (q)−A(ξ(q);φ))

Z (φ)

Q: Even if you do Monte Carlo for ρ(q) you will get a very poor estimates

(especially in the begining i.e. when A ≡ 0)?

A: Stochastic Approximation (Robbins-Monro, 1951)

φ(m+1) = φ

(m) − ηm˜∇f (φ(m))

It is OK if ˜∇f (φ(m)) is a noisy estimate of ∇f (φ(m)) as long as∑

m=0 ηm = +∞,∑

m=0 η2m < +∞

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 26 / 39

Page 51: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

A unifying ABP framework for Free Energy

Computations

∂f∂φi

= −β (Eπ[Ki(Q)]− EρQ[Ki(Q)]) , ρQ(Q) = e−β(A(Q)−A(Q;φ))

Z (φ)

Q: But one does not know ρQ(Q), after all, isn’t A(Q) is what we are looking for?

A: We will use the auxiliary (joint) density ρ(q) of which ρQ(Q) is the marginal:

ρ(q) =e−β(V (q)−A(ξ(q);φ))

Z (φ)

Q: Even if you do Monte Carlo for ρ(q) you will get a very poor estimates

(especially in the begining i.e. when A ≡ 0)?

A: Stochastic Approximation (Robbins-Monro, 1951)

φ(m+1) = φ

(m) − ηm˜∇f (φ(m))

It is OK if ˜∇f (φ(m)) is a noisy estimate of ∇f (φ(m)) as long as∑

m=0 ηm = +∞,∑

m=0 η2m < +∞

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 26 / 39

Page 52: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

A unifying ABP framework for Free Energy

Computations

∂f∂φi

= −β (Eπ[Ki(Q)]− EρQ[Ki(Q)]) , ρQ(Q) = e−β(A(Q)−A(Q;φ))

Z (φ)

Q: But one does not know ρQ(Q), after all, isn’t A(Q) is what we are looking for?

A: We will use the auxiliary (joint) density ρ(q) of which ρQ(Q) is the marginal:

ρ(q) =e−β(V (q)−A(ξ(q);φ))

Z (φ)

Q: Even if you do Monte Carlo for ρ(q) you will get a very poor estimates

(especially in the begining i.e. when A ≡ 0)?

A: Stochastic Approximation (Robbins-Monro, 1951)

φ(m+1) = φ

(m) − ηm˜∇f (φ(m))

It is OK if ˜∇f (φ(m)) is a noisy estimate of ∇f (φ(m)) as long as∑

m=0 ηm = +∞,∑

m=0 η2m < +∞

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 26 / 39

Page 53: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

A unifying ABP framework for Free Energy

Computations

Enforcing Sparsity - Greedy addition of kernels (Berger et al 1996. A

Maximum Entropy Approach to Natural Language)

A(Q;φ) =

M∑

i=1

φiKi(Q)

Let A(Q)(M) the approximation with M basis/kernel functions

If

ρ(q) =e−β(V (q)−A(M)(ξ(q);φ))

Z (φ)

is the corresponding auxiliary density, then select KM+1(Q) such as:

KM+1(Q) = arg maxK (Q)∈K

(Eπ[K (Q)]− EρQ[K (Q)])2

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 27 / 39

Page 54: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

A unifying ABP framework for Free Energy

Computations

Example: Bimodality

V (q1, q2) ρeq(q1, q2) ∝ e−βV (q1,q2)

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 28 / 39

Page 55: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

A unifying ABP framework for Free Energy

Computations

Example: Bimodality

-0.4 -0.2 0 0.2 0.40

0.5

1

1.5

2

2.5

3

reference

Q ≡ q1

M = 1M = 2M = 3M = 8

A(Q

)

A(M)(Q) for various M

0 5000 10000 15000 20000 25000 300000

2

4

6

8

KL

-div

erg

en

ce

iterations

M = 1

M = 2M = 3

M = 4

M = 5

M = 6 M = 7

reference

KL-gain for various M

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 29 / 39

Page 56: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

A unifying ABP framework for Free Energy

Computations

LJ38: Two reaction coordinates

Q1 = 0.01

(icosahedron)

Q1 = 0.19

(octahedron)

-170

-165

-160

-155

-150

-145

0 0.05 0.1 0.15 0.2

98

7

6 5

4

3

2

1.5 1

0.5

Q1

Q2

(a) T = 0.21.

-170

-165

-160

-155

-150

-145

0 0.05 0.1 0.15 0.2

10

9

8

7

0

5

4

3

2

1.5

1

0.5

Q1

Q2

(b) T = 0.17.

-170

-165

-160

-155

-150

-145

0 0.05 0.1 0.15 0.2

10

9

8

7 6 5

4 3

2

1.5

1

0.5

Q1

Q2

(c) T = 0.14.

-170

-165

-160

-155

-150

-145

0 0.05 0.1 0.15 0.2

109

8

7

6 5 4

3

2

1.510.5

Q1

Q2

(d) T = 0.11.

Free energy contours A(Q1,Q2) at various temperatures.www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 30 / 39

Page 57: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Pseudo-Molecular Coarse-Graining

q Q

Q = ξ(q)

From Noid et al. 2008CG of water moleculers. (from Bilionis

et al. 2013)

e.g. define pseudoatoms I such that for all atoms i ∈ I:

QI =

i∈I miq i∑

i∈I mi

Is there an optimal CG-description? How should two alternative

CG-coordinate systems be compared?

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 31 / 39

Page 58: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Pseudo-Molecular Coarse-Graining

If V (q) is the refeqrence potential and ρeq(q):

ρeq(q) =e−βV (q)

Z

the equilibrium distribution.

The exact coarse-graining w.r.t. to Q = ξ(q) requires the compuation ofthe corresponding Helmholtz free energy A(Q):

A(Q) = −1

βlog

∫e−βV (q)

Zδ(Q − ξ(q)) dq

In principle any of the Free Energy computational techniques can beemployed.

The problem is that all of them are applicable to low-dimensional Q (e.g.

dim(Q) < 5or10)

When dim(Q) >> 1, physical insight is necessary.

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 32 / 39

Page 59: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Pseudo-Molecular Coarse-Graining

If V (q) is the refeqrence potential and ρeq(q):

ρeq(q) =e−βV (q)

Z

the equilibrium distribution.

The exact coarse-graining w.r.t. to Q = ξ(q) requires the compuation ofthe corresponding Helmholtz free energy A(Q):

A(Q) = −1

βlog

∫e−βV (q)

Zδ(Q − ξ(q)) dq

In principle any of the Free Energy computational techniques can beemployed.

The problem is that all of them are applicable to low-dimensional Q (e.g.

dim(Q) < 5or10)

When dim(Q) >> 1, physical insight is necessary.

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 32 / 39

Page 60: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Pseudo-Molecular Coarse-Graining

Let an approximation to the true free energy A(Q) be:

A(Q;φ) → ρ(Q) =e−βA(Q;φ)

Z (φ)

that depends on some parameters φ .E.g.:

A(Q;φ) =∑

I<J V (|QI − QJ |;φ)︸ ︷︷ ︸

pairwise−potential

V (r ;φ) =∑M

i=1 φi ψi(r)︸ ︷︷ ︸

known

→A(Q;φ) =

∑Mi=1 φi(

I<J ψi(|QI − QJ |))

=∑M

i=1 φi Ki(Q)

What is the optimal φopt ?

The Relative Entopy method 3

φopt = arg min

φf (φ) = KL(ρeq(Q)||ρ(Q))

3Shell et al 2008, Bilionis et al. 2013

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 33 / 39

Page 61: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Pseudo-Molecular Coarse-Graining

Let an approximation to the true free energy A(Q) be:

A(Q;φ) → ρ(Q) =e−βA(Q;φ)

Z (φ)

that depends on some parameters φ .E.g.:

A(Q;φ) =∑

I<J V (|QI − QJ |;φ)︸ ︷︷ ︸

pairwise−potential

V (r ;φ) =∑M

i=1 φi ψi(r)︸ ︷︷ ︸

known

→A(Q;φ) =

∑Mi=1 φi(

I<J ψi(|QI − QJ |))

=∑M

i=1 φi Ki(Q)

What is the optimal φopt ?

The Relative Entopy method 3

φopt = arg min

φf (φ) = KL(ρeq(Q)||ρ(Q))

3Shell et al 2008, Bilionis et al. 2013

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 33 / 39

Page 62: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Pseudo-Molecular Coarse-Graining

Relative Entropy method

φopt = arg minφ

f (φ) = KL(ρeq(Q)||ρ(Q))

Alternatives

Inversion based methods. E.g. Boltzman Inversion (Tchöp et al. 1998),

Iterative Boltzmann Inversion (Reith et al. (2003), Inverse Monte Carlo[Lyubartsev et al. 1995, Soper 1996).

Variational methods. E.g. Force Matching (Ercolessi et al. 1994, Izvekovet al. 2005, Noid et al. 2007).

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 34 / 39

Page 63: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Pseudo-Molecular Coarse-Graining

Relative Entropy method

f (φ) = KL(ρeq(Q)||ρ(Q))

= −∫ρeq(Q) log

e−βA(Q;φ)/Z (φ)ρeq(Q)

= β∫

A(Q;φ)ρeq(Q) dQ + log Z (φ) + . . .

= Eρeq[A(Q;φ)] + log Z (φ)

Derivatives (If A(Q;φ) =∑M

i=1 φiKi(Q)):

∂f

∂φi

= β(Eρeq[Ki(Q)]− Eρ[Ki(Q)])a

∂2f

∂φi∂φj

= β2Covρ[Ki(Q),Kj(Q)] > 0 −→ CONVEX

aThis is exactly what one would get with MAXENT

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 35 / 39

Page 64: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Pseudo-Molecular Coarse-Graining

Relative Entropy method

∂f

∂φi

= β(Eρeq[Ki(Q)]− Eρ[Ki(Q)])

Q: How can one estimate Eρeq[Ki(Q)]?

A: All existing methods assume that a very long MCMC run of ρeq(q) is

available and:

Eρeq[Ki(Q)] ≈

1

N

N∑

j=1

Ki(ξ(q(j)))]

As we have seen this is not always straightforward.

Q: How can one estimate Eρ[Ki(Q)] where ρ(Q) ∝ e−βA(Q;φ)

A: With ones favorite MCMC sampler (sampling in the reducedcoordinates)

Both estimates will be noisy −→ Stochastic Approximations are needed.

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 36 / 39

Page 65: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Pseudo-Molecular Coarse-Graining

Relative Entropy method

∂f

∂φi

= β(Eρeq[Ki(Q)]− Eρ[Ki(Q)])

Q: How can one estimate Eρeq[Ki(Q)]?

A: All existing methods assume that a very long MCMC run of ρeq(q) is

available and:

Eρeq[Ki(Q)] ≈

1

N

N∑

j=1

Ki(ξ(q(j)))]

As we have seen this is not always straightforward.

Q: How can one estimate Eρ[Ki(Q)] where ρ(Q) ∝ e−βA(Q;φ)

A: With ones favorite MCMC sampler (sampling in the reducedcoordinates)

Both estimates will be noisy −→ Stochastic Approximations are needed.

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 36 / 39

Page 66: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Pseudo-Molecular Coarse-Graining

Relative Entropy method

∂f

∂φi

= β(Eρeq[Ki(Q)]− Eρ[Ki(Q)])

Q: How can one estimate Eρeq[Ki(Q)]?

A: All existing methods assume that a very long MCMC run of ρeq(q) is

available and:

Eρeq[Ki(Q)] ≈

1

N

N∑

j=1

Ki(ξ(q(j)))]

As we have seen this is not always straightforward.

Q: How can one estimate Eρ[Ki(Q)] where ρ(Q) ∝ e−βA(Q;φ)

A: With ones favorite MCMC sampler (sampling in the reducedcoordinates)

Both estimates will be noisy −→ Stochastic Approximations are needed.

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 36 / 39

Page 67: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Pseudo-Molecular Coarse-Graining

Example (Bilionis et al. 2013):

Full-order system: 2180 water molecules (i.e. dim(q) > 19620)

T = 300K , SPC/E water model (Kusalik et al. 1994)

220ns in total are simulated with a time step of 0.002ps (Gromacs)

5hrs on 240 CPUs!

N = 105 samples are used to estimate expectations w.r.t ρeq(q)

Coarse-grained model with dim(Q) = 6540

Cubic splines were used as the basis functions φi(r) in the pairwisecoarse-grained potential

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 37 / 39

Page 68: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Pseudo-Molecular Coarse-Graining

Example (Bilionis et al. 2013):

(a) (b)

(c) (d)

Learned pairwise coarse-grained potential (Bilionis et al. 2013)www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 38 / 39

Page 69: Stochastic Multiscale Analysis - mediatum.ub.tum.de · 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... 1R. Zwanzig, Nonequilibrium Statistical Mechanics ... Stochastic Multiscale

Conclusions & Outlook

What is the best set of coarse-grained coordinates Q?

How does this change depending on the prediction objectives?

Is there a way to learn a hierarchy of coarse-grained coordinates

Q1 = ξ1(Q2) = ξ1 ◦ ξ2(Q3) = . . . = ξ1 ◦ ξ2 . . . ◦ ξs(q)?

Is there a way to learn this exclusively from (short bursts of) simulationdata?

How can one learn free-energy surfaces in high-dimensions?

Since we are learning from finite amounts of simulation data, what is theinferential uncertainty?

Can we be Bayesian in our coarse-graining (e.g. Espanol et al 2011,

Wright et al. 2013 ICES report 13-31)

Non-equilibrium statistical mechanics?

www.tinyurl.com/mnmuq2014 Stochastic Multiscale Analysis 39 / 39