polymer characterization by temperature gradient ......2015-10-26 1 polymer characterization by...

51
2015-10-26 1 Polymer Characterization by Temperature Gradient Interaction Chromatography: Temperature Gradient Interaction Chromatography: SEC vs. TGIC 2015. 10. 20 Taihyun Chang Division of Advanced Materials Science and Department of Chemistry Pohang University of Science and Technology (POSTECH) http://tc.postech.ac.kr/ Various molecular heterogeneities in synthetic polymers How well do we know the polymers we are working with? Molar mass Chain Architecture Chemical Composition Functionality Stereoregularity, Monomer sequence, etc.

Upload: others

Post on 11-Mar-2020

16 views

Category:

Documents


0 download

TRANSCRIPT

  • 2015-10-26

    1

    Polymer Characterization by Temperature Gradient Interaction Chromatography:Temperature Gradient Interaction Chromatography:

    SEC vs. TGIC

    2015. 10. 20

    Taihyun ChangDivision of Advanced Materials Science

    and Department of ChemistryPohang University of Science and Technology (POSTECH)

    http://tc.postech.ac.kr/

    Various molecular heterogeneities in synthetic polymers

    How well do we know the polymers we are working with?

    Molar mass Chain ArchitectureChemical

    CompositionFunctionality

    Stereoregularity, Monomer sequence, etc.

  • 2015-10-26

    2

    Content

    • IntroductionSize Exclusion Chromatography vs. Interaction Chromatography

    • Temperature Gradient Interaction Chromatography• Temperature Gradient Interaction Chromatography

    • Precision Analysis of Molecular Weight Distribution

    • Nonlinear PolymersBranched polymer, Ring polymer

    • Chemical CompositionMixture, Block Copolymer, Functionality

    • Stereoregularity, Isotope

    Reservoir containing

    Chromatography separation

    In a chromatographic separation, analyte molecules are subjected to consecutive equilibrium in the distribution between the mobile phase and stationary phase while they pass through the column.

    Reservoir containingthe eluent (mobile phase)

    Sample

    Column packed with stationary phase

    Time Time

    The fastest moving substance eluted from columnfrom column

    Mobile phase ⇔ Stationary phasecm cs

    K = cs/cmVR = Vm + K Vs

  • 2015-10-26

    3

    SEM images of PS/DVB gel (top: 103, bottom: 106)

    Cross-sectional TEM images of a silica particle for IC (pore diameter = 300 Å)

    Porous packing materials for HPLC columns

    3 ~ 5 m

    1 m1 m1 m

    10 ~ 20 m

    200 nm200 nm

    RSexp

    RTGexpK SEC

    oSEC

    o

    SEC

    Size Exclusion Chromatography (SEC)

    Size Exclusion Chromatography

    ow

    Interstitial space Solid phase

    Pore

    1i

    pSEC c

    cKo

    Development of the technique: J. Moore, Dow Chemical Company (1962)

    First commercial instrument: Waters Associate (1963)

    Flo

    First paper: J. Moore, J. Polym. Sci., Part A 2 835 (1964)

    Introduction of Q factor: L. E. Maley, J. Polym. Sci., Part C 8 253 (1965)

    Universal calibration: Z. Grubisic; P. Rempp; H. Benoit, J. Polym. Sci., Part B 5 753 (1967)

    Theoretical Interpretation: E.F. Casassa, J. Polym. Sci., Part B 5 773 (1967)

  • 2015-10-26

    4

    Limitations in SEC analysis

    1. SEC separates polymers by hydrodynamic size only2. Hydrodynamic size decreases with chain branching

    Polymer Mixture Copolymer Non-linear Polymer

    Intrinsic Band broadening –particularly serious in SEC

    Linear Homopolymer

    SEC vs. IC

    Size Exclusion Chromatography

    RSexp

    RTGexpK SEC

    oSEC

    o

    SEC

    ow

    Interstitial space Solid phase

    Pore

    Interaction Chromatography

    RRT

    1i

    pSEC c

    cKo

    Exclusion∆S

    Flo

    Interstitial space Solid phaseExclusion

    RTH

    RSexp

    RTGexpK

    oIC

    oIC

    oIC

    IC

    m

    sIC c

    cKo

    Flow

    Stationary phase

    Pore

    Interaction∆H

    Exclusion∆S

  • 2015-10-26

    5

    Separation of Copolymers in terms of Chemical Composition

    TLC : Inagaki et al. Macromolecules 1 520 (1968)Belenki et al. Akad.Nauk SSSR 186 857 (1969)

    NPLC: Teramachi et al. Macromolecules 12 992 (1979)

    IC Analysis of Polymers - History

    ( )Glöckner et al. Acta Polym. 33 614 (1982)

    Separation of Homopolymers in terms of Molecular Weight

    TLC : Inagaki & coworkers Polym. J. 1 518 (1970) Otocka & Hellman Macromolecules 3 362 (1970) Belenki et al. J. Chromatogr. 53 3 (1970)

    RPLC: Armstrong & Bui Anal. Chem. 54 706 (1982)TGIC: Chang & coworkers Polymer 37 5747 (1996)

    Lochmüller & coworkers, J. Chromotgr. Sci. 34 69 (1996)

    Separation at Chromatographic Critical Condition (LCCC)

    Belenki & coworkers, Dokl Acad Nauk USSR 231 1147 (1976)Vysokomol. Soedin. A19 657 (1977)

    Temperature & Solvent effect on HPLC retention

    6 5 4

    Column: Nucleosil C18, 5 μm, 100 Å , 250 x 4.5 mmEluent: CH2Cl2/CH3CN mixture at 0.5 mL/min

    Eluent Effect (30.5oC) Temperature Effect (57/43)

    1,2,3

    2 13

    6,5,4 Temperature50oC

    45oC

    40oC

    35oC

    30.5oC

    A26

    0 (a.

    u.)

    6,5,43 2

    1

    59 %

    57.5 %

    57 %

    62 %

    65 %

    CH2Cl2 vol%

    A26

    0 (a.

    u.)

    < Samples >

    165,000429,000312,00022,5001

    MWPS

    0 10 20 30

    32

    1

    54 28oC

    25oC

    20oC

    tR (min)0 10 20 30

    43

    21

    53 %

    55 %

    57 %

    tR (min)

    1,800,0006502,0005

    Chromatographic Critical Conditionto to

    Chang, Adv. Polym. Sci. 163 1 (2003)

  • 2015-10-26

    6

    Three HPLC separation modes for polymersThree HPLC separation modes for polymers

    SEC: Exclusion >> Interaction ~ 0

    LCCC: Interaction ~ ExclusionIC: Exclusion < Interaction

    IC

    LCCC

    SEC

    og M

    VR

    lo

    Vi Vp

    Vm or Vo

    Two Dimensional Liquid Chromatography (2D-LC)

  • 2015-10-26

    7

    Martin’s rule: ,n : degree of polymerization

    Then or

    unito

    polymo GnG

    nunitpolym KK s

    nunitmR VKVV

    2

    3 1400k

    Martin’s Rule

    RPLC of PS

    Retention of polymer molecules changes exponentially with the degree of polymerization.

    In order for a polymer sample with a wide molecular weight distribution to be eluted in a reasonableexperimental period, it is necessary to change K during the elution.

    3.3 3.4 3.5 3.6 3.7

    0

    1

    2

    13.8k

    ln k

    1/T (x1000)

    0

    One way to control the retention is to change Go itself: Solvent gradient interaction chromatography

    Alternative way to control the retention is to change T: Temperature gradient interaction chromatography (TGIC)

    0 400 800 1200 1600-1600

    -1200

    -800

    -400

    Ho (

    kJ/m

    ol)

    MW (kg/mol)

    Kim et al. Anal. Chem. 81 14 (2009)

    Content

    • IntroductionSize Exclusion Chromatography vs. Interaction Chromatography

    • Temperature Gradient Interaction Chromatography• Temperature Gradient Interaction Chromatography

    • Precision Analysis of Molecular Weight Distribution

    • Nonlinear PolymersBranched polymer, Ring polymer

    • Chemical CompositionMixture, Block Copolymer, Functionality

    • Stereoregularity, Isotope

  • 2015-10-26

    8

    Column Temperature Control

    Temperature effect in IC Separation

    Column: Nucleosil C18, 3 μm, 100 Å50 x 4.6 mm

    Eluent: CH2Cl2/CH3CN = 57/43 (v/v)1 0 mL/min

    dT/dt = 8oC/min

    30

    40

    1.0 mL/minPS Samples: 5.1, 15.3, 30.9, 55.2,

    98.9, 200, 648 (kg/mol)

    • In TGIC, retention is controlled by changing the column temperature.

    0 5 10 15

    T ( oC)

    A 260

    (a.u

    .)

    30

    40

    5.1kdT/dt = 2oC/min

    10

    20

    • How does the temperature program affect the retention?

    • Can we predict the polymer retention with given T-program?

    0 5 10 15

    tR (min)

    10

    20

    98.9k

    648k200k

    55.2k30.9k

    15.3k

    Ryu et al. J. Chromatogr. A 1075 145 (2005)

  • 2015-10-26

    9

    mSsmR ccK,KVVV KIC: solute distribution constantVR: retention volumeVm: mobile phase volumeVs: stationary phase volumec : solute concentration in MP

    RS

    RTHexpRTGexpK

    ooo

    Thermodynamics in IC separation

    ooR tttlnkln

    cm: solute concentration in MPcS: solute concentration in SP

    msooR VVKtttk

    RRT

    k: retention factortR: retention time

    tR = VR / flow rateto: solvent elution time

    to = Vm / flow ratemsoo

    VVRS

    RTH

    ,lno mRRT

    • Assuming that Vs and Vm are invariant, the solute retention is a function of the thermodynamic parameters, Ho and So, and temperature, T.

    • In solvent gradient elution, retention is controlled by changing the mobile phase composition (thus changing Ho and So) while in TGIC, retention is controlled by changing the column temperature.

    bTa

    RS

    RTH

    tttk

    oo

    o

    oR

    lnlnln

    At a fixed temperature, T

    Definitionv(T): migration rate of polymer (T dependent)tR : retention time of polymerto : solvent elution time (T independent)T(t): column temperature at time tL: column length : column heating rate (K/min)

    1 bTaexptt oR

    1 bTaexptL

    tLTv

    oR LdtTvRt 0and

  • 2015-10-26

    10

    For a linear T ramp with a gradient , T = T(0) + t.

    dT = dt or dt = dT/ , and

    At t = 0, T = T(0) and at t = tR, T = T(0) + tR.

    RR tTt 10

    LdTTvdtTv RR

    tT

    T

    t

    10

    00

    1 bTaexptLTv

    o

    Since

    LdTbTat

    LRtTT

    0

    0 1exp

    • Using the integral equation above, we can calculate tR numerically if we know a and b, which depend on M.

    o

    tT

    TtdT

    bTaexpR

    0

    0 11

    bTato 1exp

    For a multistep linear T-ramp

    T(t3) = T(0)+1(t2-t1)+ 2(t3-t2)

    T(t2) = T(0) + 1(t2-t1)

    T(0)

    T(t2) T(0) 1(t2 t1)

    time0 t1 t2 t3

    3

    2

    2

    11exp1exp10exp 21

    1tT

    tT

    tT

    tTo RSRTH

    dTRSRTH

    dTRSRTH

    tt

    • We can solve this integral equation numerically to obtain tR.

  • 2015-10-26

    11

    Column: Nucleosil C18, 3m, 100Å, 50 x 4.6 mmEluent: CH2Cl2/CH3CN = 57/43 (v/v), 0.7 mL/min

    Experimental verification

    -600

    -400

    -200

    0

    Ho (

    kJ/m

    ol)

    1

    2

    3

    k

    van’t Hoff plot of polystyrene

    31k

    55k

    99k

    113k

    384k648k0 200 400 600

    -1000

    -800

    Mp (kg/mol)

    -1500

    -1000

    -500

    0

    (J/m

    ol/K

    )

    0.0033 0.0034 0.0035 0.0036-2

    -1

    0

    lnk

    1/T (oC)

    15k

    First, the thermodynamic parameters are obtained by van’t Hoff plot.

    0 200 400 600

    -3000

    -2500

    -2000

    -1500

    Mp (kg/mol)

    So +

    Rln

    5

    6 experiment 5th order fitting 3rd order fitting

    log

    M

    Temperature Gradient Interaction Chromatography (TGIC)

    A26

    0 (a

    .u.) T( oC

    )

    20

    30

    T

    a.u.

    )

    20

    30

    0 3 6 9 12 15

    4

    tR (min)

    15.9 k

    30 9 k

    55.2 k89 k

    200 k 384 k

    648 k

    5 0

    5.5

    6.0

    g M

    calculated tR experimental t

    R

    0 4 8 12 16

    A

    tR (min)

    10

    0 5 10 15 20

    ( oC)

    tR (min)

    A26

    0 (a

    0

    10

    30.9 k

    Column: Nucleosil C18, 3 μm, 100Å, 50 x 4.6 mmEluent: CH2Cl2/CH3CN = 57/43 (v/v) at 0.7 mL/min

    log M = 3.96619 + 0,0871 x tR0 5 10 15 20

    4.0

    4.5

    5.0

    log

    tR (min)

    Ryu & Chang, Anal. Chem. 77 6347 (2005)

  • 2015-10-26

    12

    How polymers migrate inside the column?

    Column: Nucleosil C18, 3 m, 100Å50 x 4.6 mm

    Eluent: CH2Cl2/CH3CN = 57/43 (v/v)Flow rate: 0.7 mL/min

    200 k 384 k

    High MW polymers essentially do not move at all until it reaches a certain temperature.

    Above the temperature, they start to move rapidly.

    T-program: linear log MW vs. tR

    15.9 k

    30.9 k

    55.2 k89 k

    648 k

    solvent

    15.9 k 30.9 k 55.2 k 89 k 200 k 384 k 648 k

    they start to move rapidly. It tells us that most of the separation of high MW polymers occurs in a short distance from the column inlet.

    Advantage of TGIC over solvent gradient elution

    Solvent gradient elution causes significant background signal drift that makes it difficult to use many useful detection methods for polymer analysis such as differential refractometer, light scattering, and viscometry. Temperature change also causes background signal drift, b t it i ll th l t di t d i i i l t tbut it is smaller than solvent gradient and, in principle, temperature can be readjusted at the detector.

    6(a) RI

    LS

    2927252210

    T (oC)

    u.)

    TGIC of PS with RI & LS detectionIsocratic Elution !!

    0 10 20 30

    2

    4

    LogM

    n o

    r R

    (0) (

    a.u

    PS: 32.7k, 74.4k, 127k, 213k, 394k, 683k

    VR (mL)

  • 2015-10-26

    13

    Column: 4 DVB columns, 105, 104, 103 Å, mixed, 250 x 10 mm

    Eluent: THF

    Column: 1 C18 silica column, 100 Å, 250 x 4.5 mm

    Eluent: CH2Cl2/CH3CN (57/43)

    Advantage of TGIC over SEC

    Much lower band broadening and MW sensitive separation !

    IC SEC

    Mw/Mn = 1.005

    Mw/Mn = 1.05

    9 PS standards: 2.0 k,11.6 k, 30.7 k, 53.5 k, 114 k, 208 k, 502 k, 1090 k, 2890 kLee & Chang, Polymer 37 5747 (1996)

    Content

    • IntroductionSize Exclusion Chromatography vs. Interaction Chromatography

    • Temperature Gradient Interaction Chromatography• Temperature Gradient Interaction Chromatography

    • Precision Analysis of Molecular Weight Distribution

    • Nonlinear PolymersBranched polymer, Ring polymer

    • Chemical CompositionMixture, Block Copolymer, Functionality

    • Stereoregularity, Isotope

  • 2015-10-26

    14

    2k50

    Sample: 14 PS standardsColumn: C18 100 Å (Nucleosil, 250 x 2.1 mm)Eluent: CH2Cl2/CH3CN = 57/43(v/v)

    TGIC separation of 14 Polystyrene Standards

    Mw( Mw/Mn by SEC, Mw/Mn by TGIC )

    2890k1530k

    1090k(1.06, 1.007)

    632k403k

    228k(1.05, 1.005)

    151k114k

    81.9k53.5k

    37.3k

    22k(1.03, 1.010)

    11.6k

    A 260

    (a.u

    .)

    10

    20

    30

    40

    T ( oC)

    0 10 20 30 40

    VR (mL)

    0

    10

    Chang et al. Am. Lab. 34 39 (2002)

    MWD of polymer of n = 1,000

    How Narrow is really Narrow?

    wi (

    a.u.

    )

    Mw/Mn1.0011.011.021.05

    400 600 800 1000 1200 1400 1600

    degree of polymerization

  • 2015-10-26

    15

    SEC and TGIC Characterization of Polystyrenes

    3226181555

    T (oC)

    Styrene

    Cyclohexane, 45 oC

    Take out aliquots and terminate with i-propanol at different polymerization times.sec-BuLi

    4.0

    4.5

    5.0

    A26

    0 (a.

    u.)

    logM

    SEC PS1

    PS2

    PS3

    PS4

    TGIC

    6.0x104

    8.0x104

    1.0x105

    M

    A26

    0 (a.

    u.)

    1626s

    2296s

    888s

    238s

    13 14 15 16 17 18 19 202.5

    3.0

    3.5

    A

    tR (min)

    PS7

    PS5

    PS6

    0.0

    2.0x104

    4.0x104

    0 20 40 60 80 100

    A

    tR (min)

    3098s

    4220s

    14345s

    TGIC Poisson distribution

    SEC

    MWD of Polystyrenes by SEC and TGIC

    SEC: 2 x PL mixed C, THF

    TGIC: 1 x Nucleosil C18 (100Å), CH2Cl2/CH3CN 57/43 (v/v)

    Poisson

    238s

    wi (

    a.u.

    )

    888s

    1626s

    2296s

    3098s

    Poissondistribution:

    Poly’ntime

    Mw/Mn (Mw)SEC TGIC Poisson

    238s 1.08 (4.3k) 1.06 (4.0k) 1.02888s 1.04 (21.3k) 1.02 (21.0k) 1.003

    )!1)(1(

    1

    ieiW

    i

    i

    0 200 400 600 800 10000 200 400 600 800 1000

    i

    14345s

    4220s

    1626s 1.05 (35.0k) 1.02 (34.4k) 1.0022296s 1.05 (42.9k) 1.01 (43.4k) 1.0023098s 1.05 (50.3k) 1.008 (50.2k) 1.0024220s 1.05 (56.0 k) 1.006 (55.2k) 1.002

    14345s 1.05 (62.0k) 1.005 (62.0k) 1.002

    Lee et al. Macromolecules 33 5111 (2000)

  • 2015-10-26

    16

    6

    7

    PS standards (RP-TGIC x SEC)

    (100

    Å)

    PS standards: 6 k, 15.3 k 30.9 k, 54 k, 93 k, 170 k, 384 k, 1160 kCalibration curve

    RP-TGIC

    RP-

    TGIC

    t R(m

    in)

    0 50 100 150 200 250 300 350 4003

    4

    5

    Log

    M

    tR (min)

    6

    7

    1D R

    P -T

    GIC

    Nuc

    leos

    il C

    18 1

    50 ×

    4.6

    mm

    C

    H2C

    l 2/C

    H3C

    N =

    57/

    43 (v

    /v)

    0.05

    mL/

    min

    SEC

    SEC tR (min)

    0.8 1.0 1.2 1.43

    4

    5

    6

    Log

    MtR (min)

    N C 02D SECPolyPore (250 ×4.6 mm)THF: 1.65 mL/min, T = 110 oC

    Content

    • IntroductionSize Exclusion Chromatography vs. Interaction Chromatography

    • Temperature Gradient Interaction Chromatography• Temperature Gradient Interaction Chromatography

    • Precision Analysis of Molecular Weight Distribution

    • Nonlinear PolymersBranched polymer, Ring polymer

    • Chemical CompositionMixture, Block Copolymer, Functionality

    • Stereoregularity, Isotope

  • 2015-10-26

    17

    Star-shaped PS by linking with divinyl benzene

    DVB+ + + +

    Highly Branched Species

    Styrene + sec-BuLi PS Li

    A

    260 (

    a.u.

    )

    R90

    &

    n (a

    .u.)

    Light Scattering R.I.SEC TGIC

    1

    0 10 20 30tR (min)

    8 10 12 14 16

    VR (mL)

    R

    Nucleosil C18 250 × 4.6 mm (500 Å)Eluent : CH2Cl2/CH3CN = 57/43 (v/v)Flow rate: 0.5 mL/min

    2 x PL mixed C (300 x 7.5 mm)Eluent: THFFlow rate : 0.8 mL/min

    2 3 4 5 6

    1D RP - TGICNucleosil C18 250 × 4.6 mm (500 Å)Eluent: CH Cl /CH CN = 57/43 (v/v)

    2D-LC of star-shaped PS (RP-TGIC x SEC)

    Eluent: CH2Cl2/CH3CN = 57/43 (v/v)Flow rate: 0.05 mL/min

    RP-

    TGIC

    t R(m

    in)

    2D SECBare Silica 150 × 4.6 mm (100 Å) + 50 × 4.6 mm (300 Å) +150 × 4.6 mm (1000 Å)Eluent : THFFlow rate : 1.8 mL/min at 130 oC

    Im et al. J. Chromatogr. A 1216 4606 (2009)

    SEC tR (min)

  • 2015-10-26

    18

    Synthesis of Exact PB combs

    Nikos Hadjichristidis, Univ. of Athens

    Column: Polypore(300 x 7.5mm, 5μm) 2EAEluent: THF, 0.8mL/min

    SEC & TGIC analysis of comb-shaped Polybutadiene

    Column: Lunasil C18, 150×4.6 (i.d.) mm, 500Å, 7μmEluent : 1,4-dioxane , 0.5mL/min

    580k

    48586kAs-preparedAs-prepared

    12 14 16 18 20

    n,

    R90

    (a.u

    .)

    tE (m in)

    89k

    195k

    9 18 27 36 45

    n,

    R90

    (a.u

    .)

    tE (min)

    36

    39

    42

    45

    T ( oC)

    67k

    165k214k

    48After fractionation

    After fractionation

    12 14 16 18 20

    n,

    R90

    (a.u

    .)

    tE (min)9 18 27 36 45

    n, R

    90 (a

    .u.)

    tE (min)

    36

    39

    42

    45

    T ( oC)

    Ratkanthwar et al. Polym. Chem. 4 5645 (2013)

  • 2015-10-26

    19

    Synthesis of H-shaped Polybutadiene

    s-BuLi LiBenzene

    RT20k (arm)

    Si ClCl

    CH3

    Si

    CH3

    Butadienes-BuLi

    Li

    Titration

    Jimmy Mays, Univ. of Tennessee

    (CH3)2SiCl2Li

    20k (star) 120k (H)HA20B40

    SEC & TGIC characterization of H-shaped PBd

    (b)

    R90

    ,

    n (a

    .u.)

    R90

    , n

    (a.u

    .)

    (a)(a) linear PBd arm (b) star PBd (½ H) (c) H-PBd (HA20B40).

    SEC

    16 18

    R

    14 16 18

    R

    tR

    (c)

    R90

    , n

    (a.u

    .)

    tR(b)

    R90

    ,

    n (a

    .u.)

    R90

    , n

    (a.u

    .)

    (a)

    31 18

    20

    22

    T (o

    C)

    2

    TGIC

    14 16 18

    tR

    0 2 4 6 8 0 10 20 30tR (min)

    0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

    (c)

    tR (min)

    R90

    , n

    (a.u

    .)

    1

    2

    3

    4

    tR (min)

    T (o

    C)

    14

    16

    18

    20

    22

    24

    26

    28

    30

    32

    (1) a+1/2b

    (2)

    a1/2b

    aa

    a

    a

    1/2b

    a

    ab+a a

    a

    ab a ab

    peak 1 peak 2 peak 3

    peak 1 peak 2 peak 3 peak 4

    a+b+a

    (1) a+1/2b

    (2)

    a1/2b

    a

    a1/2b

    aa

    a

    a

    1/2ba

    a

    a

    1/2b

    a

    ab+a

    a

    ab+a a

    a

    aba

    a

    ab a aba ab

    peak 1 peak 2 peak 3

    peak 1 peak 2 peak 3 peak 4

    a+b+a

    Chen et al. Macromolecules,44, 7799 (2011)

  • 2015-10-26

    20

    Styrene + sec-BuLi Li Isoprene + sec-BuLi Li

    PSPI3 Miktoarm Star Copolymer

    Li + SiCl4 (excess) SiCl3 + excess SiCl4

    SiCl3 + Li (excess)

    + side products (fractionation)

    Possible side products: PSPI2SiOR, PSPISi(OR)2, HomoPI, etc.

    J. Mays, Univ. of Tennessee

    C)

    (a.u

    .)

    50

    60F1

    F4

    F5

    F6

    SEC and TGIC Analysis of PSPI3

    high MW PI

    PI

    SEC TGIC unfractionated mother

    F6

    F7

    0 10 20 30 40 50 60 70

    )

    a.u.

    )

    50

    60

    T (o C

    A 260

    ,235

    (

    20

    30

    40F2

    F3

    F6

    F7

    PSPI3

    PSPI2

    PS2PI

    PSPI

    PSPI

    PSn

    (a.u

    .)

    fractionated mother

    F1

    F2

    F3

    F4

    F5

    F5

    0 10 20 30 40 50 60 70

    T (o C

    )

    A 260

    ,235

    (a

    tR (min)

    20

    30

    40

    9 10 11 12 13 14 15

    Unfractionated mother

    Fractionated mother

    vR (mL)

    F4F2

    F7

    Park et al. Macromolecules 36, 5834 (2003)

  • 2015-10-26

    21

    Relative Molar Mass

    1D RP-TGICC18 100 x 2.1mm, 5 μm, 100 ÅEluent: 1,4 Dioxane, 0.015 mL/min

    PIUV 230 nm

    PSPI3 mikto arm star copolymer (RP-TGIC x SEC)

    RP-

    TGIC

    t R(m

    in)

    T ( oC)

    PS2PI

    PSPI

    PSPI2

    PSPI3

    UV 260 nm

    SEC tR (min)2D SECPolyPore 250 ×4.6 mmEluent : THF, 1.7 mL/minTemperature : 110 oC

    PS

    2

    Im et al. J. Chromatogr. A 1216 4606 (2009)

    Content

    • IntroductionSize Exclusion Chromatography vs. Interaction Chromatography

    • Temperature Gradient Interaction Chromatography• Temperature Gradient Interaction Chromatography

    • Precision Analysis of Molecular Weight Distribution

    • Nonlinear PolymersBranched polymer, Ring polymer

    • Chemical CompositionMixture, Block Copolymer, Functionality

    • Stereoregularity, Isotope

  • 2015-10-26

    22

    Synthetic scheme of Ring PS

    LCCC separation of Rings from Linear Precursors

    (1) (CH3)2SiCl2(1) (CH3)2SiCl2extreme dilution

    (2) CH3OH

    Possible byproducts

    J. Roovers, NRC-Canada

    LCCC for linear PSColumn: Nucleosil C18ABEluent: CH2Cl2/CH3CN=57/43Column temperature: 42 oC

    SECColumn: 2 x PL mixed-CEluent: THFColumn temperature: 40 oC

    LCCC separation of Rings from Linear precursors

    Precursor(linear)

    Precursor(linear)Ring

    (a.u

    .)

    86.9k

    73.3k

    48.0k

    .161k

    .198kRing

    ecu so ( ea )

    A26

    0 (a.

    u.)

    Ring

    86.9k

    73.3k

    48.0k

    .161k

    .198k

    14 16 18 20 22

    n

    tR (min) Lee et al. Macromolecules, 33 8129 (2000)

    16.9k

    23.4k

    18.0k

    12.1k

    3 5 7 9 11

    A

    tR (min)

    16.9k

    23.4k

    18.0k

    12.1k

  • 2015-10-26

    23

    SEC

    Fractionation results by SEC & MALDI-TOF MS

    MALDI-TOF MS

    ensi

    ty (a

    .u.)

    : As-received Ring PS : Fractionated Ring PS

    n

    (a.u

    .)

    .198k

    73.3k

    48.0k

    Linear precursor

    16.9k

    Ring PSAs-received

    2000 3000 4000 5000 6000 7000 8000 9000 100002000 3000 4000 5000 6000 7000 8000 9000 100002000 3000 4000 5000 6000 7000 8000 9000 10000

    Inte

    m/z15 16 17 18 19

    tR (min)

    18.0kRing PSFractionated by LCCC

    Si

    CH3

    CH3

    Before and After LCCC Fractionation

    Before After

    DP =38

    4244.7

    4155.7

    4124.4

    4124.5

    4000 4100 4200 4300

    4000 4100 4200 4300

    Si

    CH3

    CH3

    Si

    CH3

    CH3

    OCH3H3COSi

    CH3

    CH3

    OCH3H

    Cho et al. Macromolecules 34 7570 (2001)

  • 2015-10-26

    24

    400

    Property of Purified Ring PS – 4.6 kg/mol

    103Tg

    Segmental RelaxationTime

    3840

    300

    350

    PS ringPS ring (theory)linear PS

    T g (

    K)

    100

    101

    102

    (s

    )

    6.4

    90

    3840

    Ring

    1 10 100 1000

    250

    figure 1

    Mn (kg/mol)2.6 2.7 2.8 2.9

    10-1

    10

    figure

    1000 / T (K-1)

    Santangelo et al. Macromolecules 34 9002 (2001)

    3.7 kg/mol

    Stress Relaxation of Entangled Polymers

    Δ R198▲ Linear □ R161■ Linear

    103

    104

    105

    106

    GNd

    G(t)

    (Pa

    )

    e

    R198

    .u.)

    198,000 g/mol

    10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102

    102

    103

    d

    t (s)

    R161

    n (a

    .

    VR (mL)

    161,000 g/mol

    Kapnistos et al. Nature Mater. 7 997 (2008)

  • 2015-10-26

    25

    Content

    • IntroductionSize Exclusion Chromatography vs. Interaction Chromatography

    • Temperature Gradient Interaction Chromatography• Temperature Gradient Interaction Chromatography

    • Precision Analysis of Molecular Weight Distribution

    • Nonlinear PolymersBranched polymer, Ring polymer

    • Chemical CompositionMixture, Block Copolymer, Functionality

    • Stereoregularity, Isotope

    polyisoprene

    10

    20

    30

    40

    50

    308 k

    78.4 k35.1 k13.3 k

    3.2 k

    T ( oC)

    I ELS

    D(a

    .u.)

    Column: C18 silica, 5 μm, 100 Å poreEluent: CH2Cl2/CH3CN = 80/20(v/v)

    TGIC Separation of Various Polymers

    0 10 20 30 40

    0

    10

    20

    30

    40

    polystyrene

    2890 k1090 k502 k208 k114 k

    53.5 k30.7 k

    11.6 k

    2 k

    T ( oC)

    A 260

    (a.u

    .)

    Column: C18 silica, 5 μm, 100 Å poreEluent: CH2Cl2/CH3CN = 57/43(v/v)

    0 10 20 30 40 50 60 70

    0

    poly(methyl methacrylate)

    0 10 20 30 40 50 600

    20

    40

    60

    1350 k500 k183 k68.4 k

    31.1 k9.4 k

    T ( oC)

    A 235

    (a.u

    .)

    VR (mL)

    Column: C18 silica, 5 μm, 100 Å poreEluent: CH3CN 100%

  • 2015-10-26

    26

    Size Exclusion Chromatography

    Fractionation of Mixture by Simultaneous SEC/IC

    SOLVENT

    FLOW

    Interaction Chromatography

    SEC condition

    FLOW

    tRIC condition

    Temperature Dependence of PS/PMMA RetentionSEC IC

    Column : 3 Nucleosil C18, 5 μm 100Å, 500Å, 1000Å pore

    Eluent : CH2Cl2/CH3CN = 57/43 (v/v)SEC diti f PMMA

    .0℃

    SEC condition for PMMAIC condition for PS

    RS

    RTGK SEC

    oSEC

    o

    SEC expexp

    T i iti

    A23

    5 (a.

    u.)

    10℃

    20℃

    30℃

    40℃

    T- insensitive

    RTH

    RS

    RTGK

    oIC

    oIC

    oIC

    IC expexp

    T- sensitive

    0 5 10 15 20 25

    VR (mL)

    50℃

    5 PMMA standards: 2k ~1,500k 11 PS standards: 1.7k ~2,890k

  • 2015-10-26

    27

    50

    Simultaneous SEC/TGIC fractionation of PS/PMMA mixture

    code PolymerMw

    (kg/mol)Mw/Mn (SEC)

    1 PMMA 1500 1.11

    2 PMMA 501 1.09

    3 PMMA 77 5 1 06

    Column: 3 Nucleosil C18, 5 μm 100Å, 500Å, 1000Å pore

    Eluent: CH2Cl2/CH3CN = 57/43 (v/v)

    PMMA PS

    A

    235 (

    a.u.

    )

    20

    30

    40

    T ( oC)

    3 PMMA 77.5 1.06

    4 PMMA 8.5 1.14

    5 PMMA 2.0 1.10

    a PS 1.7 1.06

    b PS 5.1 1.05

    c PS 11.6 1.03

    d PS 22.0 1.03

    e PS 37.3 1.04

    12

    3

    45

    S

    PMMA PS

    a

    b

    cd e

    f

    g

    h

    i

    jk

    0 10 20 30 40 50 60

    VR (mL)0 10 20 30 40 50 60

    0

    10f PS 68.0 1.03

    g PS 114 1.05

    h PS 208 1.05

    i PS 502 1.04

    j PS 1090 1.08

    k PS 2890 1.09

    Lee & Chang, Macromolecules 29 7294 (1996)

    30

    40

    543

    21

    PIPS

    (a)

    T

    Column : Nucleosil C18, 250 x 4.6 mm1000, 500, 100 Å pore

    Eluent : CH2Cl2/CH3CN = 80/20(v/v)

    Simultaneous SEC/TGIC Fractionation of Polymer Mixtures

    0

    10

    205432

    1

    521

    T ( oC)

    3PIPMMA

    (b)I ELS

    D (a

    .u.)

    TGICSEC

    SEC condition for PS and PMMATGIC condition for PI

    Code PI PS PMMA1 2,700 2,890,000 2,130,0002 10 400 501 500 365 000

    0 10 20 30

    54

    321

    421

    VR (min)

    Lee et al. Macromol. Chem. Phys. 201 320 (2000)

    2 10,400 501,500 365,0003 28,100 140,000 78,7004 56,800 15,300 17,9005 199,000 3,600

  • 2015-10-26

    28

    NP-TGICColumn : Nucleosil bare silica

    100 Å pore, 250 x 2.1 mmEluent : i-octane/THF = 55/45(v/v)

    G C

    NP- and RP-TGIC of PSNP-TGIC

    20

    30

    40

    T( oC)

    A 260

    (a.u

    .)

    RP-TGICColumn : Nucleosil C18 bonded silica

    100 Å pore, 250 x 2.1 mmEluent : CH2Cl2/CH3CN = 57/43(v/v)

    RP-TGIC

    0 2 4 6 8 10 12 14

    30

    35

    40

    0

    10

    VR (mL)PS

    (kg/mol)Mw (kg/mol) Mw/MnNP RP NP RP

    32.768 1 68 1 68 5 1 006 1 008

    0 1 2 3 4 5 6 710

    15

    20

    25A 2

    60(a

    .u.)

    VR (mL)

    T ( oC)

    68.1 68.1 68.5 1.006 1.008112 112.3 113.0 1.005 1.006213 205.7 200.3 1.004 1.004394 395.5 385.4 1.003 1.004683 653.4 648.3 1.006 1.0061530

    Lee et al. J. Chromatogr. A. 910 51 (2001)

    NP-TGICColumn : 3 Nucleosil bare silica

    100, 500, 1000 Å pore, 250 x 4.6 mmEluent : i-octane/THF = 55/45(v/v)

    NP- vs. RP-TGIC: Simultaneous SEC and TGIC of PS and PI

    NP-TGIC

    20

    30

    40

    Solvent

    PS-1

    PI's

    T ( o

    0(a

    .u.)

    RP-TGICColumn : 3 Nucleosil C18 bonded silica

    100, 500, 1000 Å pore, 250 x 4.6 mm)Eluent : CH2Cl2/CH3CN = 80/20 (v/v)

    Samples (kg/mol)PS : 10.3, 32.7, 68.1, 112, 213, 394, 683, 1530PI : 2 7 11 9 53 0 199

    0

    10

    20

    0 10 20 30 40 50

    PS-2

    PS-8PS-7PS-6

    PS-5PS-4PS-3

    oC)A 2

    30

    VR (mL)

    ) 30

    40

    S l t

    RP-TGIC

    PI : 2.7, 11.9, 53.0, 199

    0 10 20 30 40 50

    PS's PI-7

    PI-4

    PI-2

    PI-1A23

    0(a

    .u.

    VR (mL)

    0

    10

    20

    30Solvent

    T( oC)

    Lee et al. J. Chromatogr. A 910 51 (2001)

  • 2015-10-26

    29

    Content

    • IntroductionSize Exclusion Chromatography vs. Interaction Chromatography

    • Temperature Gradient Interaction Chromatography• Temperature Gradient Interaction Chromatography

    • Precision Analysis of Molecular Weight Distribution

    • Nonlinear PolymersBranched polymer, Ring polymer

    • Chemical CompositionMixture, Block Copolymer, Functionality

    • Stereoregularity, Isotope

    MW & Composition Distribution in Block Copolymers

    Effects of MW and composition distributionon the BCP phase behavior.

    Various structures of diblock copolymer

    Body Centered Cubic Hexgonally Packed Cylinder

    MW

    (BCC)

    Lamella(LAM) Double Gyroid

    (DG)

    g y y(HEX)

    CompositionModulated Lamella

    (MLAM)Hexagonally Perforated Lamella

    (HPL)

  • 2015-10-26

    30

    SOLVENT

    FLOW

    Size Exclusion Chromatography

    Fractionation of Homopolymer from BCP

    SEC condition

    Interaction Chromatography

    FLOW

    tRIC condition

    PS b PMMA/PS Mi t

    SEC for PS / IC for PMMA

    SEC IC

    PS

    PSPMMA

    PS PS

    PMMA

    PS-b-PMMA/PS Mixtures SOLVENT

    FLOW

    tR

    Column : Bare Silica (100 22 mm)Eluent : THF/isooctane = 60/40 (v/v)Flow rate : 1 5 mL/min

    Multiple Injection

    Column : Bare Silica (100 22 mm)Eluent : THF/isooctane = 65/35 (v/v)Flow rate : 1 5 mL/min

    NPLC separation of PS-b-PMMA

    Fractionation of homo-PS (Multiple injection)

    A 260

    (a.u

    .)

    40

    60

    80

    T( oC)

    PS Precursor

    PS-b-PMMA

    Flow rate : 1.5 mL/minFlow rate : 1.5 mL/min

    PS-b-PMMA

    PS

    A26

    0 (a.

    u.)

    0 50 100 150 200 250 300 350

    tR (min)

    A

    0

    20

    (10 injections)

    Park et al. J. Am. Chem. Soc 126 8906 (2004)

    0 10 20 30 40 50 60

    A

    tR (min)

  • 2015-10-26

    31

    P

    Fractionation of individual block of BCP

    PS block length

    PI block length

    RPLC

    Composition

    MW

    PS block PI block

    PS block lengthNPLC

    Composition

    NP & RPLC Separation of Low MW PS-b-PI

    PS-b-PI 2.4 kg/mol, 30.4 wt% PIColumn: Diol bonded silica 7.8 mm ID, 100ÅEluent: i-Octane/THF = 97/3 (v/v)

    0.7 mL/min

    PS

    Reflection mode MALDI-TOF MSMatrix: dithranolSalt: AgTFA

    Column: LUNA C18 4.6 mm ID, 100ÅSolvent: CH2Cl2/CH3CN = 53/47 (v/v)

    0.5 mL/min, 20OC

    Matrix: dithranolSalt: AgTFADetection: Reflection mode

    Molar mass (DPPS, DPPI)

    T( OC)

    f6

    f11

    f9

    f7f5

    f3

    f1

    A 260

    (a.u

    .)

    15

    30

    45

    60

    f7

    f5

    f3

    f1

    PS-b-PI

    PS precursor

    Inte

    nsity

    (a.u

    .)

    (9,11)(9,10)

    (7,11)(7,10)

    (5,11)(5,10)

    (3,11)(3,10)

    1784.1 1852.1

    1576.1 1644.2

    1368.2 1436.2

    1160.1 1228.2

    Molar mass(DPPS, DPPI)

    f7

    f5

    f3

    f1

    A 230

    (a.u

    .)

    Inte

    nsity

    (a.u

    .)

    1748.2 (8,11)

    1680.1 (8,10)

    1612.1 (8,9)

    1544.1 (8,8)

    1475.9 (8,7)

    frac 5

    frac 4

    frac 3

    frac 2

    frac 1

    1816 4 (8 12)

    Molar mass (DPPS, DPPI)

    0 20 40 60 80tR (min)

    0

    NPLC ⇒ fractionation of PS blockNear LCCC for PI and IC for PS

    1000 2000 3000 40001000 2000 3000 40001000 2000 3000 40001000 2000 3000 40001000 2000 3000 40001000 2000 3000 40001000 2000 3000 40001000 2000 3000 4000

    f11

    f9

    f7

    2269.72201.6

    2060.4

    m/z

    (13,11)(13,10)

    (11,11)(11,10)1992.4

    RPLC ⇒ fractionation of PI blockNear LCCC for PS and IC for PI

    0 10 20 30 40tR (min)

    Park et al. Macromolecules 35 5974 (2002)

    1400 1600 1800 2000 22001400 1600 1800 2000 22001400 1600 1800 2000 22001400 1600 1800 2000 22001400 1600 1800 2000 22001400 1600 1800 2000 22001400 1600 1800 2000 22001400 1600 1800 2000 2200m/z

    frac 8

    frac 7

    frac 6

    1952.3 (8,14)

    1884.1 (8,13)

    1816.4 (8,12)

  • 2015-10-26

    32

    2D NP-TGIC & RPLC Separation set-up

    Im et al. Anal. Chem. 79, 1067 (2007 )

    PS-b-PI (NP-TGIC x RPLC)

    Diol bonded silica 250×7.8 mm Eluent : isooctane/THF = 97/3 (v/v) Flow rate : 0.05 mL/min

    C18 silica, 150×4.6 mmEluent : CH2Cl2/CH3CN=53/47 (v/v)Flow rate : 1.5 mL/min

    Im et al. Anal. Chem. 79, 1067 (2007)

  • 2015-10-26

    33

    Fractionation of High MW PS-b-PI

    NPLC fractionationPS-b-PI 12k/24k (21k/12k)Column :Diol, 100Å (4.6mm ID) Eluent: isooctane/THF (75/25, 70/30)T = 5oC (16oC)

    RPLC fractionationPS-b-PI 12k/24k (21k/12k)Column :C18, 100Å (4.6mm ID)Eluent: CH2Cl2/ACN (80/20, 74/26)T = 2oC (3oC)

    A 235

    (a.u

    .)

    A26

    0(a.

    u.)

    0 5 10 15 20 25 30tR(m in)

    0 5 10 15 20 25 30 35 40

    tR(m in )Fractionation according to PI block Fractionation according to PS block

    100 nm100 nm 100 nm 100 nm 100 nm

    SLIHSHIL MotherSMIMSMIH

    16

    18

    20

    22

    24 LAM HPL G HEX ODT mean-field

    N

    SLIHSMIH SHIH

    SLIM SMIM SHIM

    PI block leR

    PLC

    0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.7410

    12

    14

    fPI

    SLIL SMILSHIL

    engthC

    PS block lengthNPLC

    Park et al. Macromolecules 36 4662 (2003)

  • 2015-10-26

    34

    PS-b-PMMA at Air/Water Interface - surface micelles

    Top viewSide view

    Structure of surface micelles of amphiphilic block copolymers at PS

    PSPMMA PMMA

    Water

    Homo-polymer free PS-b-PMMA mother:

    block copolymers at air/water interface

    PS

    PMMA

    Water

    53.1k - 19.7k, wtPS = 0.73, Mw/Mn = 1.05

    3 x 3 m

    Chung et al. Macromolecules 38 6122 (2005)

    Morphology of PS-b-PMMA Surface Micelles

    ML MM MH

    SH

    PS-b-PMMA mother: 72.8 kg/mol wtPS = 0.73 M /M = 1 05 (SEC)

    SM

    67 7k/0 76/1 01

    72.3k/0.77/1.01

    69 5k/0 72/1 01

    77.6k/0.74/1.01

    71.3k/0.70/1.01

    79.5k/0.71/1.01

    Fra

    ctio

    nate

    d b

    y R

    Mw/Mn 1.05 (SEC)

    SHML

    SMMM

    PS b

    lock

    RPL SMML

    SHMM SHMH

    SMMH

    63.1k/0.73/1.01

    SL

    67.7k/0.76/1.01

    64.8k/0.69/1.01

    69.5k/0.72/1.01

    65.3k/0.67/1.01

    71.3k/0.70/1.01

    3 x 3 mFractionated by NPLC

    RPLC

    k length

    LC

    PMMA block length

    NPLC

    SLML SLMM SLMH

    Chung et al. Macromolecules 38 6122 (2005)

  • 2015-10-26

    35

    Content

    • IntroductionSize Exclusion Chromatography vs. Interaction Chromatography

    • Temperature Gradient Interaction Chromatography• Temperature Gradient Interaction Chromatography

    • Precision Analysis of Molecular Weight Distribution

    • Nonlinear PolymersBranched polymer, Ring polymer

    • Chemical CompositionMixture, Block Copolymer, Functionality

    • Stereoregularity, Isotope

    OH end-functional PSSEC2 x PL-mixed BEluent: THFFlow rate: 1.5 mL/min

    Styrene + sec-BuLi PS Li

    (1) Ethyleneoxide

    (2) i-propanoli-propanol

    PS,PS-OH 10K

    PS,PS-OH 100KA26

    0 (a.

    u.)

    PS Li

    H CH2CH2OH

    10 11 12 13 14 15 16

    PS,PS-OH 500K

    VR (mL)

  • 2015-10-26

    36

    PS-OH 10k

    PS 10k

    T( OC

    A 260

    (a.u

    .)

    20

    30

    40

    50

    NP-TGIC

    Column: Nucleosil bare silica100 Å 250 2 1

    NP- vs. RP-TGIC: Separation by a single -OH end group

    NP-TGIC

    0 1 2 3 4 5 6 7

    PS-OH 100kPS 100k

    C)A

    VR (mL)

    0

    10

    20

    30

    35

    100 Å pore, 250 x 2.1 mmEluent: i-octane/THF = 55/45(v/v)

    RP-TGICRP-TGIC

    0 1 2 3 4 5 6

    PS, PS-OH 100k

    PS, PS-OH 10k

    T( OC)

    A 260

    (a.u

    .)

    VR (mL)

    5

    10

    15

    20

    25

    Lee et al. J. Chromatogr. A 910 51 (2001)

    Column: Nucleosil C18 bonded silica100 Å pore, 250 x 2.1 mm

    Eluent: CH2Cl2/CH3CN = 57/43(v/v)

    1D NPLCBare silica 50 × 2.1 mm (100 Å)Eluent : isooctane/THF = 55/45 (v/v)Temperature : 34.2 oCFlow rate : 0.015 mL/min

    End group analysis by 2D-LC

    PS 2k, 10k, 110kPS-OH 2k, 10k, 110k

    PS OH

    NPL

    C t R

    (min

    )

    PS-OH

    PSPS

    PS-OHPS-OH

    2D SECPolyPore 250 ×4.6 mmEluent : THFTemperature : 110 oCFlow rate : 1.7 mL/min

    Switching valve loop : 30 μL

    SEC tR (min)

    2 k110 k 10 k

    Im et al. J. Chromatogr. A 1216 4606 (2009)

    PS PS

  • 2015-10-26

    37

    Styrene + sec-BuLi PS Li

    Synthetic Scheme of Branched PS with CDMSS

    slow

    PS Li

    CDMSS (less than 1 eq.)

    fast

    branching point

    Exp 1 : CDMSS/sec-BuLi = 0.87 (BS 87)

    Exp 2 : CDMSS/sec-BuLi = 0.65 (BS 65)

    Exp 3 : CDMSS/sec-BuLi = 0.45 (BS 45)

    K. Lee, Kumho Petrochemical Ltd.

    Highly branched species

    SEC and TGIC separation of branched PS

    BS 87: CDMSS/sec-BuLi = 0.87

    BS 65: CDMSS/sec-BuLi = 0.65

    BS 45: CDMSS/sec-BuLi = 0.45

    SEC TGIC

    (a.u

    .)

    Precursor2.1k

    BS8715.2k

    BS658.3k BS45

    4.7k

    PS 2.1k CDMSS/sec-BuLi = 0.45 CDMSS/sec-BuLi = 0.65 CDMSS/sec-BuLi = 0.87

    T (

    a.u.

    ) 25

    30

    35

    40

    45

    12 arms!

    PL mixed Cⅹ2Eluent : THFFlow rate : 0.8 mL/min

    Luna C18, 100 Å, 5 mm, 250ⅹ4.6 mmEluent : CH2Cl2/CH3CN = 55/45 (v/v)Flow rate : 0.6 mL/min

    13 14 15 16 17

    n

    V R (m L)0 20 40 60 80 100

    ( OC)

    A26

    0 (a

    tR (m in)

    0

    5

    10

    15

    20

    Im et al. Anal. Chem. 76 2638 (2004)

  • 2015-10-26

    38

    Star-shaped PS with arms of broad MWD

    RP-TGICKromasil C18, 150×4.6 mm (100Å)Eluent : CH2Cl2/CH3CN = 53/47 (v/v)

    LCCC ( T = 53.3oC)Kromasil C18, 150 × 4.6 mm, 5 m, 100 ÅEluent : CH2Cl2/CH3CN = 53/47 (v/v) Flow rate : 0.5 mL/min

    BS 65: CDMSS/n-BuLi = 0.65

    BS 49: CDMSS/n-BuLi = 0.45

    T ( oC

    0 (a.

    u.)

    30

    40

    50

    60

    BS65

    Eluent : CH2Cl2/CH3CN 53/47 (v/v) Flow rate : 0.5 mL/min

    BS49

    PS precursor

    A26

    0(a

    .u.)

    0 10 20 30 40 50 60 70

    C)

    A26

    0

    tR (min)

    10

    20BS49

    PS precursor BS65

    2 4 6 8tR (min)

    Im et al. J. Chromatogr. A 1103 235 (2006)

    Kromasil C18, 150 × 4.6 mm, 100 ÅEluent : CH2Cl2/CH3CN = 53/47 (v/v)

    2-D LC (TGIC x LCCC) analysis of MW & branching

    2

    34

    RP-

    TGIC

    VR

    (mL

    ) Molecular W

    eight

    1

    Im et al. J. Chromatogr. A 1103 235 (2006)

    LCCC VR (mL)

    t

    Branch number

  • 2015-10-26

    39

    Content

    • IntroductionSize Exclusion Chromatography vs. Interaction Chromatography

    • Temperature Gradient Interaction Chromatography• Temperature Gradient Interaction Chromatography

    • Precision Analysis of Molecular Weight Distribution

    • Nonlinear PolymersBranched polymer, Ring polymer

    • Chemical CompositionMixture, Block Copolymer, Functionality

    • Stereoregularity, Isotope

    SEC vs. TGIC of the three different tactic PEMAs

    SECColumn: PL-mixed C 2Eluent: THFFl t 0 8 L/ i

    RPLCColumn: LUNA C18 4.6 mm ID, 100ÅSolvent: CH3CN/CH2Cl2 = 70/30 (v/v)Fl t 0 45 L/ i

    1530k 384k 113k 31k 11.6k 3250 580

    h- PEMA

    s- PEMA

    PS stds

    A 235

    (a.u

    .)

    Flow rate: 0.8mL/min

    f3f4

    f2f1

    i-PEMAf3

    f2

    f2f1

    h-PEMA

    s-PEMA

    A23

    5 (a.

    u.)

    40

    48

    T( OC)

    Flow rate: 0.45 mL/min

    8 12 16 20

    i- PEMA

    VR (mL)0 10 20 30 40 50

    tR (min)

    32

    T. Kitayama, Osaka Univ.

  • 2015-10-26

    40

    MALDI-TOF MS Spectra of mother PEMAs & Fractions

    MALDI-TOF (Reflection mode)Matrix: IAA (indoleacrylic acid)Solvent: THFSalt: NaI

    s - f 2

    s - f 1

    s - P E M A

    Inte

    nsity

    (a.u

    .)

    i - f2

    i - f1

    i - PEMA

    Inte

    nsity

    (a.u

    .)

    h - f 2

    h - f 1

    h - P E M A

    Inte

    nsity

    (a.u

    .)

    4000 8000 12000 16000 20000

    s - f 3

    m / z6000 9000 12000 15000

    i - f3

    m/z4000 8000 12000 16000 20000

    h - f 4

    h - f 3

    m / z

    SEC vs. TGIC of the three different tactic PEMAs

    SECColumn: PL-mixed C 2Eluent: THFFl t 0 8 L/ i

    RPLCColumn: LUNA C18 4.6 mm ID, 100ÅSolvent: CH3CN/CH2Cl2 = 70/30 (v/v)Fl t 0 45 L/ i

    1530k 384k 113k 31k 11.6k 3250 580

    h- PEMA

    s- PEMA

    PS stds

    A 235

    (a.u

    .) f3f4

    f2f1

    h-f3s-f2

    i-PEMAf3

    f2

    f2f1

    h-PEMA

    s-PEMA

    A23

    5 (a.

    u.)

    40

    48

    T( OC)

    Flow rate: 0.8mL/min Flow rate: 0.45 mL/min

    8 12 16 20

    i- PEMA

    VR (mL)0 10 20 30 40 50

    h-f4s-f3

    i-f3h-f2

    tR (min)

    32

    Cho et al. Anal. Chem. 74 1928 (2002)

  • 2015-10-26

    41

    4.4

    PS stds s-PEMAh1 PEMA

    SEC calibration curve of stereoregular PEMA

    Column: PL mixed C 2Eluent: THFFlow rate: 0.8 mL/min

    3 8

    4.0

    4.2

    h1-PEMA h2-PEMA i-PEMA

    log

    M

    17.0 17.5 18.0 18.5 19.0 19.5 20.0

    3.6

    3.8

    tR (min)

    Cho et al. Macromolecules 35 5974 (2002)

    Content

    • IntroductionSize Exclusion Chromatography vs. Interaction Chromatography

    • Temperature Gradient Interaction Chromatography• Temperature Gradient Interaction Chromatography

    • Precision Analysis of Molecular Weight Distribution

    • Nonlinear PolymersBranched polymer, Ring polymer

    • Chemical CompositionMixture, Block Copolymer, Functionality

    • Stereoregularity, Isotope

  • 2015-10-26

    42

    PS Comb - Synthetic Scheme

    h-styrene + sec-BuLih-PS bar (200k)

    Bu

    chloromethylation

    Cl Cl Cld-styrene + sec-BuLi

    d-PS arm (85k)

    Bu

    d-PS d-PS d-PS

    C.M. Fernyhough, Univ. of Sheffield

    PS Comb Mw/Mn = 595 k / 540 k

    SEC & Light scattering detection

    A b h b

    SECPL mixed C×2, THFLight scattering detection (Viscotek TDA 300)

    83 k

    374 k

    186 k

    BackboneMw/Mn = 200 k / 190 k

    n

    & R

    90 (a

    .u.)

    Average branch number

    = 4.2 branchn

    backbonencombnnbr M

    MMN

    ,

    ,,

    0.6

    0.8

    1.0

    ght F

    ract

    ion

    6 8 10 12 14

    160 kBranchesMw/Mn = 85 k / 83 k

    VR (mL)

    4.0x105 6.0x105 8.0x105 1.0x106 1.2x106 1.4x106

    0.0

    0.2

    0.4

    Molar Mass (g/mol)

    Cum

    ulat

    ive

    Wei

    g

  • 2015-10-26

    43

    Column: Bare, 7 μm , 500 Å, 250×2.1 mm Eluent: Hexane/THF = 57/43 (v/v)Flow rate: 0.3 mL/min

    NP-TGIC Chromatogram of PS Comb

    1.2x106 50321414

    T (oC)

    6.0x105

    8.0x105

    1.0x106

    0 &

    n (a

    .u.)

    Molar m

    ass (g/

    Chambon et al. Macromolecules 41 5869 (2008)

    0 20 40 60 80 100

    2.0x105

    4.0x105

    R90

    Elution time(min)

    /mol)

    0 4

    0.6

    0.8

    1.0

    ve W

    eigh

    t Fra

    ctio

    n

    Assumption - Backbone: 200 kBranch: 85 k

    NP-TGIC Analysis of PS comb

    3-branch

    2.0x105 4.0x105 6.0x105 8.0x105 1.0x106 1.2x106

    0.0

    0.2

    0.4

    Cum

    ulat

    iv

    Molar Mass (g/mol)

    15

    20

    Wt fraction of 3-branch

    PS Comb

    1 2 3 4 5 6 7 8 9 100

    5

    10%

    Arm number

    PS Comb

    From average MW 4.1

    From distribution 4.0

    nbrN

  • 2015-10-26

    44

    Column: C18, 7 μm , 500 Å, 150×4.6 mm Eluent: CH2Cl2/CH3CN=57/43 (v/v)Flow rate : 0.5 mL/min

    RP-TGIC Analysis of PS comb

    342624 T (oC)

    24

    107

    342624

    & A

    260 (

    a.u.

    )

    24

    LogM

    1.2x106 50321414

    T (oC)

    0 5 10 15 20106

    R90

    &

    tR (min)0 20 40 60 80 100

    2.0x105

    4.0x105

    6.0x105

    8.0x105

    1.0x106

    R90

    &

    n (a

    .u.)

    Elution time(min)

    Molar m

    ass (g/mol)

    SEC NP-TGIC RP-TGIC

    Column: PL mixed C×2Eluent: THFFlow rate: 0.8 mL/min

    Bare silica 250×2.1 mm, 5 μm, 500 ÅEluent : i-octane/THF=57/43 (v/v)Flow rate: 0.3 mL/min

    Kromasil C18 150×4.6 mm, 5 μm, 100 ÅCH2Cl2/CH3CN=57/43 (v/v) Flow rate: 0.5 mL/min

    Isotope effect in IC separation

    60 (a

    .u.)

    60 k10 k

    h-PS

    20

    25

    30

    35

    T ( oC)

    260 (

    a.u.

    )

    60 k

    10 k

    h-PS

    16

    18

    20

    22

    T ( oC)

    60 k

    10 k

    A26

    0 (a.

    u.)

    10 12 14 16 18tR (min)

    A26

    d-PS

    0 3 6 9 12 15 18 215

    10

    15

    A2

    tR (min)

    d-PS

    0 5 10 15 20

    10

    12

    1460 k

    d-PS

    tR (min)

    h-PS

  • 2015-10-26

    45

    Nucleosil C18 150 × 4.6 mm (500 Å)Eluent: CH2Cl2/CH3CN = 57/43 (v/v)Flow rate: 0.05 mL/min 34

    0 0 0 2 0 4 0 6 0 8 1 0 1 2 1 4 1 60 0 0 2 0 4 0 6 0 8 1 0 1 2 1 4 1 6

    A26

    0(a

    .u.)

    RP-TGIC× SEC of comb PS

    A260TG

    IC t R

    (min

    )

    T ( oC)

    26

    24

    PolyPore 250 ×4.6 mmEluent : THF, 1.7 mL/minTemperature : 110 oC

    RP-

    T

    SEC tR (min)

    24

    R90 & A260

    40F6 F8F3F1

    RP-TGIC & NP-TGIC analysis of PS comb

    RP-TGIC

    T (oC)32175 5

    0 2 4 6 8 10 12 14 16 18 20

    0

    20

    R90

    & A

    260 (

    a.u.

    )

    tR (min)

    T ( oC)

    T (oC)

    F1

    F6

    F5

    F4

    F3

    F2

    A26

    0 (a.

    u.)

    Mother

    R ( )

    0 5 10 15 20106

    107

    342624T (oC)

    R90

    & A

    260 (

    a.u.

    )

    tR (min)

    24

    LogM

    0 10 20 30 40 50

    F8

    F6

    F7

    tR (min)

    NP-TGIC

  • 2015-10-26

    46

    2D NP2D NP--TGIC x RPTGIC x RP--SGIC setSGIC set--upup

    Things need to be considered:

    1. Eluent compatibilty: NPLC first, trapping and eluent exchange

    Switching valve conditionSwitching valve conditionPre-column: Diol, 50×4.6 mm, 100 Å, 7 μm

    Diol, 50×4.6 mm, 100 Å, 7 μmLoop : 100 μl

    2. Speed: Solvent gradient elution of 2nd - RPLC

    CH3CN (with 4% iso-octane)

    Initial state

    …Time (min)B

    con

    tent

    (%)

    Re-stabilization timeSeparation time

    5min 3min 5min 3min 5min 3min

    32

    A 260

    (a.u

    .)

    NP-TGICNucleosil bare silica, 50 × 4.6 mm, 500 ÅEluent: THF/iso-octane = 48/52 (v/v)Flow rate: 0.05 mL/min

    RPLCNucleosil C18 150 ×4.6 mm (500Å)Eluent: CH2Cl2/CH3CN = 57/43 (v/v) 59/41 (v/v)Flow rate: 1.5 mL/min

    NP-TGIC x RPLC of comb PS

    T ( oC)

    min

    )

    Triple backbone !

    17

    5

    5A260(a.u.)N

    P-TG

    IC t R

    (m

    RPLC tR (min) Ahn et al. Anal. Chem. 83 4237 (2011)

  • 2015-10-26

    47

    Column: Polypore (300 x 7.5mm, 5μm) 2EAEluent: THF at 0.8mL/minDetector: Viscotek (Triple detector)

    SEC analysis of fractionated hPS-b-dPS

    n,

    A26

    0, R

    90 (a

    .u.)

    PrecursorhPS 18k

    hPS-b-dPS18k-17k

    hPS-b-dPS18k-38k

    10 12 14 16 18 20

    tE (min)

    hPS-b-dPS18k-80k

    Lee et al. Macromolecules. 46 9114 (2013)

    Elution of hPS-b-dPS at CC of hPS

    Lunasil C18, 150×4.6 mm, 100Å, 5µm; CH2Cl2/CH3CN = 57/43 (v/v), 0.5 mL/min

    .u.)

    Temp : 40˚ChPS 11khPS 27khPS 48k

    u.) 5

    6

    7

    Precursor hPS 18k

    hPS-b-dPS

    2 3 4 5

    A26

    0 (a.

    tE (min)

    dPS - Mp (g/mol)

    Expected M Measured Mp( )

    2.0 2.5 3.0 3.5 4.0 4.5 5.0

    A26

    0 (a.

    u

    tE (m in)

    2

    3

    4

    LogM

    18k-17k

    hPS-b-dPS18k-38k

    hPS-b-dPS18k-80k

    Calibration with homo-dPS Expected Mp p(error)

    Precursor - -

    hPS-b-dPS18k-17k 16.9 k 10.1 k (40.2%)

    hPS-b-dPS18k-38k 37.7 k 33.5 k (11.4%)

    hPS-b-dPS18k-80k 80.2 k 74.8 k (6.7%)

    At CC of hPS, hPS-b-dPS elutes in the decreasing order of MW while they elute before the solvent peak (SEC region).

    MW of dPS block (homo-dPS calibration) deviates significantly from the true value, particularly for low MW dPS block.

  • 2015-10-26

    48

    Elution of hPS-b-dPS at CC of dPS.)

    Temp : 33.6˚CdPS 6kdPS 25kdPS 46k

    )

    4

    5

    Precursor hPS 18k

    hPS-b-dPS

    Lunasil C18, 150×4.6 mm, 100Å, 5µm; CH2Cl2/CH3CN = 57/43 (v/v), 0.5 mL/min

    3.0 3.5 4.0 4.5 5.0 5.5 6.0

    tE (min)

    A26

    0(a.u

    .

    3 4 5 6

    A26

    0(a.u

    .)

    tE (min)2

    3

    LogM18k-17k

    hPS-b-dPS18k-38k

    hPS-b-dPS18k-80k

    hPS - Mp (g/mol)Calibration with homo-hPS

    Expected MpMeasured Mp

    (error)

    Precursor 17.8k -

    hPS-b-dPS18k-17k 17.8k 15.6k (12.4%)

    hPS-b-dPS18k-38k 17.8k 14.0k (21.3%)

    hPS-b-dPS18k-80k 17.8k 8.2k (53.9%)

    At CC of dPS, hPS-b-dPS elutes in the decreasing order of MW while they elute after the solvent peak (IC region).

    Again, the MW of hPS block (homo hPS calibration) deviates significantly from the true value, particularly at high MW dPS block.

    1st D (RP-TGIC)Lunasil C18, 150×4.6 (i.d.) mm, 100 Å, 5 μmCH2Cl2/CH3CN (57/43) at 0.05mL/min

    18k-160k-18k(Coupled 18k-80k)

    18k-76k-18k(Coupled 18k-38k)

    Solvent peak

    2D-LC (RP-TGIC x RP-LCCC) of hPS-b-dPS

    2nd D (RP-LCCC)Lunasil C18, 150×4.6 (i.d.) mm, 100 Å, 5 μm CH2Cl2/CH3CN (57/43) at 1.5 mL/min, 33.6oC

    RP-

    TGIC

    tE

    (min

    )

    18k-17k

    18k-80k

    18k-38k

    18k-34k-18k(Coupled 18k-17k)

    36k(Coupled 18k)

    As expected, hPS is retained more strongly than dPS in the RPLC separation

    RP -LCCC tE (min)

    18k

    strongly than dPS in the RPLC separation.

    At CC of dPS, hPS-b-dPS elutes in the order of decreasing MW while they elute after the solvent peak (IC region).

    Full resolution of 3 hPS-b-dPS and a number of byproducts is realized by 2D-LC.

    Lee et al. Macromolecules. 46 9114 (2013)

  • 2015-10-26

    49

    Summary

    Size Exclusion Chromatography Interaction Chromatography

    w

    Interstitial space Solid phase

    Pore

    Interstitial space Solid phase

    PoreExclusion

    ∆S

    LCCCMW

    vs.

    SECExclusion >> Interaction ~ 0

    Exclusion∆S

    Flow

    Stationary phase

    Interaction∆H

    VV

    SECIC

    Elution volume

    log

    M c us o te act o 0ICExclusion < Interaction

    LCCCInteraction ~ Exclusion

    Chang, J. Polym. Sci. B 43 1591 (2005)

    PS 2.1k CDMSS/sec-BuLi = 0.45 CDMSS/sec-BuLi = 0.65 CDMSS/sec-BuLi = 0.87

    T ( OC)

    A26

    0 (a.

    u.)

    15

    20

    25

    30

    35

    40

    45

    Summary

    Mw( Mw/Mn by SEC, Mw/Mn by TGIC )

    1530k

    1090k(1.06, 1.007)

    632k403k

    228k(1.05, 1.005)

    151k114k

    81 9k53.5k

    22k(1.03, 1.010)

    11.6k

    2k

    260 (

    a.u.

    )

    20

    30

    40

    50

    T ( oC)

    High Resolution Branched Polymer

    0 20 40 60 80 100

    A

    tR (m in)

    0

    5

    10

    15

    0 10 20 30 40

    2890k81.9k37.3kA2

    VR (mL)

    0

    10

    )

    Linearprecursor

    Ring

    40

    50

    k

    j

    ia

    S

    3 5 7 9 11 13

    A26

    0 (a.

    u.)

    tR (min)

    Cyclic PolymerMixture

    Block copolymer

    0

    10

    20

    30

    0 10 20 30 40 50 60

    T ( oC)

    i

    h

    g

    fedc

    b

    54

    32

    1

    A23

    5 (a.

    u.)

    VR (mL)

  • 2015-10-26

    50

    Multivariate distribution in synthetic polymersMol. Wt., Composition, Branching, Functionality, etc.

    2D-LC helps! Even isotope effect can help!

    Summary

    32

    A 260

    (a.u

    .)

    T ( oC)

    17

    5

    5A260(a.u.)

    PohangChina Japan

    N. Korea

    S. Korea

  • 2015-10-26

    51

    ChemistryPAL

    Library

    Pohang University of Science and Technology (POSTECH)

    POSTECH was ranked 1st in Times Higher Education 100 under 50 Rankings for last 3 consecutive years, 2012-2014.

    4th generation light source (x-ray free electron laser) is under construction to be operational in 2016.