poisson vertex algebras in the theory of hamiltonian equationsdesole/talks/talks_files/...outline 1...

109
Poisson vertex algebras in the theory of Hamiltonian equations Alberto De Sole Universit ` a di Roma “La Sapienza” Cortona (Italy), June 15, 2009 Joint work with V. Kac & A. Barakat slides avalable at: www.mat.uniroma1.it/desole A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 1 / 26

Upload: others

Post on 26-Jul-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Poisson vertex algebras in the theoryof Hamiltonian equations

Alberto De Sole

Universita di Roma “La Sapienza”

Cortona (Italy), June 15, 2009

Joint work with V. Kac & A. Barakat

slides avalable at:

www.mat.uniroma1.it/∼desole

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 1 / 26

Page 2: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Outline

1 Poisson vertex algebrasDefinition of a PVAExamples: GFZ, Virasoro, Currents

2 Hamiltonian equations associated to a PVAHamiltonian operators, Hamiltonian eq’s, integrals of motionLenard scheme for pair of PVA’sExamples: KdV, HD, CNW, CNW of HD type

3 Symplectic operators (and Dirac structures)Definition of a symplectic operators, Hamiltonian equations andLenard schemeExamples: KN equation and NLS system

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 2 / 26

Page 3: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Outline

1 Poisson vertex algebras

2 Hamiltonian equations associated to a PVA

3 Symplectic operators (and Dirac structures)

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 3 / 26

Page 4: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Definition A Lie conformal algebra R is a vector space with anendomorphism ∂ ∈ End R and a Lie–bracket

a⊗ b 7→ {aλb} ∈ R[λ]

satisying the following axioms:sesquilinearity

∂{aλb} = {∂aλb}+ {aλ∂b}{∂aλb} = − λ{aλb}

skew-simmetry{bλa} = −{a −λ−∂b}

Jacobi identity

{aλ{bµc}} − {bµ{aλc}} = {{aλb}λ+µc}

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 4 / 26

Page 5: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Definition A differential Lie conformal algebra R is a vector spacewith an endomorphism ∂ ∈ End R and a Lie–bracket

a⊗ b 7→ {aλb} ∈ R[λ]

satisying the following axioms:Leibniz rule

∂{aλb} = {∂aλb}+ {aλ∂b}{∂aλb} = − λ{aλb}

skew-simmetry{bλa} = −{a −λ−∂b}

Jacobi identity

{aλ{bµc}} − {bµ{aλc}} = {{aλb}λ+µc}

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 4 / 26

Page 6: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Definition (Kac ∼ 1995) A Lie conformal algebra R is a vector spacewith an endomorphism ∂ ∈ End R and a λ–bracket

a⊗ b 7→ {aλb} ∈ R[λ]

satisying the following axioms:sesquilinearity

∂{aλb} = {∂aλb}+ {aλ∂b}{∂aλb} = − λ{aλb}

skew-simmetry{bλa} = −{a −λ−∂b}

Jacobi identity

{aλ{bµc}} − {bµ{aλc}} = {{aλb}λ+µc}

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 4 / 26

Page 7: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Definition (Kac ∼ 1995) A Lie conformal algebra R is a vector spacewith an endomorphism ∂ ∈ End R and a λ–bracket

a⊗ b 7→ {aλb} ∈ R[λ]

satisying the following axioms:sesquilinearity

∂{aλb} = {∂aλb}+ {aλ∂b}{∂aλb} = − λ{aλb}

skew-simmetry{bλa} = −{a −λ−∂b}

Jacobi identity

{aλ{bµc}} − {bµ{aλc}} = {{aλb}λ+µc}

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 4 / 26

Page 8: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Definition (Kac ∼ 1995) A Lie conformalalgebra R is a vector space with anendomorphism ∂ ∈ End R and a λ–bracket

a⊗ b 7→ {aλb} ∈ R[λ]

satisying the following axioms:sesquilinearity

∂{aλb} = {∂aλb}+ {aλ∂b}{∂aλb} = −λ{aλb}

skew-simmetry

{bλa} = −{a−λ−∂b}

Jacobi identity

{aλ{bµc}} − {bµ{aλc}} = {{aλb}λ+µc}

{aλb} =N∑

n=0

λnanb

{a−λ−∂b}

=N∑

n=0

(−1)n(λ+ ∂)n(anb)

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 5 / 26

Page 9: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Lie conformal algebra

A C[∂]-module R with aλ-bracket R ⊗ R → R[λ]satisfying

sesquilinearity

∂{aλb} = {∂aλb}+ {aλ∂b}{∂aλb} = −λ{aλb}

skew-simmetry

{bλa} = −{a−λ−∂b}

Jacobi identity

{aλ{bµc}} − {bµ{aλc}}= {{aλb}λ+µc}

Poisson vertex algebras

Lie conformalalgebra

///o/o/oPoisson vertex

algebra

Lie algebra

conformal

analogue

OO

///o/o/o/o/o Poisson algebra

OO

.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 6 / 26

Page 10: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Lie conformal algebra

A C[∂]-module R with aλ-bracket R ⊗ R → R[λ]satisfying

sesquilinearity

∂{aλb} = {∂aλb}+ {aλ∂b}{∂aλb} = −λ{aλb}

skew-simmetry

{bλa} = −{a−λ−∂b}

Jacobi identity

{aλ{bµc}} − {bµ{aλc}}= {{aλb}λ+µc}

{fλ+∂g}→h

=NX

n=0

(fng)(λ+ ∂)nh

Definition A Poisson vertex algebra V is avector space with two algebraic structures:

a commutative associative differentialproduct, f ,g 7→ f · g ∈ V,a Lie conformal algebra bracketf ,g 7→ {f λg} ∈ V[λ];they satisfy the (left) Leibniz rule:

{f λgh} = {f λg}h + g{f λh} .

.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 7 / 26

Page 11: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Lie conformal algebra

A C[∂]-module R with aλ-bracket R ⊗ R → R[λ]satisfying

sesquilinearity

∂{aλb} = {∂aλb}+ {aλ∂b}{∂aλb} = −λ{aλb}

skew-simmetry

{bλa} = −{a−λ−∂b}

Jacobi identity

{aλ{bµc}} − {bµ{aλc}}= {{aλb}λ+µc}

{fλ+∂g}→h

=NX

n=0

(fng)(λ+ ∂)nh

Definition A Poisson vertex algebra V is avector space with two algebraic structures:

a commutative associative differentialproduct, f ,g 7→ f · g ∈ V,a Lie conformal algebra bracketf ,g 7→ {f λg} ∈ V[λ];they satisfy the (left) Leibniz rule:

{f λgh} = {f λg}h + g{f λh} .

.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 7 / 26

Page 12: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Lie conformal algebra

A C[∂]-module R with aλ-bracket R ⊗ R → R[λ]satisfying

sesquilinearity

∂{aλb} = {∂aλb}+ {aλ∂b}{∂aλb} = −λ{aλb}

skew-simmetry

{bλa} = −{a−λ−∂b}

Jacobi identity

{aλ{bµc}} − {bµ{aλc}}= {{aλb}λ+µc}

{fλ+∂g}→h

=NX

n=0

(fng)(λ+ ∂)nh

Definition A Poisson vertex algebra V is avector space with two algebraic structures:

a commutative associative differentialproduct, f ,g 7→ f · g ∈ V,a Lie conformal algebra bracketf ,g 7→ {f λg} ∈ V[λ];they satisfy the (left) Leibniz rule:

{f λgh} = {f λg}h + g{f λh} .

Remark: this is the quasi-classical limit ofthe notion of a vertex algebra.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 7 / 26

Page 13: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Lie conformal algebra

A C[∂]-module R with aλ-bracket R ⊗ R → R[λ]satisfying

sesquilinearity

∂{aλb} = {∂aλb}+ {aλ∂b}{∂aλb} = −λ{aλb}

skew-simmetry

{bλa} = −{a−λ−∂b}

Jacobi identity

{aλ{bµc}} − {bµ{aλc}}= {{aλb}λ+µc}

{fλ+∂g}→h

=NX

n=0

(fng)(λ+ ∂)nh

Definition A Poisson vertex algebra V is avector space with two algebraic structures:

a commutative associative differentialproduct, f ,g 7→ f · g ∈ V,a Lie conformal algebra bracketf ,g 7→ {f λg} ∈ V[λ];they satisfy the (left) Leibniz rule:

{f λgh} = {f λg}h + g{f λh} .

Note: We also have the right Leibniz rule:{fgλh} = {fλ+∂g}→h + {hλ+∂g}→f .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 7 / 26

Page 14: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Lie conformal algebra

A C[∂]-module R with aλ-bracket R ⊗ R → R[λ]satisfying

sesquilinearity

∂{aλb} = {∂aλb}+ {aλ∂b}{∂aλb} = −λ{aλb}

skew-simmetry

{bλa} = −{a−λ−∂b}

Jacobi identity

{aλ{bµc}} − {bµ{aλc}}= {{aλb}λ+µc}

{fλ+∂g}→h

=NX

n=0

(fng)(λ+ ∂)nh

Definition A Poisson vertex algebra V is avector space with two algebraic structures:

a commutative associative differentialproduct, f ,g 7→ f · g ∈ V,a Lie conformal algebra bracketf ,g 7→ {f λg} ∈ V[λ];they satisfy the (left) Leibniz rule:

{f λgh} = {f λg}h + g{f λh} .

Note: We also have the right Leibniz rule:{fgλh} = {fλ+∂g}→h + {hλ+∂g}→f .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 7 / 26

Page 15: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Lie conformal algebra

A C[∂]-module R with aλ-bracket R ⊗ R → R[λ]satisfying

sesquilinearity

∂{aλb} = {∂aλb}+ {aλ∂b}{∂aλb} = −λ{aλb}

skew-simmetry

{bλa} = −{a−λ−∂b}

Jacobi identity

{aλ{bµc}} − {bµ{aλc}}= {{aλb}λ+µc}

{fλ+∂g}→h

=NX

n=0

(fng)(λ+ ∂)nh

Definition A Poisson vertex algebra V is avector space with two algebraic structures:

a commutative associative differentialproduct, f ,g 7→ f · g ∈ V,a Lie conformal algebra bracketf ,g 7→ {f λg} ∈ V[λ];they satisfy the (left) Leibniz rule:

{f λgh} = {f λg}h + g{f λh} .

Note: We also have the right Leibniz rule:{fgλh} = {fλ+∂g}→h + {hλ+∂g}→f .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 7 / 26

Page 16: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Lie conformal algebra

A C[∂]-module R with a λ-bracketR ⊗ R → R[λ] satisfying

sesquilinearity

∂{aλb} = {∂aλb} + {aλ∂b}{∂aλb} = −λ{aλb}

skew-simmetry{bλa} = −{a−λ−∂b}

Jacobi identity{aλ{bµc}} − {bµ{aλc}}

= {{aλb}λ+µc}

Poisson vertex algebra

a comm. assoc. differentialalgebra, with differential ∂ andproduct f · g,

a Lie conformal algebra, withdiffer. ∂ and λ-bracket {fλg};satisfying the (left) Leibnizrule:{fλgh} = {fλg}h + g{fλh} .

Def: An algebra of differential funcions is

C[u(n)i | i = 1, . . . , `, n ∈ Z+] ⊂ V

with the partial derivatives∂

∂u(n)i

: V → V ,

and the total derivative

∂ =∑i,n

u(n+1)i

∂u(n)i

.

We require: ∂f∂u(n)

i

= 0 for n >> 0,

commutation rel’s:[

∂u(n)i

, ∂]

= ∂

∂u(n−1)i

.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 8 / 26

Page 17: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Lie conformal algebra

A C[∂]-module R with a λ-bracketR ⊗ R → R[λ] satisfying

sesquilinearity

∂{aλb} = {∂aλb} + {aλ∂b}{∂aλb} = −λ{aλb}

skew-simmetry{bλa} = −{a−λ−∂b}

Jacobi identity{aλ{bµc}} − {bµ{aλc}}

= {{aλb}λ+µc}

Poisson vertex algebra

a comm. assoc. differentialalgebra, with differential ∂ andproduct f · g,

a Lie conformal algebra, withdiffer. ∂ and λ-bracket {fλg};satisfying the (left) Leibnizrule:{fλgh} = {fλg}h + g{fλh} .

Def: An algebra of differential funcions is

C[u(n)i | i = 1, . . . , `, n ∈ Z+] ⊂ V

with the partial derivatives∂

∂u(n)i

: V → V ,

and the total derivative

∂ =∑i,n

u(n+1)i

∂u(n)i

.

We require: ∂f∂u(n)

i

= 0 for n >> 0,

commutation rel’s:[

∂u(n)i

, ∂]

= ∂

∂u(n−1)i

.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 8 / 26

Page 18: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Lie conformal algebra

A C[∂]-module R with a λ-bracketR ⊗ R → R[λ] satisfying

sesquilinearity

∂{aλb} = {∂aλb} + {aλ∂b}{∂aλb} = −λ{aλb}

skew-simmetry{bλa} = −{a−λ−∂b}

Jacobi identity{aλ{bµc}} − {bµ{aλc}}

= {{aλb}λ+µc}

Poisson vertex algebra

a comm. assoc. differentialalgebra, with differential ∂ andproduct f · g,

a Lie conformal algebra, withdiffer. ∂ and λ-bracket {fλg};satisfying the (left) Leibnizrule:{fλgh} = {fλg}h + g{fλh} .

Def: An algebra of differential funcions is

C[u(n)i | i = 1, . . . , `, n ∈ Z+] ⊂ V

with the partial derivatives∂

∂u(n)i

: V → V ,

and the total derivative

∂ =∑i,n

u(n+1)i

∂u(n)i

.

We require: ∂f∂u(n)

i

= 0 for n >> 0,

commutation rel’s:[

∂u(n)i

, ∂]

= ∂

∂u(n−1)i

.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 8 / 26

Page 19: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Lie conformal algebra

A C[∂]-module R with a λ-bracketR ⊗ R → R[λ] satisfying

sesquilinearity

∂{aλb} = {∂aλb} + {aλ∂b}{∂aλb} = −λ{aλb}

skew-simmetry{bλa} = −{a−λ−∂b}

Jacobi identity{aλ{bµc}} − {bµ{aλc}}

= {{aλb}λ+µc}

Poisson vertex algebra

a comm. assoc. differentialalgebra, with differential ∂ andproduct f · g,

a Lie conformal algebra, withdiffer. ∂ and λ-bracket {fλg};satisfying the (left) Leibnizrule:{fλgh} = {fλg}h + g{fλh} .

Def: An algebra of differential funcions is

C[u(n)i | i = 1, . . . , `, n ∈ Z+] ⊂ V

with the partial derivatives∂

∂u(n)i

: V → V ,

and the total derivative

∂ =∑i,n

u(n+1)i

∂u(n)i

.

We require: ∂f∂u(n)

i

= 0 for n >> 0,

commutation rel’s:[

∂u(n)i

, ∂]

= ∂

∂u(n−1)i

.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 8 / 26

Page 20: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Lie conformal algebra

A C[∂]-module R with a λ-bracketR ⊗ R → R[λ] satisfying

sesquilinearity

∂{aλb} = {∂aλb} + {aλ∂b}{∂aλb} = −λ{aλb}

skew-simmetry{bλa} = −{a−λ−∂b}

Jacobi identity{aλ{bµc}} − {bµ{aλc}}

= {{aλb}λ+µc}

Poisson vertex algebra

a comm. assoc. differentialalgebra, with differential ∂ andproduct f · g,

a Lie conformal algebra, withdiffer. ∂ and λ-bracket {fλg};satisfying the (left) Leibnizrule:{fλgh} = {fλg}h + g{fλh} .

Def: An algebra of differential funcions is

C[u(n)i | i = 1, . . . , `, n ∈ Z+] ⊂ V

with the partial derivatives∂

∂u(n)i

: V → V ,

and the total derivative

∂ =∑i,n

u(n+1)i

∂u(n)i

.

Main formula: {fλg} =

Xi,j,m,n

∂g

∂u(n)j

(λ+ ∂)n{uiλ+∂uj}→(−λ− ∂)m ∂f

∂u(m)i

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 8 / 26

Page 21: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Lie conformal algebra

A C[∂]-module R with a λ-bracketR ⊗ R → R[λ] satisfying

sesquilinearity

∂{aλb} = {∂aλb} + {aλ∂b}{∂aλb} = −λ{aλb}

skew-simmetry{bλa} = −{a−λ−∂b}

Jacobi identity{aλ{bµc}} − {bµ{aλc}}

= {{aλb}λ+µc}

Poisson vertex algebra

a comm. assoc. differentialalgebra, with differential ∂ andproduct f · g,

a Lie conformal algebra, withdiffer. ∂ and λ-bracket {fλg};satisfying the (left) Leibnizrule:{fλgh} = {fλg}h + g{fλh} .

Examples

1 GFZ PVA: V = C[u(n) |n ∈ Z+] with{uλu} = λ

2 Virasoro-Magri PVA:V = C[u(n) |n ∈ Z+] with

{uλu} = u′ + 2uλ+c

12λ3

c: Virasoro central chargeNote: every linear combin. is a PVA!

3 Affine PVA: Data: Lie algebra g, p ∈ g,symm. invariant bil. form ( | ), k ∈ CV cl(g,p, ( | )) = C

[C[∂]g

]with

(a,b ∈ g)

{aλb} = [a,b] + (p|[a,b]) + k(a|b)λ .A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 9 / 26

Page 22: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Lie conformal algebra

A C[∂]-module R with a λ-bracketR ⊗ R → R[λ] satisfying

sesquilinearity

∂{aλb} = {∂aλb} + {aλ∂b}{∂aλb} = −λ{aλb}

skew-simmetry{bλa} = −{a−λ−∂b}

Jacobi identity{aλ{bµc}} − {bµ{aλc}}

= {{aλb}λ+µc}

Poisson vertex algebra

a comm. assoc. differentialalgebra, with differential ∂ andproduct f · g,

a Lie conformal algebra, withdiffer. ∂ and λ-bracket {fλg};satisfying the (left) Leibnizrule:{fλgh} = {fλg}h + g{fλh} .

Examples

1 GFZ PVA: V = C[u(n) |n ∈ Z+] with{uλu} = λ

2 Virasoro-Magri PVA:V = C[u(n) |n ∈ Z+] with

{uλu} = u′ + 2uλ+c

12λ3

c: Virasoro central chargeNote: every linear combin. is a PVA!

3 Affine PVA: Data: Lie algebra g, p ∈ g,symm. invariant bil. form ( | ), k ∈ CV cl(g,p, ( | )) = C

[C[∂]g

]with

(a,b ∈ g)

{aλb} = [a,b] + (p|[a,b]) + k(a|b)λ .A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 9 / 26

Page 23: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Lie conformal algebra

A C[∂]-module R with a λ-bracketR ⊗ R → R[λ] satisfying

sesquilinearity

∂{aλb} = {∂aλb} + {aλ∂b}{∂aλb} = −λ{aλb}

skew-simmetry{bλa} = −{a−λ−∂b}

Jacobi identity{aλ{bµc}} − {bµ{aλc}}

= {{aλb}λ+µc}

Poisson vertex algebra

a comm. assoc. differentialalgebra, with differential ∂ andproduct f · g,

a Lie conformal algebra, withdiffer. ∂ and λ-bracket {fλg};satisfying the (left) Leibnizrule:{fλgh} = {fλg}h + g{fλh} .

Examples

1 GFZ PVA: V = C[u(n) |n ∈ Z+] with{uλu} = λ

2 Virasoro-Magri PVA:V = C[u(n) |n ∈ Z+] with

{uλu} = u′ + 2uλ+c

12λ3

c: Virasoro central chargeNote: every linear combin. is a PVA!

3 Affine PVA: Data: Lie algebra g, p ∈ g,symm. invariant bil. form ( | ), k ∈ CV cl(g,p, ( | )) = C

[C[∂]g

]with

(a,b ∈ g)

{aλb} = [a,b] + (p|[a,b]) + k(a|b)λ .A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 9 / 26

Page 24: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Lie conformal algebra

A C[∂]-module R with a λ-bracketR ⊗ R → R[λ] satisfying

sesquilinearity

∂{aλb} = {∂aλb} + {aλ∂b}{∂aλb} = −λ{aλb}

skew-simmetry{bλa} = −{a−λ−∂b}

Jacobi identity{aλ{bµc}} − {bµ{aλc}}

= {{aλb}λ+µc}

Poisson vertex algebra

a comm. assoc. differentialalgebra, with differential ∂ andproduct f · g,

a Lie conformal algebra, withdiffer. ∂ and λ-bracket {fλg};satisfying the (left) Leibnizrule:{fλgh} = {fλg}h + g{fλh} .

Examples

1 GFZ PVA: V = C[u(n) |n ∈ Z+] with{uλu} = λ

2 Virasoro-Magri PVA:V = C[u(n) |n ∈ Z+] with

{uλu} = u′ + 2uλ+c

12λ3

c: Virasoro central chargeNote: every linear combin. is a PVA!

3 Affine PVA: Data: Lie algebra g, p ∈ g,symm. invariant bil. form ( | ), k ∈ CV cl(g,p, ( | )) = C

[C[∂]g

]with

(a,b ∈ g)

{aλb} = [a,b] + (p|[a,b]) + k(a|b)λ .A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 9 / 26

Page 25: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Examples

1 GFZ PVA:V = C[u(n) | n ∈ Z+] with

{uλu} = λ

2 Virasoro-Magri PVA:V = C[u(n) | n ∈ Z+] with

{uλu} = u′ + 2uλ+c

12λ3

c: Virasoro central charge3 Affine PVA: Data: Lie

algebra g, p ∈ g, symm.invariant bil. form ( | ), k ∈ CV cl(g, p, ( | )) = C

ˆC[∂]g

˜,

{aλb} = [a, b]+(p|[a, b])+k(a|b)λ .

4 W -algberas, obtained by quantumHamiltonian reduction:

W clk (g, f )

quantiz.//

Zhu alg.

��

Wk (g, f )

cl.limitss

��

W cl,fin(g, f )

chiraliz.

OO

// W fin(g, f )ll

OO

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 10 / 26

Page 26: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Examples

1 GFZ PVA:V = C[u(n) | n ∈ Z+] with

{uλu} = λ

2 Virasoro-Magri PVA:V = C[u(n) | n ∈ Z+] with

{uλu} = u′ + 2uλ+c

12λ3

c: Virasoro central charge3 Affine PVA: Data: Lie

algebra g, p ∈ g, symm.invariant bil. form ( | ), k ∈ CV cl(g, p, ( | )) = C

ˆC[∂]g

˜,

{aλb} = [a, b]+(p|[a, b])+k(a|b)λ .

4 W -algberas, obtained by quantumHamiltonian reduction:

W clk (g, f )

quantiz.//

Zhu alg.

��

Wk (g, f )

cl.limitss

��

W cl,fin(g, f )

chiraliz.

OO

// W fin(g, f )ll

OO

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 10 / 26

Page 27: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Outline

1 Poisson vertex algebras

2 Hamiltonian equations associated to a PVA

3 Symplectic operators (and Dirac structures)

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 11 / 26

Page 28: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

How are P.V.A.’s related to the theory of Hamiltonian equations?

Basic Lemma: Let V be a P.V.A. Then:V/∂V is a Lie algebra with Lie bracket

{∫

f ,∫

g} =∫{fλg}

∣∣λ=0 ∈ V/∂V

(Notation:∫

f = f + ∂V ∈ V/∂V.)V is a V/∂V-module, with action

{∫

f ,g} = {fλg}∣∣λ=0 ∈ V

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 12 / 26

Page 29: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

How are P.V.A.’s related to the theory of Hamiltonian equations?

Basic Lemma: Let V be a P.V.A. Then:V/∂V is a Lie algebra with Lie bracket

{∫

f ,∫

g} =∫{fλg}

∣∣λ=0 ∈ V/∂V

(Notation:∫

f = f + ∂V ∈ V/∂V.)V is a V/∂V-module, with action

{∫

f ,g} = {fλg}∣∣λ=0 ∈ V

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 12 / 26

Page 30: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Basic Lemma: Let V be a P.V.A. Then:V/∂V is a Lie algebra with Lie bracket

{R

f ,R

g} =R{fλg}

˛λ=0 ∈ V/∂V

(Notation:R

f = f + ∂V ∈ V/∂V.V is a V/∂V-module, with action

{R

f , g} = {fλg}˛λ=0 ∈ V

Definitions: let V be a PVA on an algebra of differential functions.Space of functions: V (phase space).Space of local functionals: V/∂V (physical observables).System of evolution equations: dui

dt = Pi , i = 1, . . . , ` .Hence: df

dt = XP(f ); XP =P

i,n(∂nPi)

∂u(n)i

: evolutionary vector field

Hamiltonian equation (with Hamilt. functionalR

h):

dui

dt= {R

h, ui} =X

j

Hij(∂)δhδuj

,

where: Hij(∂) = {uj∂ui}→ is the Hamiltonian operator;δhδuj

=P∞

n=0(−∂)n ∂h∂u(n)

j

is the variational derivative.

Integral of motion (for a Hamilt. eq.):R

f s.t.

ddtR

f = {R

h,R

f} = 0 .

Integrability: ∃∞ sequence, lin. indep.R

h0 =R

h,R

h1R

h2 . . . s.t.

{R

hm,R

hn} = 0 , ∀m, n .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 13 / 26

Page 31: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Basic Lemma: Let V be a P.V.A. Then:V/∂V is a Lie algebra with Lie bracket

{R

f ,R

g} =R{fλg}

˛λ=0 ∈ V/∂V

(Notation:R

f = f + ∂V ∈ V/∂V.V is a V/∂V-module, with action

{R

f , g} = {fλg}˛λ=0 ∈ V

Definitions: let V be a PVA on an algebra of differential functions.Space of functions: V (phase space).Space of local functionals: V/∂V (physical observables).

System of evolution equations: duidt = Pi , i = 1, . . . , ` .

Hence: dfdt = XP(f ); XP =

Pi,n(∂

nPi)∂

∂u(n)i

: evolutionary vector field

Hamiltonian equation (with Hamilt. functionalR

h):

dui

dt= {R

h, ui} =X

j

Hij(∂)δhδuj

,

where: Hij(∂) = {uj∂ui}→ is the Hamiltonian operator;δhδuj

=P∞

n=0(−∂)n ∂h∂u(n)

j

is the variational derivative.

Integral of motion (for a Hamilt. eq.):R

f s.t.

ddtR

f = {R

h,R

f} = 0 .

Integrability: ∃∞ sequence, lin. indep.R

h0 =R

h,R

h1R

h2 . . . s.t.

{R

hm,R

hn} = 0 , ∀m, n .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 13 / 26

Page 32: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Basic Lemma: Let V be a P.V.A. Then:V/∂V is a Lie algebra with Lie bracket

{R

f ,R

g} =R{fλg}

˛λ=0 ∈ V/∂V

(Notation:R

f = f + ∂V ∈ V/∂V.V is a V/∂V-module, with action

{R

f , g} = {fλg}˛λ=0 ∈ V

Definitions: let V be a PVA on an algebra of differential functions.Space of functions: V (phase space).Space of local functionals: V/∂V (physical observables).System of evolution equations: dui

dt = Pi , i = 1, . . . , ` .

Hence: dfdt = XP(f ); XP =

Pi,n(∂

nPi)∂

∂u(n)i

: evolutionary vector field

Hamiltonian equation (with Hamilt. functionalR

h):

dui

dt= {R

h, ui} =X

j

Hij(∂)δhδuj

,

where: Hij(∂) = {uj∂ui}→ is the Hamiltonian operator;δhδuj

=P∞

n=0(−∂)n ∂h∂u(n)

j

is the variational derivative.

Integral of motion (for a Hamilt. eq.):R

f s.t.

ddtR

f = {R

h,R

f} = 0 .

Integrability: ∃∞ sequence, lin. indep.R

h0 =R

h,R

h1R

h2 . . . s.t.

{R

hm,R

hn} = 0 , ∀m, n .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 13 / 26

Page 33: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Basic Lemma: Let V be a P.V.A. Then:V/∂V is a Lie algebra with Lie bracket

{R

f ,R

g} =R{fλg}

˛λ=0 ∈ V/∂V

(Notation:R

f = f + ∂V ∈ V/∂V.V is a V/∂V-module, with action

{R

f , g} = {fλg}˛λ=0 ∈ V

Definitions: let V be a PVA on an algebra of differential functions.Space of functions: V (phase space).Space of local functionals: V/∂V (physical observables).System of evolution equations: dui

dt = Pi , i = 1, . . . , ` .Hence: df

dt = XP(f ); XP =P

i,n(∂nPi)

∂u(n)i

: evolutionary vector field

Hamiltonian equation (with Hamilt. functionalR

h):

dui

dt= {R

h, ui} =X

j

Hij(∂)δhδuj

,

where: Hij(∂) = {uj∂ui}→ is the Hamiltonian operator;δhδuj

=P∞

n=0(−∂)n ∂h∂u(n)

j

is the variational derivative.

Integral of motion (for a Hamilt. eq.):R

f s.t.

ddtR

f = {R

h,R

f} = 0 .

Integrability: ∃∞ sequence, lin. indep.R

h0 =R

h,R

h1R

h2 . . . s.t.

{R

hm,R

hn} = 0 , ∀m, n .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 13 / 26

Page 34: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Basic Lemma: Let V be a P.V.A. Then:V/∂V is a Lie algebra with Lie bracket

{R

f ,R

g} =R{fλg}

˛λ=0 ∈ V/∂V

(Notation:R

f = f + ∂V ∈ V/∂V.V is a V/∂V-module, with action

{R

f , g} = {fλg}˛λ=0 ∈ V

Definitions: let V be a PVA on an algebra of differential functions.Space of functions: V (phase space).Space of local functionals: V/∂V (physical observables).System of evolution equations: dui

dt = Pi , i = 1, . . . , ` .Hence: df

dt = XP(f ); XP =P

i,n(∂nPi)

∂u(n)i

: evolutionary vector field

Hamiltonian equation (with Hamilt. functionalR

h):

dui

dt= {R

h, ui} =X

j

Hij(∂)δhδuj

,

where: Hij(∂) = {uj∂ui}→ is the Hamiltonian operator;δhδuj

=P∞

n=0(−∂)n ∂h∂u(n)

j

is the variational derivative.

Integral of motion (for a Hamilt. eq.):R

f s.t.

ddtR

f = {R

h,R

f} = 0 .

Integrability: ∃∞ sequence, lin. indep.R

h0 =R

h,R

h1R

h2 . . . s.t.

{R

hm,R

hn} = 0 , ∀m, n .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 13 / 26

Page 35: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Definitions: let V be a PVA on an algebra of differential functions.Space of functions: V (phase space).Space of local functionals: V/∂V (physical observables).System of evolution equations: dui

dt = Pi , i = 1, . . . , ` .Hence: df

dt = XP(f ); XP =∑

i,n(∂nPi)

∂u(n)i

: evolutionary vector field

Hamiltonian equation (with Hamilt. functional∫

h):

dui

dt= {∫

h,ui} =∑

j

Hij(∂)δhδuj

,

where: Hij(∂) = {uj∂ui}→ is the Hamiltonian operator;δhδuj

=∑∞

n=0(−∂)n ∂h∂u(n)

j

is the variational derivative.

Integral of motion (for a Hamilt. eq.):∫

f s.t.

ddt∫

f = {∫

h,∫

f} = 0 .

Integrability: ∃∞ sequence, lin. indep.∫

h0 =∫

h,∫

h1∫

h2 . . . s.t.

{∫

hm,∫

hn} = 0 , ∀m,n .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 13 / 26

Page 36: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Definitions: let V be a PVA on an algebra of differential functions.Space of functions: V (phase space).Space of local functionals: V/∂V (physical observables).System of evolution equations: dui

dt = Pi , i = 1, . . . , ` .Hence: df

dt = XP(f ); XP =∑

i,n(∂nPi)

∂u(n)i

: evolutionary vector field

Hamiltonian equation (with Hamilt. functional∫

h):

dui

dt= {∫

h,ui} =∑

j

Hij(∂)δhδuj

,

where: Hij(∂) = {uj∂ui}→ is the Hamiltonian operator;δhδuj

=∑∞

n=0(−∂)n ∂h∂u(n)

j

is the variational derivative.

Integral of motion (for a Hamilt. eq.):∫

f s.t.

ddt∫

f = {∫

h,∫

f} = 0 .

Integrability: ∃∞ sequence, lin. indep.∫

h0 =∫

h,∫

h1∫

h2 . . . s.t.

{∫

hm,∫

hn} = 0 , ∀m,n .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 13 / 26

Page 37: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Definitions: let V be a PVA on an algebra of differential functions.Space of functions: V (phase space).Space of local functionals: V/∂V (physical observables).System of evolution equations: dui

dt = Pi , i = 1, . . . , ` .Hence: df

dt = XP(f ); XP =∑

i,n(∂nPi)

∂u(n)i

: evolutionary vector field

Hamiltonian equation (with Hamilt. functional∫

h):

dui

dt= {∫

h,ui} =∑

j

Hij(∂)δhδuj

,

where: Hij(∂) = {uj∂ui}→ is the Hamiltonian operator;δhδuj

=∑∞

n=0(−∂)n ∂h∂u(n)

j

is the variational derivative.

Integral of motion (for a Hamilt. eq.):∫

f s.t.

ddt∫

f = {∫

h,∫

f} = 0 .

Integrability: ∃∞ sequence, lin. indep.∫

h0 =∫

h,∫

h1∫

h2 . . . s.t.

{∫

hm,∫

hn} = 0 , ∀m,n .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 13 / 26

Page 38: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Example: KdV equation on V = C[u,u′,u′′, . . . ]:

dudt

= 3uu′ + cu′′′ .

It can be written in Hamiltonian form in two ways:1 PVA: {u + λu} = λ (this is the GFZ PVA),

Hamiltonian functional:∫

h0 = 12u3 + c

2uu′′.

Indeed we have:

dudt

= {u∂u}→δh0

δu= ∂

`32

u2 + cu′′´

= 3uu′ + cu′′′ .

2 PVA: {u + λu} = u′ + 2uλ+ cλ

3 (Virasoro-Magri PVA)Hamiltonian functional:

∫h1 = 1

2u2.

Indeed we have:

dudt

= {u∂u}→δh1

δu=`u′ + 2u∂ + c∂3´u = 3uu′ + cu′′′ .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 14 / 26

Page 39: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Example: KdV equation on V = C[u,u′,u′′, . . . ]:

dudt

= 3uu′ + cu′′′ .

It can be written in Hamiltonian form in two ways:1 PVA: {u + λu} = λ (this is the GFZ PVA),

Hamiltonian functional:∫

h0 = 12u3 + c

2uu′′.

Indeed we have:

dudt

= {u∂u}→δh0

δu= ∂

`32

u2 + cu′′´

= 3uu′ + cu′′′ .

2 PVA: {u + λu} = u′ + 2uλ+ cλ

3 (Virasoro-Magri PVA)Hamiltonian functional:

∫h1 = 1

2u2.

Indeed we have:

dudt

= {u∂u}→δh1

δu=`u′ + 2u∂ + c∂3´u = 3uu′ + cu′′′ .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 14 / 26

Page 40: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Example: KdV equation on V = C[u,u′,u′′, . . . ]:

dudt

= 3uu′ + cu′′′ .

It can be written in Hamiltonian form in two ways:1 PVA: {u + λu} = λ (this is the GFZ PVA),

Hamiltonian functional:∫

h0 = 12u3 + c

2uu′′.

Indeed we have:

dudt

= {u∂u}→δh0

δu= ∂

`32

u2 + cu′′´

= 3uu′ + cu′′′ .

2 PVA: {u + λu} = u′ + 2uλ+ cλ

3 (Virasoro-Magri PVA)Hamiltonian functional:

∫h1 = 1

2u2.

Indeed we have:

dudt

= {u∂u}→δh1

δu=`u′ + 2u∂ + c∂3´u = 3uu′ + cu′′′ .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 14 / 26

Page 41: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Example: KdV equation on V = C[u,u′,u′′, . . . ]:

dudt

= 3uu′ + cu′′′ .

It can be written in Hamiltonian form in two ways:1 PVA: {u + λu} = λ (this is the GFZ PVA),

Hamiltonian functional:∫

h0 = 12u3 + c

2uu′′.Indeed we have:

dudt

= {u∂u}→δh0

δu= ∂

`32

u2 + cu′′´

= 3uu′ + cu′′′ .

2 PVA: {u + λu} = u′ + 2uλ+ cλ

3 (Virasoro-Magri PVA)Hamiltonian functional:

∫h1 = 1

2u2.

Indeed we have:

dudt

= {u∂u}→δh1

δu=`u′ + 2u∂ + c∂3´u = 3uu′ + cu′′′ .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 14 / 26

Page 42: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Example: KdV equation on V = C[u,u′,u′′, . . . ]:

dudt

= 3uu′ + cu′′′ .

It can be written in Hamiltonian form in two ways:1 PVA: {u + λu} = λ (this is the GFZ PVA),

Hamiltonian functional:∫

h0 = 12u3 + c

2uu′′.Indeed we have:

dudt

= {u∂u}→δh0

δu= ∂

`32

u2 + cu′′´

= 3uu′ + cu′′′ .

2 PVA: {u + λu} = u′ + 2uλ+ cλ

3 (Virasoro-Magri PVA)Hamiltonian functional:

∫h1 = 1

2u2.

Indeed we have:

dudt

= {u∂u}→δh1

δu=`u′ + 2u∂ + c∂3´u = 3uu′ + cu′′′ .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 14 / 26

Page 43: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Example: KdV equation on V = C[u,u′,u′′, . . . ]:

dudt

= 3uu′ + cu′′′ .

It can be written in Hamiltonian form in two ways:1 PVA: {u + λu} = λ (this is the GFZ PVA),

Hamiltonian functional:∫

h0 = 12u3 + c

2uu′′.Indeed we have:

dudt

= {u∂u}→δh0

δu= ∂

`32

u2 + cu′′´

= 3uu′ + cu′′′ .

2 PVA: {u + λu} = u′ + 2uλ+ cλ

3 (Virasoro-Magri PVA)Hamiltonian functional:

∫h1 = 1

2u2.Indeed we have:

dudt

= {u∂u}→δh1

δu=`u′ + 2u∂ + c∂3´u = 3uu′ + cu′′′ .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 14 / 26

Page 44: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Example: KdV equation on V = C[u,u′,u′′, . . . ]:

dudt

= 3uu′ + cu′′′ .

It can be written in Hamiltonian form in two ways:1 PVA: {u + λu} = λ (this is the GFZ PVA),

Hamiltonian functional:∫

h0 = 12u3 + c

2uu′′.Indeed we have:

dudt

= {u∂u}→δh0

δu= ∂

`32

u2 + cu′′´

= 3uu′ + cu′′′ .

2 PVA: {u + λu} = u′ + 2uλ+ cλ

3 (Virasoro-Magri PVA)Hamiltonian functional:

∫h1 = 1

2u2.Indeed we have:

dudt

= {u∂u}→δh1

δu=`u′ + 2u∂ + c∂3´u = 3uu′ + cu′′′ .

Note: having two compatible Hamiltonian forms is a key point forproving integrability via the Lenard scheme.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 14 / 26

Page 45: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme of integrability)Assumptions:

1 V is a normal algebra of differential functions.2 Two compatible PVA stcuctures on V: {· λ ·}H and {· λ ·}K .3 K (∂) =

({uj∂ui}K

)i,j=1,...,` is non-degenerate.

4 Let∫

h0,∫

h1 ∈ V/∂V be s.t. {∫

h0, ·}H = {∫

h1, ·}K .

5 Orthogonality condition:(C δh0δu + C δh1

δu

)⊥⊂ Im

(K (∂)

).

Then: ∃ an infinite sequence of local functionals∫h0,

∫h1,

∫h2, · · · ∈ V/∂V, such that

{∫

hn, ·}H = {∫

hn+1, ·}K , ∀n ≥ 0 .

In particular, {R

hm,R

hn}H = {R

hm,R

hn}K = 0 , ∀m, n ≥ 0.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 15 / 26

Page 46: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme of integrability)Assumptions:

1 V is a normal algebra of differential functions.2 Two compatible PVA stcuctures on V: {· λ ·}H and {· λ ·}K .3 K (∂) =

({uj∂ui}K

)i,j=1,...,` is non-degenerate.

4 Let∫

h0,∫

h1 ∈ V/∂V be s.t. {∫

h0, ·}H = {∫

h1, ·}K .

5 Orthogonality condition:(C δh0δu + C δh1

δu

)⊥⊂ Im

(K (∂)

).

Then: ∃ an infinite sequence of local functionals∫h0,

∫h1,

∫h2, · · · ∈ V/∂V, such that

{∫

hn, ·}H = {∫

hn+1, ·}K , ∀n ≥ 0 .

In particular, {R

hm,R

hn}H = {R

hm,R

hn}K = 0 , ∀m, n ≥ 0.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 15 / 26

Page 47: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme of integrability)Assumptions:

1 V is a normal algebra of differential functions.

Definition: V normal: ∂

∂u(n)i

: V → V is surjective on each degree.

It implies that the complex of variational calculus is exact [DSK08]. In particular:DF (∂) = D∗F (∂)⇔ F = δf

δu , where: the Frechet derivative and its adjoint are:`DF (∂)P

´i =

Xj,n

∂Fi

∂u(n)j

∂nPj ,`D∗F (∂)P

´i =

Xj,n

(−∂)n“ ∂Fj

∂u(n)i

Pj

”.

2 Two compatible PVA stcuctures on V: {· λ ·}H and {· λ ·}K .3 K (∂) =

({uj∂ui}K

)i,j=1,...,` is non-degenerate.

4 Let∫

h0,∫

h1 ∈ V/∂V be s.t. {∫

h0, ·}H = {∫

h1, ·}K .

5 Orthogonality condition:(C δh0δu + C δh1

δu

)⊥⊂ Im

(K (∂)

).

Then: ∃ an infinite sequence of local functionals∫h0,

∫h1,

∫h2, · · · ∈ V/∂V, such that

{∫

hn, ·}H = {∫

hn+1, ·}K , ∀n ≥ 0 .In particular, {

Rhm,

Rhn}H = {

Rhm,

Rhn}K = 0 , ∀m, n ≥ 0.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 15 / 26

Page 48: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme of integrability)Assumptions:

1 V is a normal algebra of differential functions.

Definition: V normal: ∂

∂u(n)i

: V → V is surjective on each degree.

It implies that the complex of variational calculus is exact [DSK08]. In particular:DF (∂) = D∗F (∂)⇔ F = δf

δu , where: the Frechet derivative and its adjoint are:`DF (∂)P

´i =

Xj,n

∂Fi

∂u(n)j

∂nPj ,`D∗F (∂)P

´i =

Xj,n

(−∂)n“ ∂Fj

∂u(n)i

Pj

”.

2 Two compatible PVA stcuctures on V: {· λ ·}H and {· λ ·}K .3 K (∂) =

({uj∂ui}K

)i,j=1,...,` is non-degenerate.

4 Let∫

h0,∫

h1 ∈ V/∂V be s.t. {∫

h0, ·}H = {∫

h1, ·}K .

5 Orthogonality condition:(C δh0δu + C δh1

δu

)⊥⊂ Im

(K (∂)

).

Then: ∃ an infinite sequence of local functionals∫h0,

∫h1,

∫h2, · · · ∈ V/∂V, such that

{∫

hn, ·}H = {∫

hn+1, ·}K , ∀n ≥ 0 .In particular, {

Rhm,

Rhn}H = {

Rhm,

Rhn}K = 0 , ∀m, n ≥ 0.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 15 / 26

Page 49: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme of integrability)Assumptions:

1 V is a normal algebra of differential functions.2 Two compatible PVA stcuctures on V: {· λ ·}H and {· λ ·}K .3 K (∂) =

({uj∂ui}K

)i,j=1,...,` is non-degenerate.

4 Let∫

h0,∫

h1 ∈ V/∂V be s.t. {∫

h0, ·}H = {∫

h1, ·}K .

5 Orthogonality condition:(C δh0δu + C δh1

δu

)⊥⊂ Im

(K (∂)

).

Then: ∃ an infinite sequence of local functionals∫h0,

∫h1,

∫h2, · · · ∈ V/∂V, such that

{∫

hn, ·}H = {∫

hn+1, ·}K , ∀n ≥ 0 .

In particular, {R

hm,R

hn}H = {R

hm,R

hn}K = 0 , ∀m, n ≥ 0.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 15 / 26

Page 50: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme of integrability)Assumptions:

1 V is a normal algebra of differential functions.2 Two compatible PVA stcuctures on V: {· λ ·}H and {· λ ·}K .3 K (∂) =

({uj∂ui}K

)i,j=1,...,` is non-degenerate.

4 Let∫

h0,∫

h1 ∈ V/∂V be s.t. {∫

h0, ·}H = {∫

h1, ·}K .

5 Orthogonality condition:(C δh0δu + C δh1

δu

)⊥⊂ Im

(K (∂)

).

Then: ∃ an infinite sequence of local functionals∫h0,

∫h1,

∫h2, · · · ∈ V/∂V, such that

{∫

hn, ·}H = {∫

hn+1, ·}K , ∀n ≥ 0 .

In particular, {R

hm,R

hn}H = {R

hm,R

hn}K = 0 , ∀m, n ≥ 0.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 15 / 26

Page 51: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme of integrability)Assumptions:

1 V is a normal algebra of differential functions.2 Two compatible PVA stcuctures on V: {· λ ·}H and {· λ ·}K .

compatible: all linear combinations α{· λ ·}H + β{· λ ·}K define a PVA structure on V.

3 K (∂) =({uj∂ui}K

)i,j=1,...,` is non-degenerate.

4 Let∫

h0,∫

h1 ∈ V/∂V be s.t. {∫

h0, ·}H = {∫

h1, ·}K .

5 Orthogonality condition:(C δh0δu + C δh1

δu

)⊥⊂ Im

(K (∂)

).

Then: ∃ an infinite sequence of local functionals∫h0,

∫h1,

∫h2, · · · ∈ V/∂V, such that

{∫

hn, ·}H = {∫

hn+1, ·}K , ∀n ≥ 0 .

In particular, {R

hm,R

hn}H = {R

hm,R

hn}K = 0 , ∀m, n ≥ 0.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 15 / 26

Page 52: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme of integrability)Assumptions:

1 V is a normal algebra of differential functions.2 Two compatible PVA stcuctures on V: {· λ ·}H and {· λ ·}K .3 K (∂) =

({uj∂ui}K

)i,j=1,...,` is non-degenerate.

4 Let∫

h0,∫

h1 ∈ V/∂V be s.t. {∫

h0, ·}H = {∫

h1, ·}K .

5 Orthogonality condition:(C δh0δu + C δh1

δu

)⊥⊂ Im

(K (∂)

).

Then: ∃ an infinite sequence of local functionals∫h0,

∫h1,

∫h2, · · · ∈ V/∂V, such that

{∫

hn, ·}H = {∫

hn+1, ·}K , ∀n ≥ 0 .

In particular, {R

hm,R

hn}H = {R

hm,R

hn}K = 0 , ∀m, n ≥ 0.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 15 / 26

Page 53: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme of integrability)Assumptions:

1 V is a normal algebra of differential functions.2 Two compatible PVA stcuctures on V: {· λ ·}H and {· λ ·}K .3 K (∂) =

({uj∂ui}K

)i,j=1,...,` is non-degenerate.

4 Let∫

h0,∫

h1 ∈ V/∂V be s.t. {∫

h0, ·}H = {∫

h1, ·}K .

5 Orthogonality condition:(C δh0δu + C δh1

δu

)⊥⊂ Im

(K (∂)

).

Then: ∃ an infinite sequence of local functionals∫h0,

∫h1,

∫h2, · · · ∈ V/∂V, such that

{∫

hn, ·}H = {∫

hn+1, ·}K , ∀n ≥ 0 .

In particular, {R

hm,R

hn}H = {R

hm,R

hn}K = 0 , ∀m, n ≥ 0.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 15 / 26

Page 54: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme of integrability)Assumptions:

1 V is a normal algebra of differential functions.2 Two compatible PVA stcuctures on V: {· λ ·}H and {· λ ·}K .3 K (∂) =

({uj∂ui}K

)i,j=1,...,` is non-degenerate.

Def: K (∂) non-degenerate: K (∂)`DF (∂)− D∗F (∂)

´K (∂) = 0⇒ DF (∂) = D∗F (∂).

4 Let∫

h0,∫

h1 ∈ V/∂V be s.t. {∫

h0, ·}H = {∫

h1, ·}K .

5 Orthogonality condition:(C δh0δu + C δh1

δu

)⊥⊂ Im

(K (∂)

).

Then: ∃ an infinite sequence of local functionals∫h0,

∫h1,

∫h2, · · · ∈ V/∂V, such that

{∫

hn, ·}H = {∫

hn+1, ·}K , ∀n ≥ 0 .

In particular, {R

hm,R

hn}H = {R

hm,R

hn}K = 0 , ∀m, n ≥ 0.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 15 / 26

Page 55: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme of integrability)Assumptions:

1 V is a normal algebra of differential functions.2 Two compatible PVA stcuctures on V: {· λ ·}H and {· λ ·}K .3 K (∂) =

({uj∂ui}K

)i,j=1,...,` is non-degenerate.

4 Let∫

h0,∫

h1 ∈ V/∂V be s.t. {∫

h0, ·}H = {∫

h1, ·}K .

5 Orthogonality condition:(C δh0δu + C δh1

δu

)⊥⊂ Im

(K (∂)

).

Then: ∃ an infinite sequence of local functionals∫h0,

∫h1,

∫h2, · · · ∈ V/∂V, such that

{∫

hn, ·}H = {∫

hn+1, ·}K , ∀n ≥ 0 .

In particular, {R

hm,R

hn}H = {R

hm,R

hn}K = 0 , ∀m, n ≥ 0.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 15 / 26

Page 56: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme of integrability)Assumptions:

1 V is a normal algebra of differential functions.2 Two compatible PVA stcuctures on V: {· λ ·}H and {· λ ·}K .3 K (∂) =

({uj∂ui}K

)i,j=1,...,` is non-degenerate.

4 Let∫

h0,∫

h1 ∈ V/∂V be s.t. {∫

h0, ·}H = {∫

h1, ·}K .

5 Orthogonality condition:(C δh0δu + C δh1

δu

)⊥⊂ Im

(K (∂)

).

Then: ∃ an infinite sequence of local functionals∫h0,

∫h1,

∫h2, · · · ∈ V/∂V, such that

{∫

hn, ·}H = {∫

hn+1, ·}K , ∀n ≥ 0 .

In particular, {R

hm,R

hn}H = {R

hm,R

hn}K = 0 , ∀m, n ≥ 0.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 15 / 26

Page 57: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme of integrability)Assumptions:

1 V is a normal algebra of differential functions.2 Two compatible PVA stcuctures on V: {· λ ·}H and {· λ ·}K .3 K (∂) =

({uj∂ui}K

)i,j=1,...,` is non-degenerate.

4 Let∫

h0,∫

h1 ∈ V/∂V be s.t. {∫

h0, ·}H = {∫

h1, ·}K .

Note: it gives an evolution equation which can be written in two Hamiltonian forms:

dui

dt= {R

h0, ui}H = {R

h1, ui}K

5 Orthogonality condition:(C δh0δu + C δh1

δu

)⊥⊂ Im

(K (∂)

).

Then: ∃ an infinite sequence of local functionals∫h0,

∫h1,

∫h2, · · · ∈ V/∂V, such that

{∫

hn, ·}H = {∫

hn+1, ·}K , ∀n ≥ 0 .

In particular, {R

hm,R

hn}H = {R

hm,R

hn}K = 0 , ∀m, n ≥ 0.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 15 / 26

Page 58: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme of integrability)Assumptions:

1 V is a normal algebra of differential functions.2 Two compatible PVA stcuctures on V: {· λ ·}H and {· λ ·}K .3 K (∂) =

({uj∂ui}K

)i,j=1,...,` is non-degenerate.

4 Let∫

h0,∫

h1 ∈ V/∂V be s.t. {∫

h0, ·}H = {∫

h1, ·}K .

5 Orthogonality condition:(C δh0δu + C δh1

δu

)⊥⊂ Im

(K (∂)

).

Then: ∃ an infinite sequence of local functionals∫h0,

∫h1,

∫h2, · · · ∈ V/∂V, such that

{∫

hn, ·}H = {∫

hn+1, ·}K , ∀n ≥ 0 .

In particular, {R

hm,R

hn}H = {R

hm,R

hn}K = 0 , ∀m, n ≥ 0.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 15 / 26

Page 59: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme of integrability)Assumptions:

1 V is a normal algebra of differential functions.2 Two compatible PVA stcuctures on V: {· λ ·}H and {· λ ·}K .3 K (∂) =

({uj∂ui}K

)i,j=1,...,` is non-degenerate.

4 Let∫

h0,∫

h1 ∈ V/∂V be s.t. {∫

h0, ·}H = {∫

h1, ·}K .

5 Orthogonality condition:(C δh0δu + C δh1

δu

)⊥⊂ Im

(K (∂)

).

Then: ∃ an infinite sequence of local functionals∫h0,

∫h1,

∫h2, · · · ∈ V/∂V, such that

{∫

hn, ·}H = {∫

hn+1, ·}K , ∀n ≥ 0 .

In particular, {R

hm,R

hn}H = {R

hm,R

hn}K = 0 , ∀m, n ≥ 0.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 15 / 26

Page 60: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme of integrability)Assumptions:

1 V is a normal algebra of differential functions.2 Two compatible PVA stcuctures on V: {· λ ·}H and {· λ ·}K .3 K (∂) =

({uj∂ui}K

)i,j=1,...,` is non-degenerate.

4 Let∫

h0,∫

h1 ∈ V/∂V be s.t. {∫

h0, ·}H = {∫

h1, ·}K .

5 Orthogonality condition:(C δh0δu + C δh1

δu

)⊥⊂ Im

(K (∂)

).

Notation: the orthogonality relation is: F ⊥ P ⇔R

F · P = 0.

Then: ∃ an infinite sequence of local functionals∫h0,

∫h1,

∫h2, · · · ∈ V/∂V, such that

{∫

hn, ·}H = {∫

hn+1, ·}K , ∀n ≥ 0 .

In particular, {R

hm,R

hn}H = {R

hm,R

hn}K = 0 , ∀m, n ≥ 0.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 15 / 26

Page 61: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme of integrability)Assumptions:

1 V is a normal algebra of differential functions.2 Two compatible PVA stcuctures on V: {· λ ·}H and {· λ ·}K .3 K (∂) =

({uj∂ui}K

)i,j=1,...,` is non-degenerate.

4 Let∫

h0,∫

h1 ∈ V/∂V be s.t. {∫

h0, ·}H = {∫

h1, ·}K .

5 Orthogonality condition:(C δh0δu + C δh1

δu

)⊥⊂ Im

(K (∂)

).

Then: ∃ an infinite sequence of local functionals∫h0,

∫h1,

∫h2, · · · ∈ V/∂V, such that

{∫

hn, ·}H = {∫

hn+1, ·}K , ∀n ≥ 0 .

In particular, {R

hm,R

hn}H = {R

hm,R

hn}K = 0 , ∀m, n ≥ 0.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 15 / 26

Page 62: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme of integrability)Assumptions:

1 V is a normal algebra of differential functions.2 Two compatible PVA stcuctures on V: {· λ ·}H and {· λ ·}K .3 K (∂) =

({uj∂ui}K

)i,j=1,...,` is non-degenerate.

4 Let∫

h0,∫

h1 ∈ V/∂V be s.t. {∫

h0, ·}H = {∫

h1, ·}K .

5 Orthogonality condition:(C δh0δu + C δh1

δu

)⊥⊂ Im

(K (∂)

).

Then: ∃ an infinite sequence of local functionals∫h0,

∫h1,

∫h2, · · · ∈ V/∂V, such that

{∫

hn, ·}H = {∫

hn+1, ·}K , ∀n ≥ 0 .

In particular, {R

hm,R

hn}H = {R

hm,R

hn}K = 0 , ∀m, n ≥ 0.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 15 / 26

Page 63: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme of integrability)Assumptions:

1 V is a normal algebra of differential functions.2 Two compatible PVA stcuctures on V: {· λ ·}H and {· λ ·}K .3 K (∂) =

({uj∂ui}K

)i,j=1,...,` is non-degenerate.

4 Let∫

h0,∫

h1 ∈ V/∂V be s.t. {∫

h0, ·}H = {∫

h1, ·}K .

5 Orthogonality condition:(C δh0δu + C δh1

δu

)⊥⊂ Im

(K (∂)

).

Then: ∃ an infinite sequence of local functionals∫h0,

∫h1,

∫h2, · · · ∈ V/∂V, such that

{∫

hn, ·}H = {∫

hn+1, ·}K , ∀n ≥ 0 .

In particular, {R

hm,R

hn}H = {R

hm,R

hn}K = 0 , ∀m, n ≥ 0.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 15 / 26

Page 64: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme of integrability)Assumptions:

1 V is a normal algebra of differential functions.2 Two compatible PVA stcuctures on V: {· λ ·}H and {· λ ·}K .3 K (∂) =

({uj∂ui}K

)i,j=1,...,` is non-degenerate.

4 Let∫

h0,∫

h1 ∈ V/∂V be s.t. {∫

h0, ·}H = {∫

h1, ·}K .

5 Orthogonality condition:(C δh0δu + C δh1

δu

)⊥⊂ Im

(K (∂)

).

Then: ∃ an infinite sequence of local functionals∫h0,

∫h1,

∫h2, · · · ∈ V/∂V, such that

{∫

hn, ·}H = {∫

hn+1, ·}K , ∀n ≥ 0 .

In particular, {R

hm,R

hn}H = {R

hm,R

hn}K = 0 , ∀m, n ≥ 0.

Concl.: the hierarchy of Hamiltonian eq.’s duidtn

= {∫

hn,ui}H is integrable.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 15 / 26

Page 65: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Lenard scheme

Assumptions:

1 V is normal.2 {· λ ·}H and {· λ ·}K are

compatible PVA structures.3 K (∂) =

`{uj∂ui}K

´i,j=1,...,` is

non-degenerate.4R

h0,R

h1 ∈ V/∂V are s.t.{R

h0, ·}H = {R

h1, ·}K .5 Orthogonality condition:`

C δh0δu + C δh1

δu

´⊥ ⊂ Im K (∂).

Then:∃R

h0,R

h1,R

h2, · · · ∈ V/∂V, suchthat

{R

hn, ·}H = {R

hn+1, ·}K , ∀n ≥ 0 .

Hence: integrable hierarchydui

dtn= {R

hn, ui}H .

Examples.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 16 / 26

Page 66: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Lenard scheme

Assumptions:

1 V is normal.2 {· λ ·}H and {· λ ·}K are

compatible PVA structures.3 K (∂) =

`{uj∂ui}K

´i,j=1,...,` is

non-degenerate.4R

h0,R

h1 ∈ V/∂V are s.t.{R

h0, ·}H = {R

h1, ·}K .5 Orthogonality condition:`

C δh0δu + C δh1

δu

´⊥ ⊂ Im K (∂).

Then:∃R

h0,R

h1,R

h2, · · · ∈ V/∂V, suchthat

{R

hn, ·}H = {R

hn+1, ·}K , ∀n ≥ 0 .

Hence: integrable hierarchydui

dtn= {R

hn, ui}H .

Example 1: KdV equationSpace of functions: V = C[u,u′,u′′, . . . ].Equation:

dudt

= 3uu′ + cu′′′ = ∂|{z}K (∂)

δ

δu12

(u3 + cuu′′)| {z }Rh2

= u′ + 2u∂ + c∂3| {z }H(∂)

δ

δu12

u2|{z}Rh1

.

We also have

∂|{z}K (∂)

δ

δu12

u2|{z}Rh1

= u′ + 2u∂ + c∂3| {z }H(∂)

δ

δuu|{z}Rh0

= u′ .

Orthogonality condition:“Cδh0

δu+ Cδh1

δu

”⊥⊂ 1⊥ = ∂V = Im

`K (∂)

´.

Conclusion: the KdV eq is integrable.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 16 / 26

Page 67: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Lenard scheme

Assumptions:

1 V is normal.2 {· λ ·}H and {· λ ·}K are

compatible PVA structures.3 K (∂) =

`{uj∂ui}K

´i,j=1,...,` is

non-degenerate.4R

h0,R

h1 ∈ V/∂V are s.t.{R

h0, ·}H = {R

h1, ·}K .5 Orthogonality condition:`

C δh0δu + C δh1

δu

´⊥ ⊂ Im K (∂).

Then:∃R

h0,R

h1,R

h2, · · · ∈ V/∂V, suchthat

{R

hn, ·}H = {R

hn+1, ·}K , ∀n ≥ 0 .

Hence: integrable hierarchydui

dtn= {R

hn, ui}H .

Example 1: KdV equationSpace of functions: V = C[u,u′,u′′, . . . ].Equation:

dudt

= 3uu′ + cu′′′ = ∂|{z}K (∂)

δ

δu12

(u3 + cuu′′)| {z }Rh2

= u′ + 2u∂ + c∂3| {z }H(∂)

δ

δu12

u2|{z}Rh1

.

We also have

∂|{z}K (∂)

δ

δu12

u2|{z}Rh1

= u′ + 2u∂ + c∂3| {z }H(∂)

δ

δuu|{z}Rh0

= u′ .

Orthogonality condition:“Cδh0

δu+ Cδh1

δu

”⊥⊂ 1⊥ = ∂V = Im

`K (∂)

´.

Conclusion: the KdV eq is integrable.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 16 / 26

Page 68: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Lenard scheme

Assumptions:

1 V is normal.2 {· λ ·}H and {· λ ·}K are

compatible PVA structures.3 K (∂) =

`{uj∂ui}K

´i,j=1,...,` is

non-degenerate.4R

h0,R

h1 ∈ V/∂V are s.t.{R

h0, ·}H = {R

h1, ·}K .5 Orthogonality condition:`

C δh0δu + C δh1

δu

´⊥ ⊂ Im K (∂).

Then:∃R

h0,R

h1,R

h2, · · · ∈ V/∂V, suchthat

{R

hn, ·}H = {R

hn+1, ·}K , ∀n ≥ 0 .

Hence: integrable hierarchydui

dtn= {R

hn, ui}H .

Example 1: KdV equationSpace of functions: V = C[u,u′,u′′, . . . ].Equation:

dudt

= 3uu′ + cu′′′ = ∂|{z}K (∂)

δ

δu12

(u3 + cuu′′)| {z }Rh2

= u′ + 2u∂ + c∂3| {z }H(∂)

δ

δu12

u2|{z}Rh1

.

We also have

∂|{z}K (∂)

δ

δu12

u2|{z}Rh1

= u′ + 2u∂ + c∂3| {z }H(∂)

δ

δuu|{z}Rh0

= u′ .

Orthogonality condition:“Cδh0

δu+ Cδh1

δu

”⊥⊂ 1⊥ = ∂V = Im

`K (∂)

´.

Conclusion: the KdV eq is integrable.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 16 / 26

Page 69: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Lenard scheme

Assumptions:

1 V is normal.2 {· λ ·}H and {· λ ·}K are

compatible PVA structures.3 K (∂) =

`{uj∂ui}K

´i,j=1,...,` is

non-degenerate.4R

h0,R

h1 ∈ V/∂V are s.t.{R

h0, ·}H = {R

h1, ·}K .5 Orthogonality condition:`

C δh0δu + C δh1

δu

´⊥ ⊂ Im K (∂).

Then:∃R

h0,R

h1,R

h2, · · · ∈ V/∂V, suchthat

{R

hn, ·}H = {R

hn+1, ·}K , ∀n ≥ 0 .

Hence: integrable hierarchydui

dtn= {R

hn, ui}H .

Example 1: KdV equationSpace of functions: V = C[u,u′,u′′, . . . ].Equation:

dudt

= 3uu′ + cu′′′ = ∂|{z}K (∂)

δ

δu12

(u3 + cuu′′)| {z }Rh2

= u′ + 2u∂ + c∂3| {z }H(∂)

δ

δu12

u2|{z}Rh1

.

We also have

∂|{z}K (∂)

δ

δu12

u2|{z}Rh1

= u′ + 2u∂ + c∂3| {z }H(∂)

δ

δuu|{z}Rh0

= u′ .

Orthogonality condition:“Cδh0

δu+ Cδh1

δu

”⊥⊂ 1⊥ = ∂V = Im

`K (∂)

´.

Conclusion: the KdV eq is integrable.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 16 / 26

Page 70: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Lenard scheme

Assumptions:

1 V is normal.2 {· λ ·}H and {· λ ·}K are

compatible PVA structures.3 K (∂) =

`{uj∂ui}K

´i,j=1,...,` is

non-degenerate.4R

h0,R

h1 ∈ V/∂V are s.t.{R

h0, ·}H = {R

h1, ·}K .5 Orthogonality condition:`

C δh0δu + C δh1

δu

´⊥ ⊂ Im K (∂).

Then:∃R

h0,R

h1,R

h2, · · · ∈ V/∂V, suchthat

{R

hn, ·}H = {R

hn+1, ·}K , ∀n ≥ 0 .

Hence: integrable hierarchydui

dtn= {R

hn, ui}H .

Example 2: Harry-Dym equation

Space of funct’s: V = C[u±12 ,u′,u′′, . . . ].

Equation:

dudt

= (u−1/2)′′′ = ∂3|{z}H(∂)

δ

δu2u1/2| {z }R

h0

= u′ + 2u∂| {z }K (∂)

δ

δu−2u−1/4∂2u−1/4| {z }R

h1

.

Orthogonality condition:“Cδh0

δu+Cδh1

δu

”⊥⊂`u−1/2´⊥ = u1/2∂V = Im

`K (∂)

´.

Conclusion: the HD eq is integrable.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 16 / 26

Page 71: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Lenard scheme

Assumptions:

1 V is normal.2 {· λ ·}H and {· λ ·}K are

compatible PVA structures.3 K (∂) =

`{uj∂ui}K

´i,j=1,...,` is

non-degenerate.4R

h0,R

h1 ∈ V/∂V are s.t.{R

h0, ·}H = {R

h1, ·}K .5 Orthogonality condition:`

C δh0δu + C δh1

δu

´⊥ ⊂ Im K (∂).

Then:∃R

h0,R

h1,R

h2, · · · ∈ V/∂V, suchthat

{R

hn, ·}H = {R

hn+1, ·}K , ∀n ≥ 0 .

Hence: integrable hierarchydui

dtn= {R

hn, ui}H .

Example 2: Harry-Dym equation

Space of funct’s: V = C[u±12 ,u′,u′′, . . . ].

Equation:

dudt

= (u−1/2)′′′ = ∂3|{z}H(∂)

δ

δu2u1/2| {z }R

h0

= u′ + 2u∂| {z }K (∂)

δ

δu−2u−1/4∂2u−1/4| {z }R

h1

.

Orthogonality condition:“Cδh0

δu+Cδh1

δu

”⊥⊂`u−1/2´⊥ = u1/2∂V = Im

`K (∂)

´.

Conclusion: the HD eq is integrable.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 16 / 26

Page 72: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Lenard scheme

Assumptions:

1 V is normal.2 {· λ ·}H and {· λ ·}K are

compatible PVA structures.3 K (∂) =

`{uj∂ui}K

´i,j=1,...,` is

non-degenerate.4R

h0,R

h1 ∈ V/∂V are s.t.{R

h0, ·}H = {R

h1, ·}K .5 Orthogonality condition:`

C δh0δu + C δh1

δu

´⊥ ⊂ Im K (∂).

Then:∃R

h0,R

h1,R

h2, · · · ∈ V/∂V, suchthat

{R

hn, ·}H = {R

hn+1, ·}K , ∀n ≥ 0 .

Hence: integrable hierarchydui

dtn= {R

hn, ui}H .

Example 2: Harry-Dym equation

Space of funct’s: V = C[u±12 ,u′,u′′, . . . ].

Equation:

dudt

= (u−1/2)′′′ = ∂3|{z}H(∂)

δ

δu2u1/2| {z }R

h0

= u′ + 2u∂| {z }K (∂)

δ

δu−2u−1/4∂2u−1/4| {z }R

h1

.

Orthogonality condition:“Cδh0

δu+Cδh1

δu

”⊥⊂`u−1/2´⊥ = u1/2∂V = Im

`K (∂)

´.

Conclusion: the HD eq is integrable.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 16 / 26

Page 73: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Lenard scheme

Assumptions:

1 V is normal.2 {· λ ·}H and {· λ ·}K are

compatible PVA structures.3 K (∂) =

`{uj∂ui}K

´i,j=1,...,` is

non-degenerate.4R

h0,R

h1 ∈ V/∂V are s.t.{R

h0, ·}H = {R

h1, ·}K .5 Orthogonality condition:`

C δh0δu + C δh1

δu

´⊥ ⊂ Im K (∂).

Then:∃R

h0,R

h1,R

h2, · · · ∈ V/∂V, suchthat

{R

hn, ·}H = {R

hn+1, ·}K , ∀n ≥ 0 .

Hence: integrable hierarchydui

dtn= {R

hn, ui}H .

Example 2: Harry-Dym equation

Space of funct’s: V = C[u±12 ,u′,u′′, . . . ].

Equation:

dudt

= (u−1/2)′′′ = ∂3|{z}H(∂)

δ

δu2u1/2| {z }R

h0

= u′ + 2u∂| {z }K (∂)

δ

δu−2u−1/4∂2u−1/4| {z }R

h1

.

Orthogonality condition:“Cδh0

δu+Cδh1

δu

”⊥⊂`u−1/2´⊥ = u1/2∂V = Im

`K (∂)

´.

Conclusion: the HD eq is integrable.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 16 / 26

Page 74: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Algorithm: for the integrals of motion∫

hn, n ≥ 0: 0

Rh0= 2

Ru1/2

δδu // δh0

δu = u−1/2

K (∂)=u′+2u∂

66nnnnnnnnnnnnnn

H(∂)=∂3''PPPPPPPPPPPP

∂3u−1/2

Rh1= −

Ru−1/4∂2u−1/4

δδu ///o/o/o/o F 1= u−5/2∂2u−1/4

K (∂)

666v6v6v6v6v6v6v6v

H(∂) ((PPPPPPPPPPPPP

∂3u−1/2

Rh2= − 1

9

Ru−3/4∂4u−3/4

δδu ///o/o/o F 2= 1

6 u−7/4∂4u−3/4

K (∂)

666v6v6v6v6v6v6v

H(∂)

((QQQQQQQQQQQQQ

· · ·

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 17 / 26

Page 75: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Example 3: CNW systemSpace of funct’s: V = C[u(n), v (n) | n ∈ Z+]. Compatible PVA structures:

{uλu}H = (∂ + 2λ)u + cλ3 , {vλv}H = 0 , {uλv}H = (∂ + λ)v , {vλu}H = λv ,

{uλu}K = {vλv}K = λ , {uλv}K = {vλu}K = 0 ,

Corresp. Hamiltonian operators: H(∂) =

„c∂3 + 2u∂ + u′ v∂

v∂ + v ′ 0

«, K (∂) =

„∂ 00 ∂

«.

Let h0 = v , h1 = u. We have: H(∂) δh0δu = K (∂) δh1

δu = 0, and`C δh0δu ⊕ C δh1

δu

´⊥= Im (∂).

We have an integrable hierarchy:

dudt

= H(∂)δhn−1

δu= K (∂)

δhn

δu, n ≥ 0 .

For example, we have:

Rh2 =

12

R(u2 + v2) ,

Rh3 =

12

R(cuu′′ + u3 + uv2) , · · ·(

dudt2

= u′dvdt2

= v ′,

(dudt2

= cu′′′ + 3uu′ + vv ′dvdt2

= ∂(uv), · · ·

The last equation is the CNW system.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 18 / 26

Page 76: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Example 3: CNW systemSpace of funct’s: V = C[u(n), v (n) | n ∈ Z+]. Compatible PVA structures:

{uλu}H = (∂ + 2λ)u + cλ3 , {vλv}H = 0 , {uλv}H = (∂ + λ)v , {vλu}H = λv ,

{uλu}K = {vλv}K = λ , {uλv}K = {vλu}K = 0 ,

Corresp. Hamiltonian operators: H(∂) =

„c∂3 + 2u∂ + u′ v∂

v∂ + v ′ 0

«, K (∂) =

„∂ 00 ∂

«.

Let h0 = v , h1 = u. We have: H(∂) δh0δu = K (∂) δh1

δu = 0, and`C δh0δu ⊕ C δh1

δu

´⊥= Im (∂).

We have an integrable hierarchy:

dudt

= H(∂)δhn−1

δu= K (∂)

δhn

δu, n ≥ 0 .

For example, we have:

Rh2 =

12

R(u2 + v2) ,

Rh3 =

12

R(cuu′′ + u3 + uv2) , · · ·(

dudt2

= u′dvdt2

= v ′,

(dudt2

= cu′′′ + 3uu′ + vv ′dvdt2

= ∂(uv), · · ·

The last equation is the CNW system.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 18 / 26

Page 77: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Example 3: CNW systemSpace of funct’s: V = C[u(n), v (n) | n ∈ Z+]. Compatible PVA structures:

{uλu}H = (∂ + 2λ)u + cλ3 , {vλv}H = 0 , {uλv}H = (∂ + λ)v , {vλu}H = λv ,

{uλu}K = {vλv}K = λ , {uλv}K = {vλu}K = 0 ,

Corresp. Hamiltonian operators: H(∂) =

„c∂3 + 2u∂ + u′ v∂

v∂ + v ′ 0

«, K (∂) =

„∂ 00 ∂

«.

Let h0 = v , h1 = u. We have: H(∂) δh0δu = K (∂) δh1

δu = 0, and`C δh0δu ⊕ C δh1

δu

´⊥= Im (∂).

We have an integrable hierarchy:

dudt

= H(∂)δhn−1

δu= K (∂)

δhn

δu, n ≥ 0 .

For example, we have:

Rh2 =

12

R(u2 + v2) ,

Rh3 =

12

R(cuu′′ + u3 + uv2) , · · ·(

dudt2

= u′dvdt2

= v ′,

(dudt2

= cu′′′ + 3uu′ + vv ′dvdt2

= ∂(uv), · · ·

The last equation is the CNW system.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 18 / 26

Page 78: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Example 3: CNW systemSpace of funct’s: V = C[u(n), v (n) | n ∈ Z+]. Compatible PVA structures:

{uλu}H = (∂ + 2λ)u + cλ3 , {vλv}H = 0 , {uλv}H = (∂ + λ)v , {vλu}H = λv ,

{uλu}K = {vλv}K = λ , {uλv}K = {vλu}K = 0 ,

Corresp. Hamiltonian operators: H(∂) =

„c∂3 + 2u∂ + u′ v∂

v∂ + v ′ 0

«, K (∂) =

„∂ 00 ∂

«.

Let h0 = v , h1 = u. We have: H(∂) δh0δu = K (∂) δh1

δu = 0, and`C δh0δu ⊕ C δh1

δu

´⊥= Im (∂).

We have an integrable hierarchy:

dudt

= H(∂)δhn−1

δu= K (∂)

δhn

δu, n ≥ 0 .

For example, we have:

Rh2 =

12

R(u2 + v2) ,

Rh3 =

12

R(cuu′′ + u3 + uv2) , · · ·(

dudt2

= u′dvdt2

= v ′,

(dudt2

= cu′′′ + 3uu′ + vv ′dvdt2

= ∂(uv), · · ·

The last equation is the CNW system.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 18 / 26

Page 79: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Example 3: CNW systemSpace of funct’s: V = C[u(n), v (n) | n ∈ Z+]. Compatible PVA structures:

{uλu}H = (∂ + 2λ)u + cλ3 , {vλv}H = 0 , {uλv}H = (∂ + λ)v , {vλu}H = λv ,

{uλu}K = {vλv}K = λ , {uλv}K = {vλu}K = 0 ,

Corresp. Hamiltonian operators: H(∂) =

„c∂3 + 2u∂ + u′ v∂

v∂ + v ′ 0

«, K (∂) =

„∂ 00 ∂

«.

Let h0 = v , h1 = u. We have: H(∂) δh0δu = K (∂) δh1

δu = 0, and`C δh0δu ⊕ C δh1

δu

´⊥= Im (∂).

We have an integrable hierarchy:

dudt

= H(∂)δhn−1

δu= K (∂)

δhn

δu, n ≥ 0 .

For example, we have:

Rh2 =

12

R(u2 + v2) ,

Rh3 =

12

R(cuu′′ + u3 + uv2) , · · ·(

dudt2

= u′dvdt2

= v ′,

(dudt2

= cu′′′ + 3uu′ + vv ′dvdt2

= ∂(uv), · · ·

The last equation is the CNW system.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 18 / 26

Page 80: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Example 4: CNW system of HD typeSpace of funct’s: V = C[u, v±1, u′, v ′, u′′, v ′′]. Three compatible PVA structures:

{uλu}1 = (∂ + 2λ)u , {vλv}1 = 0 , {uλv}1 = (∂ + λ)v , {vλu}1 = λv ,

{uλu}2 = {vλv}2 = λ , {uλv}2 = {vλu}2 = 0 ,

{uλu}3 = λ3 , {vλv}3 = {uλv}3 = {vλu}3 = 0 .

We choose the Hamiltonian operators (for c ∈ C):

H(∂) = H2(∂) + cH3(∂) =

„∂ + c∂3 0

0 ∂

«, K (∂) = H1(∂) =

„u′ + 2u∂ v∂v ′ + v∂ 0

«.

LetR

h0 =R

v ,R

h1 =R u

v .We have: K (∂) δh0

δu = H(∂) δh0δu = K (∂) δh1

δu = 0.Moreover, we have

`C δh0δu ⊕ C δh1

δu

´⊥ ⊂ Im`K (∂)

´.

Hence, we have a new integrable hierarchy:

dudt

= H(∂)δhn−1

δu= K (∂)

δhn

δu, n ≥ 0 .

The first equation of the hierarchy is:

dudt1

= (∂ + c∂3)` 1

v

´,

dvdt1

= −∂` u

v2

´Which we call the CNW system of HD type.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 19 / 26

Page 81: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Example 4: CNW system of HD typeSpace of funct’s: V = C[u, v±1, u′, v ′, u′′, v ′′]. Three compatible PVA structures:

{uλu}1 = (∂ + 2λ)u , {vλv}1 = 0 , {uλv}1 = (∂ + λ)v , {vλu}1 = λv ,

{uλu}2 = {vλv}2 = λ , {uλv}2 = {vλu}2 = 0 ,

{uλu}3 = λ3 , {vλv}3 = {uλv}3 = {vλu}3 = 0 .

We choose the Hamiltonian operators (for c ∈ C):

H(∂) = H2(∂) + cH3(∂) =

„∂ + c∂3 0

0 ∂

«, K (∂) = H1(∂) =

„u′ + 2u∂ v∂v ′ + v∂ 0

«.

LetR

h0 =R

v ,R

h1 =R u

v .We have: K (∂) δh0

δu = H(∂) δh0δu = K (∂) δh1

δu = 0.Moreover, we have

`C δh0δu ⊕ C δh1

δu

´⊥ ⊂ Im`K (∂)

´.

Hence, we have a new integrable hierarchy:

dudt

= H(∂)δhn−1

δu= K (∂)

δhn

δu, n ≥ 0 .

The first equation of the hierarchy is:

dudt1

= (∂ + c∂3)` 1

v

´,

dvdt1

= −∂` u

v2

´Which we call the CNW system of HD type.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 19 / 26

Page 82: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Example 4: CNW system of HD typeSpace of funct’s: V = C[u, v±1, u′, v ′, u′′, v ′′]. Three compatible PVA structures:

{uλu}1 = (∂ + 2λ)u , {vλv}1 = 0 , {uλv}1 = (∂ + λ)v , {vλu}1 = λv ,

{uλu}2 = {vλv}2 = λ , {uλv}2 = {vλu}2 = 0 ,

{uλu}3 = λ3 , {vλv}3 = {uλv}3 = {vλu}3 = 0 .

We choose the Hamiltonian operators (for c ∈ C):

H(∂) = H2(∂) + cH3(∂) =

„∂ + c∂3 0

0 ∂

«, K (∂) = H1(∂) =

„u′ + 2u∂ v∂v ′ + v∂ 0

«.

LetR

h0 =R

v ,R

h1 =R u

v .We have: K (∂) δh0

δu = H(∂) δh0δu = K (∂) δh1

δu = 0.Moreover, we have

`C δh0δu ⊕ C δh1

δu

´⊥ ⊂ Im`K (∂)

´.

Hence, we have a new integrable hierarchy:

dudt

= H(∂)δhn−1

δu= K (∂)

δhn

δu, n ≥ 0 .

The first equation of the hierarchy is:

dudt1

= (∂ + c∂3)` 1

v

´,

dvdt1

= −∂` u

v2

´Which we call the CNW system of HD type.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 19 / 26

Page 83: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Example 4: CNW system of HD typeSpace of funct’s: V = C[u, v±1, u′, v ′, u′′, v ′′]. Three compatible PVA structures:

{uλu}1 = (∂ + 2λ)u , {vλv}1 = 0 , {uλv}1 = (∂ + λ)v , {vλu}1 = λv ,

{uλu}2 = {vλv}2 = λ , {uλv}2 = {vλu}2 = 0 ,

{uλu}3 = λ3 , {vλv}3 = {uλv}3 = {vλu}3 = 0 .

We choose the Hamiltonian operators (for c ∈ C):

H(∂) = H2(∂) + cH3(∂) =

„∂ + c∂3 0

0 ∂

«, K (∂) = H1(∂) =

„u′ + 2u∂ v∂v ′ + v∂ 0

«.

LetR

h0 =R

v ,R

h1 =R u

v .We have: K (∂) δh0

δu = H(∂) δh0δu = K (∂) δh1

δu = 0.Moreover, we have

`C δh0δu ⊕ C δh1

δu

´⊥ ⊂ Im`K (∂)

´.

Hence, we have a new integrable hierarchy:

dudt

= H(∂)δhn−1

δu= K (∂)

δhn

δu, n ≥ 0 .

The first equation of the hierarchy is:

dudt1

= (∂ + c∂3)` 1

v

´,

dvdt1

= −∂` u

v2

´Which we call the CNW system of HD type.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 19 / 26

Page 84: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Example 4: CNW system of HD typeSpace of funct’s: V = C[u, v±1, u′, v ′, u′′, v ′′]. Three compatible PVA structures:

{uλu}1 = (∂ + 2λ)u , {vλv}1 = 0 , {uλv}1 = (∂ + λ)v , {vλu}1 = λv ,

{uλu}2 = {vλv}2 = λ , {uλv}2 = {vλu}2 = 0 ,

{uλu}3 = λ3 , {vλv}3 = {uλv}3 = {vλu}3 = 0 .

We choose the Hamiltonian operators (for c ∈ C):

H(∂) = H2(∂) + cH3(∂) =

„∂ + c∂3 0

0 ∂

«, K (∂) = H1(∂) =

„u′ + 2u∂ v∂v ′ + v∂ 0

«.

LetR

h0 =R

v ,R

h1 =R u

v .We have: K (∂) δh0

δu = H(∂) δh0δu = K (∂) δh1

δu = 0.Moreover, we have

`C δh0δu ⊕ C δh1

δu

´⊥ ⊂ Im`K (∂)

´.

Hence, we have a new integrable hierarchy:

dudt

= H(∂)δhn−1

δu= K (∂)

δhn

δu, n ≥ 0 .

The first equation of the hierarchy is:

dudt1

= (∂ + c∂3)` 1

v

´,

dvdt1

= −∂` u

v2

´Which we call the CNW system of HD type.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 19 / 26

Page 85: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Outline

1 Poisson vertex algebras

2 Hamiltonian equations associated to a PVA

3 Symplectic operators (and Dirac structures)

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 20 / 26

Page 86: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Definition A symplectic structure S on V is a λ-bracket

f ⊗ g 7→ 〈fλg〉S ∈ V[λ]

satisying the following axioms:Leibniz rule: 〈fλgh〉S = 〈fλg〉Sh + 〈fλh〉Sgsesquilinearity: 〈∂fλg〉S = −λ〈fλg〉S, 〈fλ∂g〉S = (∂ + λ)〈fλg〉S

skew-simmetry: 〈gλf 〉S = −〈f−λ−∂g〉S

symplectic identity:

{uiλ〈ujµuk 〉S}B − {ujµ〈uiλuk 〉S}B + {〈uiλuj〉Sλ+µuk}B = 0 ∀i , j , k

where {· λ ·}B is the Beltrami λ-bracket, defined by {uiλuj}B = δi,jand extended to V by sesquilinearity, symmetry and Leibniz rules.

Note: it suffices to define the λ-bracket on generators: 〈uiλuj〉S = Sji(λ) (this is thesymplectic operator ) and extend it by sesquilinearity and the Leibniz rules.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 21 / 26

Page 87: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Definition A symplectic structure S on V is a λ-bracket

f ⊗ g 7→ 〈fλg〉S ∈ V[λ]

satisying the following axioms:Leibniz rule: 〈fλgh〉S = 〈fλg〉Sh + 〈fλh〉Sgsesquilinearity: 〈∂fλg〉S = −λ〈fλg〉S, 〈fλ∂g〉S = (∂ + λ)〈fλg〉S

skew-simmetry: 〈gλf 〉S = −〈f−λ−∂g〉S

symplectic identity:

{uiλ〈ujµuk 〉S}B − {ujµ〈uiλuk 〉S}B + {〈uiλuj〉Sλ+µuk}B = 0 ∀i , j , k

where {· λ ·}B is the Beltrami λ-bracket, defined by {uiλuj}B = δi,jand extended to V by sesquilinearity, symmetry and Leibniz rules.

Note: it suffices to define the λ-bracket on generators: 〈uiλuj〉S = Sji(λ) (this is thesymplectic operator ) and extend it by sesquilinearity and the Leibniz rules.

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 21 / 26

Page 88: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Basic Lemma:we have a Lie algebra structure on the space of Hamiltonian functionals

F(S) =nR

f ∈ V/∂V˛δfδu

= S(∂)P , for some P ∈ V`o,

with Lie bracket given by

{R

f ,R

g}S =R

P · δgδu

, where S(∂)P =δfδu

.

Definitions:Hamiltonian equation (w.r.t. sympl. str. 〈· λ ·〉S and Ham.. funct.∫

h):dudt

= P , where S(∂)P =δhδu

.

Integral of motion (for a Hamilt. eq.):∫

f ∈ F(S) s.t.

ddtR

f = {R

h,R

f}S = 0 .

Integrability: ∃ infinite sequence∫

h0 =∫

h,∫

h1∫

h2 · · · ∈ F(S) s.t.

{R

hm,R

hn}SS = 0 , ∀m, n .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 22 / 26

Page 89: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Basic Lemma:we have a Lie algebra structure on the space of Hamiltonian functionals

F(S) =nR

f ∈ V/∂V˛δfδu

= S(∂)P , for some P ∈ V`o,

with Lie bracket given by

{R

f ,R

g}S =R

P · δgδu

, where S(∂)P =δfδu

.

Definitions:Hamiltonian equation (w.r.t. sympl. str. 〈· λ ·〉S and Ham.. funct.∫

h):dudt

= P , where S(∂)P =δhδu

.

Integral of motion (for a Hamilt. eq.):∫

f ∈ F(S) s.t.

ddtR

f = {R

h,R

f}S = 0 .

Integrability: ∃ infinite sequence∫

h0 =∫

h,∫

h1∫

h2 · · · ∈ F(S) s.t.

{R

hm,R

hn}SS = 0 , ∀m, n .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 22 / 26

Page 90: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme for symplectic operators)Assumptions:

1 V is a normal algebra of differential functions.2 Two compatible symplectic stcuctures on V: 〈· λ ·〉S and 〈· λ ·〉T .3 non-degeneracy condition holds for S,T .4 Let

∫h0,∫

h1 ∈ F(S) be s.t. δh0δu = S(∂)P0 , δh1

δu = T (∂)P0.

5 Orthogonality condition:(CP0)⊥ ⊂ Im

(S(∂)

).

Then: ∃ infinite sequences∫

h0,∫

h1,∫

h2, · · · ∈ F(S), andP0,P1,P2, · · · ∈ V`, such that

S(∂)Pn = T (∂)Pn−1 =δhn

δu∀n ≥ 1 .

In particular, {∫

hm,∫

hn}S = {∫

hm,∫

hn}T = 0 , ∀m,n ≥ 0. and we have anintegrable hierarchy of Hamiltonian eq.’s

dui

dtn= Pn .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 23 / 26

Page 91: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme for symplectic operators)Assumptions:

1 V is a normal algebra of differential functions.2 Two compatible symplectic stcuctures on V: 〈· λ ·〉S and 〈· λ ·〉T .3 non-degeneracy condition holds for S,T .4 Let

∫h0,∫

h1 ∈ F(S) be s.t. δh0δu = S(∂)P0 , δh1

δu = T (∂)P0.

5 Orthogonality condition:(CP0)⊥ ⊂ Im

(S(∂)

).

Then: ∃ infinite sequences∫

h0,∫

h1,∫

h2, · · · ∈ F(S), andP0,P1,P2, · · · ∈ V`, such that

S(∂)Pn = T (∂)Pn−1 =δhn

δu∀n ≥ 1 .

In particular, {∫

hm,∫

hn}S = {∫

hm,∫

hn}T = 0 , ∀m,n ≥ 0. and we have anintegrable hierarchy of Hamiltonian eq.’s

dui

dtn= Pn .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 23 / 26

Page 92: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme for symplectic operators)Assumptions:

1 V is a normal algebra of differential functions.2 Two compatible symplectic stcuctures on V: 〈· λ ·〉S and 〈· λ ·〉T .

compatible:

(i)R

F · P =R

F ′ · P′ ∀P,P′ s.t. S(∂)P = T (∂)P′

⇒ ∃Q s.t. F = S(∂)Q, F ′ = T (∂)Q

(ii)R `

LP1 S(∂)P2´P′3 +

R `LP′1

S(∂)P2´P3 + (cyclic permut’s) = 0

∀Pi ,P′i s.t. S(∂)Pi = T (∂)P′i , i = 1, 2, 3 .

3 non-degeneracy condition holds for S,T .4 Let

∫h0,∫

h1 ∈ F(S) be s.t. δh0δu = S(∂)P0 , δh1

δu = T (∂)P0.5 Orthogonality condition:

(CP0)⊥ ⊂ Im

(S(∂)

).

Then: ∃ infinite sequences∫

h0,∫

h1,∫

h2, · · · ∈ F(S), andP0,P1,P2, · · · ∈ V`, such that

S(∂)Pn = T (∂)Pn−1 =δhn

δu∀n ≥ 1 .

In particular, {∫

hm,∫

hn}S = {∫

hm,∫

hn}T = 0 , ∀m,n ≥ 0. and we have anintegrable hierarchy of Hamiltonian eq.’s

dui

dtn= Pn .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 23 / 26

Page 93: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme for symplectic operators)Assumptions:

1 V is a normal algebra of differential functions.2 Two compatible symplectic stcuctures on V: 〈· λ ·〉S and 〈· λ ·〉T .3 non-degeneracy condition holds for S,T .4 Let

∫h0,∫

h1 ∈ F(S) be s.t. δh0δu = S(∂)P0 , δh1

δu = T (∂)P0.

5 Orthogonality condition:(CP0)⊥ ⊂ Im

(S(∂)

).

Then: ∃ infinite sequences∫

h0,∫

h1,∫

h2, · · · ∈ F(S), andP0,P1,P2, · · · ∈ V`, such that

S(∂)Pn = T (∂)Pn−1 =δhn

δu∀n ≥ 1 .

In particular, {∫

hm,∫

hn}S = {∫

hm,∫

hn}T = 0 , ∀m,n ≥ 0. and we have anintegrable hierarchy of Hamiltonian eq.’s

dui

dtn= Pn .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 23 / 26

Page 94: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme for symplectic operators)Assumptions:

1 V is a normal algebra of differential functions.2 Two compatible symplectic stcuctures on V: 〈· λ ·〉S and 〈· λ ·〉T .3 non-degeneracy condition holds for S,T .

Def: S,T satisfy the non-degeneracy condition:RQ`DF (∂)− D∗F (∂)

´P = 0∀P,Qs.t .T (∂)P,T (∂)Q ∈ Im (S(∂))⇒ DF (∂) = D∗F (∂) .

(This is a weak, technical condition, which is usually easy to prove.)

4 Let∫

h0,∫

h1 ∈ F(S) be s.t. δh0δu = S(∂)P0 , δh1

δu = T (∂)P0.5 Orthogonality condition:

(CP0)⊥ ⊂ Im

(S(∂)

).

Then: ∃ infinite sequences∫

h0,∫

h1,∫

h2, · · · ∈ F(S), andP0,P1,P2, · · · ∈ V`, such that

S(∂)Pn = T (∂)Pn−1 =δhn

δu∀n ≥ 1 .

In particular, {∫

hm,∫

hn}S = {∫

hm,∫

hn}T = 0 , ∀m,n ≥ 0. and we have anintegrable hierarchy of Hamiltonian eq.’s

dui

dtn= Pn .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 23 / 26

Page 95: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme for symplectic operators)Assumptions:

1 V is a normal algebra of differential functions.2 Two compatible symplectic stcuctures on V: 〈· λ ·〉S and 〈· λ ·〉T .3 non-degeneracy condition holds for S,T .

Def: S,T satisfy the non-degeneracy condition:RQ`DF (∂)− D∗F (∂)

´P = 0∀P,Qs.t .T (∂)P,T (∂)Q ∈ Im (S(∂))⇒ DF (∂) = D∗F (∂) .

(This is a weak, technical condition, which is usually easy to prove.)

4 Let∫

h0,∫

h1 ∈ F(S) be s.t. δh0δu = S(∂)P0 , δh1

δu = T (∂)P0.5 Orthogonality condition:

(CP0)⊥ ⊂ Im

(S(∂)

).

Then: ∃ infinite sequences∫

h0,∫

h1,∫

h2, · · · ∈ F(S), andP0,P1,P2, · · · ∈ V`, such that

S(∂)Pn = T (∂)Pn−1 =δhn

δu∀n ≥ 1 .

In particular, {∫

hm,∫

hn}S = {∫

hm,∫

hn}T = 0 , ∀m,n ≥ 0. and we have anintegrable hierarchy of Hamiltonian eq.’s

dui

dtn= Pn .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 23 / 26

Page 96: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme for symplectic operators)Assumptions:

1 V is a normal algebra of differential functions.2 Two compatible symplectic stcuctures on V: 〈· λ ·〉S and 〈· λ ·〉T .3 non-degeneracy condition holds for S,T .4 Let

∫h0,∫

h1 ∈ F(S) be s.t. δh0δu = S(∂)P0 , δh1

δu = T (∂)P0.

5 Orthogonality condition:(CP0)⊥ ⊂ Im

(S(∂)

).

Then: ∃ infinite sequences∫

h0,∫

h1,∫

h2, · · · ∈ F(S), andP0,P1,P2, · · · ∈ V`, such that

S(∂)Pn = T (∂)Pn−1 =δhn

δu∀n ≥ 1 .

In particular, {∫

hm,∫

hn}S = {∫

hm,∫

hn}T = 0 , ∀m,n ≥ 0. and we have anintegrable hierarchy of Hamiltonian eq.’s

dui

dtn= Pn .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 23 / 26

Page 97: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme for symplectic operators)Assumptions:

1 V is a normal algebra of differential functions.2 Two compatible symplectic stcuctures on V: 〈· λ ·〉S and 〈· λ ·〉T .3 non-degeneracy condition holds for S,T .4 Let

∫h0,∫

h1 ∈ F(S) be s.t. δh0δu = S(∂)P0 , δh1

δu = T (∂)P0.

Note: it gives an evolution equation

dui

dt= P0 ,

which is in Hamiltonian forms w.r.t. both S and T :

5 Orthogonality condition:(CP0)⊥ ⊂ Im

(S(∂)

).

Then: ∃ infinite sequences∫

h0,∫

h1,∫

h2, · · · ∈ F(S), andP0,P1,P2, · · · ∈ V`, such that

S(∂)Pn = T (∂)Pn−1 =δhn

δu∀n ≥ 1 .

In particular, {∫

hm,∫

hn}S = {∫

hm,∫

hn}T = 0 , ∀m,n ≥ 0. and we have anintegrable hierarchy of Hamiltonian eq.’s

dui

dtn= Pn .A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 23 / 26

Page 98: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme for symplectic operators)Assumptions:

1 V is a normal algebra of differential functions.2 Two compatible symplectic stcuctures on V: 〈· λ ·〉S and 〈· λ ·〉T .3 non-degeneracy condition holds for S,T .4 Let

∫h0,∫

h1 ∈ F(S) be s.t. δh0δu = S(∂)P0 , δh1

δu = T (∂)P0.

5 Orthogonality condition:(CP0)⊥ ⊂ Im

(S(∂)

).

Then: ∃ infinite sequences∫

h0,∫

h1,∫

h2, · · · ∈ F(S), andP0,P1,P2, · · · ∈ V`, such that

S(∂)Pn = T (∂)Pn−1 =δhn

δu∀n ≥ 1 .

In particular, {∫

hm,∫

hn}S = {∫

hm,∫

hn}T = 0 , ∀m,n ≥ 0. and we have anintegrable hierarchy of Hamiltonian eq.’s

dui

dtn= Pn .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 23 / 26

Page 99: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme for symplectic operators)Assumptions:

1 V is a normal algebra of differential functions.2 Two compatible symplectic stcuctures on V: 〈· λ ·〉S and 〈· λ ·〉T .3 non-degeneracy condition holds for S,T .4 Let

∫h0,∫

h1 ∈ F(S) be s.t. δh0δu = S(∂)P0 , δh1

δu = T (∂)P0.5 Orthogonality condition:

(CP0)⊥ ⊂ Im

(S(∂)

).

Notation: the orthogonality relation is: F ⊥ P ⇔R

F · P = 0.

Then: ∃ infinite sequences∫

h0,∫

h1,∫

h2, · · · ∈ F(S), andP0,P1,P2, · · · ∈ V`, such that

S(∂)Pn = T (∂)Pn−1 =δhn

δu∀n ≥ 1 .

In particular, {∫

hm,∫

hn}S = {∫

hm,∫

hn}T = 0 , ∀m,n ≥ 0. and we have anintegrable hierarchy of Hamiltonian eq.’s

dui

dtn= Pn .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 23 / 26

Page 100: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme for symplectic operators)Assumptions:

1 V is a normal algebra of differential functions.2 Two compatible symplectic stcuctures on V: 〈· λ ·〉S and 〈· λ ·〉T .3 non-degeneracy condition holds for S,T .4 Let

∫h0,∫

h1 ∈ F(S) be s.t. δh0δu = S(∂)P0 , δh1

δu = T (∂)P0.

5 Orthogonality condition:(CP0)⊥ ⊂ Im

(S(∂)

).

Then: ∃ infinite sequences∫

h0,∫

h1,∫

h2, · · · ∈ F(S), andP0,P1,P2, · · · ∈ V`, such that

S(∂)Pn = T (∂)Pn−1 =δhn

δu∀n ≥ 1 .

In particular, {∫

hm,∫

hn}S = {∫

hm,∫

hn}T = 0 , ∀m,n ≥ 0. and we have anintegrable hierarchy of Hamiltonian eq.’s

dui

dtn= Pn .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 23 / 26

Page 101: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Theorem: (Lenard scheme for symplectic operators)Assumptions:

1 V is a normal algebra of differential functions.2 Two compatible symplectic stcuctures on V: 〈· λ ·〉S and 〈· λ ·〉T .3 non-degeneracy condition holds for S,T .4 Let

∫h0,∫

h1 ∈ F(S) be s.t. δh0δu = S(∂)P0 , δh1

δu = T (∂)P0.

5 Orthogonality condition:(CP0)⊥ ⊂ Im

(S(∂)

).

Then: ∃ infinite sequences∫

h0,∫

h1,∫

h2, · · · ∈ F(S), andP0,P1,P2, · · · ∈ V`, such that

S(∂)Pn = T (∂)Pn−1 =δhn

δu∀n ≥ 1 .

In particular, {∫

hm,∫

hn}S = {∫

hm,∫

hn}T = 0 , ∀m,n ≥ 0. and we have anintegrable hierarchy of Hamiltonian eq.’s

dui

dtn= Pn .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 23 / 26

Page 102: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Example: KN equationSpace of functions: C[u,u′,u′′, . . . ] ⊂ V. Equation:

dudt

= u′′′ − 32

(u′′)2

u′= P1 .

It is associated to two symplectic structures:

〈uλu〉S =1u′

(∂ + λ)1u′

, 〈uλu〉T = (∂ + λ)1u′

(∂ + λ)1u′λ

Indeed, we have:

S(∂)P =δh0

δu,R

h0 =12

R (u′′)2

(u′)2, T (∂)P =

δh1

δu,R

h1 =R “−

12

(u′′′)2

(u′)2+

38

(u′′)4

(u′)4

”.

We also have, letting P0 = u′,

S(∂)P0 = 0 , T (∂)P0 = S(∂)P1 =δ

δuR

h0 .

All assumptions of the Theorem hold. In particular, the orthogonality condition reads:`CP0´⊥ = (u′)⊥ =

1u′∂V = Im

`S(∂)

´.

Conclusion: the KN equation is integrable.A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 24 / 26

Page 103: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Example: KN equationSpace of functions: C[u,u′,u′′, . . . ] ⊂ V. Equation:

dudt

= u′′′ − 32

(u′′)2

u′= P1 .

It is associated to two symplectic structures:

〈uλu〉S =1u′

(∂ + λ)1u′

, 〈uλu〉T = (∂ + λ)1u′

(∂ + λ)1u′λ

Indeed, we have:

S(∂)P =δh0

δu,R

h0 =12

R (u′′)2

(u′)2, T (∂)P =

δh1

δu,R

h1 =R “−

12

(u′′′)2

(u′)2+

38

(u′′)4

(u′)4

”.

We also have, letting P0 = u′,

S(∂)P0 = 0 , T (∂)P0 = S(∂)P1 =δ

δuR

h0 .

All assumptions of the Theorem hold. In particular, the orthogonality condition reads:`CP0´⊥ = (u′)⊥ =

1u′∂V = Im

`S(∂)

´.

Conclusion: the KN equation is integrable.A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 24 / 26

Page 104: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Example: KN equationSpace of functions: C[u,u′,u′′, . . . ] ⊂ V. Equation:

dudt

= u′′′ − 32

(u′′)2

u′= P1 .

It is associated to two symplectic structures:

〈uλu〉S =1u′

(∂ + λ)1u′

, 〈uλu〉T = (∂ + λ)1u′

(∂ + λ)1u′λ

Indeed, we have:

S(∂)P =δh0

δu,R

h0 =12

R (u′′)2

(u′)2, T (∂)P =

δh1

δu,R

h1 =R “−

12

(u′′′)2

(u′)2+

38

(u′′)4

(u′)4

”.

We also have, letting P0 = u′,

S(∂)P0 = 0 , T (∂)P0 = S(∂)P1 =δ

δuR

h0 .

All assumptions of the Theorem hold. In particular, the orthogonality condition reads:`CP0´⊥ = (u′)⊥ =

1u′∂V = Im

`S(∂)

´.

Conclusion: the KN equation is integrable.A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 24 / 26

Page 105: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Example: KN equationSpace of functions: C[u,u′,u′′, . . . ] ⊂ V. Equation:

dudt

= u′′′ − 32

(u′′)2

u′= P1 .

It is associated to two symplectic structures:

〈uλu〉S =1u′

(∂ + λ)1u′

, 〈uλu〉T = (∂ + λ)1u′

(∂ + λ)1u′λ

Indeed, we have:

S(∂)P =δh0

δu,R

h0 =12

R (u′′)2

(u′)2, T (∂)P =

δh1

δu,R

h1 =R “−

12

(u′′′)2

(u′)2+

38

(u′′)4

(u′)4

”.

We also have, letting P0 = u′,

S(∂)P0 = 0 , T (∂)P0 = S(∂)P1 =δ

δuR

h0 .

All assumptions of the Theorem hold. In particular, the orthogonality condition reads:`CP0´⊥ = (u′)⊥ =

1u′∂V = Im

`S(∂)

´.

Conclusion: the KN equation is integrable.A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 24 / 26

Page 106: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Example: KN equationSpace of functions: C[u,u′,u′′, . . . ] ⊂ V. Equation:

dudt

= u′′′ − 32

(u′′)2

u′= P1 .

It is associated to two symplectic structures:

〈uλu〉S =1u′

(∂ + λ)1u′

, 〈uλu〉T = (∂ + λ)1u′

(∂ + λ)1u′λ

Indeed, we have:

S(∂)P =δh0

δu,R

h0 =12

R (u′′)2

(u′)2, T (∂)P =

δh1

δu,R

h1 =R “−

12

(u′′′)2

(u′)2+

38

(u′′)4

(u′)4

”.

We also have, letting P0 = u′,

S(∂)P0 = 0 , T (∂)P0 = S(∂)P1 =δ

δuR

h0 .

All assumptions of the Theorem hold. In particular, the orthogonality condition reads:`CP0´⊥ = (u′)⊥ =

1u′∂V = Im

`S(∂)

´.

Conclusion: the KN equation is integrable.A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 24 / 26

Page 107: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Example: KN equationSpace of functions: C[u,u′,u′′, . . . ] ⊂ V. Equation:

dudt

= u′′′ − 32

(u′′)2

u′= P1 .

It is associated to two symplectic structures:

〈uλu〉S =1u′

(∂ + λ)1u′

, 〈uλu〉T = (∂ + λ)1u′

(∂ + λ)1u′λ

Indeed, we have:

S(∂)P =δh0

δu,R

h0 =12

R (u′′)2

(u′)2, T (∂)P =

δh1

δu,R

h1 =R “−

12

(u′′′)2

(u′)2+

38

(u′′)4

(u′)4

”.

We also have, letting P0 = u′,

S(∂)P0 = 0 , T (∂)P0 = S(∂)P1 =δ

δuR

h0 .

All assumptions of the Theorem hold. In particular, the orthogonality condition reads:`CP0´⊥ = (u′)⊥ =

1u′∂V = Im

`S(∂)

´.

Conclusion: the KN equation is integrable.A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 24 / 26

Page 108: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

Dirac structures and the KN equation

The notion of Dirac structure is a generalization which includes boththe Hamiltonian and the symplectic structures.

Also for Dirac structures one can develop the whole theory, includingthe Lenard scheme of integrability.

One proves integrability of the Non-Linear Schroedinger system:{ dudt = v ′′ + 2v(u2 + v2) ,dvdt = −u′′ − 2u(u2 + v2) .

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 25 / 26

Page 109: Poisson vertex algebras in the theory of Hamiltonian equationsdesole/talks/talks_files/...Outline 1 Poisson vertex algebras 2 Hamiltonian equations associated to a PVA 3 Symplectic

The End

Auguri, Corrado!

A. De Sole (Univ. di Roma 1) PVA’s & Hamiltonian eq’s Cortona 15/6/2009 26 / 26