pmf analysis of ams data: newstrategiescires1.colorado.edu/.../usrmtgs/usersmtg18/pmf_qi_zhang.pdfqi...

10
5/10/2017 1 Ge, X., Q. Zhang, Y. Sun, C. R. Ruehl, and A. Setyan (2012), Effect of Aqueous-Phase Processing on Aerosol Chemistry and Size Distribution in Fresno, California, during Wintertime, Environmental Chemistry, 9(3), 221-235, doi:10.1071/EN11168. PMF Analysis of AMS Data: New Strategies Qi Zhang University of California, Davis May 11, 2017, AMS Users’ Meeting ‐‐ Beijing

Upload: others

Post on 19-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PMF Analysis of AMS Data: NewStrategiescires1.colorado.edu/.../UsrMtgs/UsersMtg18/PMF_Qi_Zhang.pdfQi Zhang University of California, Davis May 11, 2017, AMS Users’ Meeting ‐‐Beijing

5/10/2017

1

Ge, X., Q. Zhang, Y. Sun, C. R. Ruehl, and A. Setyan (2012), Effect of Aqueous-Phase Processing on Aerosol Chemistry and Size Distribution in Fresno, California, during Wintertime, Environmental Chemistry, 9(3), 221-235, doi:10.1071/EN11168.

PMF Analysis of AMS Data: New Strategies

Qi Zhang

University of California, Davis

May 11, 2017, AMS Users’ Meeting ‐‐ Beijing

Page 2: PMF Analysis of AMS Data: NewStrategiescires1.colorado.edu/.../UsrMtgs/UsersMtg18/PMF_Qi_Zhang.pdfQi Zhang University of California, Davis May 11, 2017, AMS Users’ Meeting ‐‐Beijing

5/10/2017

2

Two methods 

• Analysis of combined organic and inorganic ions  • Include good S/N inorganic ions (NO+, NO2

+, NH2+, NH3

+, SO+, SO2+…)

• to better extract physically meaningful factors and reduce mixing of factors. 

• Additional inorganic signal to assist interpretation of factors.

• Rolling window analysis of long term data 

Biomass Burning Observation Project (BBOP)

46 46

45 45

44 44

43 43

42 42

41 41

40 40

-126

-126

-125

-125

-124

-124

-123

-123

-122

-122

-121

-121

-120

-120

MBO7/31/2013

8/5/2013

8/10/2013

8/15/2013

8/20/2013

Date

OREGON

CALIFORNIA

MODIS Fire Dots (Size: FRP, Color: Date) (Markers: 3 hours)

MBO Location

46 46

45 45

44 44

43 43

42 42

41 41

40 40

-126

-126

-125

-125

-124

-124

-123

-123

-122

-122

-121

-121

-120

-120

Douglas Fire Complex

Salmon River Fire Complex

Whiskey Fire Complex

MBO7/31/2013

8/5/2013

8/10/2013

8/15/2013

8/20/2013

Date

OREGON

CALIFORNIA

MODIS Fire Dots (Size: FRP, Color: Date) (Markers: 3 hours)

MBO Location 7 320 630 942 1250 1570 1880

Fire Radiative Power

46 46

45 45

44 44

43 43

42 42

41 41

40 40

-126

-126

-125

-125

-124

-124

-123

-123

-122

-122

-121

-121

-120

-120

MBO7/31/2013

8/5/2013

8/10/2013

8/15/2013

8/20/2013

Date

OREGON

CALIFORNIA

MODIS Fire Dots (Size: FRP, Color: Date) (Markers: 3 hours)

MBO Location G1 08/06 G1 08/16

0 - 5 5 - 10 10 - 15 15 - 20 20+

ws (m/s)

0

20

40

20 40

0

90

180

270

Mt. Bachelor Observatory (MBO)

Page 3: PMF Analysis of AMS Data: NewStrategiescires1.colorado.edu/.../UsrMtgs/UsersMtg18/PMF_Qi_Zhang.pdfQi Zhang University of California, Davis May 11, 2017, AMS Users’ Meeting ‐‐Beijing

5/10/2017

3

100

80

60

40

20

0

O3

(ppb

v)

10

8

6

4

2

0

PA

SP

abs

600

500

400

300

200

100

0

CO

(ppb

v)

600

400

200

0

sp (M

m-1)

100

50

0

RH

(%)

120

80

40

0

Org

ani

c (µ

g/m

3)

1.0

0.8

0.6

0.4

0.2

0.0

% o

f N

R-P

M1

20x10-3

15

10

5

0

f 60

2010

0

T(°

C)

250

0

WD

6

4

2

0

Inorg

anics (µg/m

3)

7/27/13 7/30/13 8/2/13 8/5/13 8/8/13 8/11/13 8/14/13 8/17/13 8/20/13 8/23/13

SO42-

NO3-

NH4+

Cl-

151050

ws (m

/s)

Org SO42-

NH4+ NO3

2- Cl

-

Org

Observations at MBO during BBOP

BB indicator

Zhou et al., ACP, 2017

73.4%

21.4%

1.2% 3.7%

0.3%

No BB: 1.46µg/m3

94.6%

2.4% 1.4% 1.5% 0.1%

BB Plume: 17.5 µg/m3

07/27 7/29

Date (PST), 2013

8/18 8/20

10

5

0

Org

anic

sN

O3 (

x 5

0)

40

20

0

MS

AB

L-O

OA

(x5)

10

5

0

NR

-PM

1 3020100

5

50

nm

(m M

-1, stp)

1.0

0.5

0 0

SO

4

NH

4 (

x 3

) 4

2

0

FT

-OO

A

8

4

0

WV

(g/kg)

100

50

0CO

(pp

bv) b)

c)

d)

e)

120

80

40

0

(R

esid

2 /2 )/

Qex

p

8/2/2013 8/5/2013 8/8/2013 8/11/2013 8/14/2013 8/17/2013 8/20/2013 8/23/2013Date

120

80

40

0

(R

esid

2 /2 )/

Qex

p

8/2/2013 8/5/2013 8/8/2013 8/11/2013 8/14/2013 8/17/2013 8/20/2013 8/23/2013Date

Residual Ratios TS

4

5

6

7

5 factor solution further grabbed some info in TS

120

80

40

0

(R

esid

2 /2 )/

Qex

p

8/2/2013 8/5/2013 8/8/2013 8/11/2013 8/14/2013 8/17/2013 8/20/2013 8/23/2013Date

40302010

0

(R

esid

2 /2 )/

Qex

p

8/2/2013 8/5/2013 8/8/2013 8/11/2013 8/14/2013 8/17/2013 8/20/2013 8/23/2013Date

4.5

4.0

3.5

3.0

2.5

2.0

Q/Q

expe

cte

d

8765432

Q for fPeak 0 Current Solution min Q for p

PMF on organic ions only

Page 4: PMF Analysis of AMS Data: NewStrategiescires1.colorado.edu/.../UsrMtgs/UsersMtg18/PMF_Qi_Zhang.pdfQi Zhang University of California, Davis May 11, 2017, AMS Users’ Meeting ‐‐Beijing

5/10/2017

4

150

100

50

0

(R

esid

2 /2 )/

Qex

p

120110100908070605040302010

m/z

CxHy CxHyO1 CxHyO2 HyO1

CxHyNpCxHyOzNpCHOS

Residual Ratio m/z

5 factor grabbed 60

4

5

6

7

150

100

50

0

(Re

sid2 /

2 )/Q

exp

120110100908070605040302010

m/z

CxHy CxHyO1 CxHyO2 HyO1

CxHyNpCxHyOzNpCHOS

150

100

50

0

(R

esid

2 /2 )/

Qex

p

120110100908070605040302010

m/z

CxHy CxHyO1 CxHyO2 HyO1

CxHyNpCxHyOzNpCHOS

150

100

50

0

(R

esi

d2 /2 )/

Qex

p

120110100908070605040302010

m/z

CxHy CxHyO1 CxHyO2 HyO1

CxHyNpCxHyOzNpCHOS

PMF on organic ions only

1.0

0.8

0.6

0.4

0.2

0.0

%

8/1/13 8/6/13 8/11/13 8/16/13 8/21/13

Date&Time (PDT)

1086420

8/1/13 8/6/13 8/11/13 8/16/13 8/21/13Date&Time (PDT)

12

8

4

0

30

20

10

0

2520151050

Factor 1

Factor 2

Factor 3

Factor 4

Mas

s C

onc.

g m

-3)

6

4

2

0

2220181614121086420

Hour of Day (PDT)

6

4

2

0

1086420

6

4

2

0

Mas

s C

onc

. (µ

g m

-3)

1.0

0.8

0.6

0.4

0.2

0.0

Mas

s F

ract

ion

fact

or1

fact

or2

fact

or3

fact

or4

CxHy

CxHyO1 CxHyO2 HyO1 CxHyNp

CxHyOzNp

CHOS

10

5

0

100908070605040302010

m/z (amu)

20

10

0

10

5

0

86420

Factor 1O/C = 0.62, H/C = 1.35, N/C = 0.002, OM/OC = 1.94

Factor 2O/C = 0.92, H/C = 1.07, N/C = 0.002, OM/OC = 2.32

Factor 3O/C = 0.58, H/C = 1.36, N/C = 0.004, OM/OC = 1.89

Factor 4O/C = 0.20, H/C = 1.53, N/C = 0.002, OM/OC = 1.40

% o

f to

tal

CxHy CxHyO1 CxHyO2 HyO1

CxHyNpCxHyOzNp CHOS

Fresh‐BBOA, best correlate withCH ions m/z >130. Some CHN likely directly emitted

Medium oxidized‐BBOA,Best correlate with CHO(2) ions

fairly oxidized OA, influence by BBBest correlate with CO2 and Ions m/z < 50 

BL driven OA. little Phenolic dimer

Org‐only PMF: p=4

Page 5: PMF Analysis of AMS Data: NewStrategiescires1.colorado.edu/.../UsrMtgs/UsersMtg18/PMF_Qi_Zhang.pdfQi Zhang University of California, Davis May 11, 2017, AMS Users’ Meeting ‐‐Beijing

5/10/2017

5

1.0

0.8

0.6

0.4

0.2

0.0

Mas

s F

ract

ion

fact

or1

fact

or2

fact

or3

fact

or4

fact

or5

CxHy

CxHyO1 CxHyO2 HyO1 CxHyNp

CxHyOzNp

CHOS

543210

2220181614121086420

Hour of Day (PDT)

86420

6

4

2

0

86420

3.0

2.0

1.0

0.0

Mas

s C

onc

. (µ

g m

-3)

1.0

0.8

0.6

0.4

0.2

0.0

%

8/1/13 8/6/13 8/11/13 8/16/13 8/21/13

Date&Time (PDT)

6420

8/1/13 8/6/13 8/11/13 8/16/13 8/21/13Date&Time (PDT)

151050

12

8

4

0

403020100

12

8

4

0

Factor 1

Factor 2

Factor 3

Factor 4

Factor 5

Mas

s C

onc.

g m

-3)

10

5

0

100908070605040302010

m/z (amu)

20151050

15

10

5

0

6

4

2

0

6420

Factor 1O/C = 0.57, H/C = 1.34, N/C = 0.001, OM/OC = 1.88

Factor 2O/C = 0.86, H/C = 1.11, N/C = 0.001, OM/OC = 2.24

Factor 3O/C = 0.76, H/C = 1.34, N/C = 0.006, OM/OC = 2.14

Factor 4O/C = 0.39, H/C = 1.45, N/C = 0.002, OM/OC = 1.65

Factor 5O/C = 0.16, H/C = 1.52, N/C = 0.005, OM/OC = 1.35

% o

f to

tal

CxHy CxHyO1 CxHyO2 HyO1

CxHyNpCxHyOzNp CHOS

Fresh BBOA

SV‐BBOA

Correlate well with CHO3 ions > 100

Correlate better with small m/z

BL driven. little Phenolic dimer

Org‐only PMF: p=5

15

10

5

0

% o

f to

tal

100908070605040302010m/z (amu)

15

10

5

0

CxHy+, CxHyO1

+, CxHyO2

+, HyO1

+,

CxHyNp+, HyNpOz

+, HySmOz

+, NpHy

+

O/C = 0.67H/C = 1.57OM/OC = 2.04

O/C = 1.17H/C = 1.18OM/OC = 2.68

a) BL-OOA

b) FT-OOA

c)

BL-OOA

FT-OOA30%

70%

1.0

0.5

0.0

Ma

ss F

ract

ion

C8H11

C6H11

OC5H

9

C9H13

C7H11

C8H13

C6H9

C3H7

C12H11

C7H12

C7H11

O

C6H10

C10H13

C9H11

C7H9

C8H12

C7H13

C6H11

C3H6OC4H

7

10

7

99

69

12

1

95

10

9

81

43

15

5

96

11

1

82

13

3

11

9

93

10

8

97

83

58

55

d)

1.0

0.5

0.0

Mass

Fra

ctio

n

NH

H2SO4

HSO3SO3

SOSO2

HSO2NH2

NH3

C4H3O

3 C

C3H5O

3

CH4N

C6H5O

3

C4H5O

3

C10H7O

C9H5O

C4H4O

3

C4H3O

C3H3O

3

15

98

81

80

48

64

65

16

17

99

12

89

30

12

5

10

1

14

3

12

9

10

0

67

87

e)

6

3

0

WV (g/kg) 8x10-3

4

0

NOy/CO 20

10

0

550nm (mM-1

)

6

3

0

NR-PM1 6

3

0

Org 0.08

0.04

0.00

NO3

0.6

0.3

0.0

SO40.2

0.1

0.0

NH42

1

0

FT-OOA

4

2

0

BL-OOA15x10

-3

1050

MSA

1.6

1.2

0.8

H/C1.5

1.0

0.5

O/C2

1

0

OSC

100

80

60

CO 60

30

0

O3

0.6

0.3

0.0

NOy

0.2

0.1

0.0

PAN

241680

0.2

0.1

0.0

NO2

241680

100

50

0

NR-PM1 Comp.

100

50

0

NOy Comp.

241680

Hour of day (PST)

Aer

osol

spe

cies

(µg

m-3

)O

A c

hem

istr

yG

as s

peci

es (

ppbv

)

PMF on no‐BB periods

10

5

0

Org

ani

csN

O3

(x 5

0) 40

20

0

MS

AB

L-O

OA

(x5)

1.0

0.5

0.0

SO

4

NH

4 (x

3) 4

2

0

FT

-OO

A

d)

e)

07/27 7/29

Date (PST), 2013

8/18 8/20

Page 6: PMF Analysis of AMS Data: NewStrategiescires1.colorado.edu/.../UsrMtgs/UsersMtg18/PMF_Qi_Zhang.pdfQi Zhang University of California, Davis May 11, 2017, AMS Users’ Meeting ‐‐Beijing

5/10/2017

6

11

15

10

5

0100908070605040302010

m/z (amu)

10

5

0

20

10

0

10

5

0

6

4

2

0

FT-OOAO/C = 0.81, H/C = 1.19, OM/OC = 2.18

BL-OOAO/C = 0.53, H/C = 1.35, OM/OC = 1.83

BBOA-IIIO/C = 0.95, H/C = 1.02, OM/OC = 2.35

BBOA-IIO/C = 0.52, H/C = 1.47, OM/OC = 1.83

BBOA-IO/C = 0.27, H/C = 1.52, OM/OC = 1.49

% o

f to

tal

CxHy CxHyO1 CxHyO2 HyO1 CxHyNp

CxHyOzNp CxHyOzSq SO NO

25201510

50

BB

OA

-III

3.0

2.0

1.0

0.0

FT

-OO

A

7/27/13 8/1/13 8/6/13 8/11/13 8/16/13 8/21/13Date&Time (PDT)

12

8

4

0

BL

-OO

A

201510

50

BB

OA

-II

60

40

20

0

BB

OA

-I

2000

1500

1000

500

0

PA

N(ppt)

µg

/m3

Sulfate (x2)

CH3SO2+ (MSA) (x 1500)

CO2+(x 2), CHO2

+ (x 40), PAN

C2H4O3+ (x 600), C2H3O

+(x 4)

C2H4O2+(x 30), Nitrate (x 10)

Two oxidized OA (OOA):BL-OOA: Boundary layer oxygenated OAFT-OOA: Free tropospheric oxygenated OA

Three biomass burning OA (BBOA): BBOA-I: Fresh BBOABBOA-II: More oxidized BBOABBOA-III: Highly oxidized, aged BBOA

OA Factors Observed at MBO during BBOP

1.6

1.2

0.8

0.4

2220181614121086420

Hour of Day (PDT)

4

3

2

1

0

6

4

2

0

543210

8

6

4

2

0

800

600

400

200

0

PA

N(ppt)

200

150

100

50

CO

(ppb

)

8

6

4

2

WV

(g/kg)

C2H4O2+(x30), NO3

-(x10)

C2H4O3+(x10),C2H3O

+(x5)

CO2+(x2),CH4N

+(x200)

CHO2+(x40)

CH3SO2+ (x 2000)

SO42-

(x2)

Zhou et al., 2016

12

1.0

0.8

0.6

0.4

0.2

0.0

Ma

ss F

ract

ion

CH

CH

O1

CH

O2

HO

CH

N

CH

ON

NO

SO

d). Ion family signal distribution

1.0

0.8

0.6

0.4

0.2

0.0

Mas

s F

ract

ion

CH4N

C2H3OCO

2

CHO2

C4H7

C3H3O

C4H9

C3H5O

C2H4O

2

C3H5O

2

CH3SO2

NONO

2SO

SO2

30.0

34

43.0

18

43.9

9

44.9

98

55.0

55

55.0

18

57.0

7

57.0

34

60.0

21

73.0

29

78.9

85

29.9

98

45.9

93

47.9

67

63.9

62

1.0

0.8

0.6

0.4

0.2

0.0

Ma

ss F

ract

ion

C7H8O

3

C7H8O

4

C14H14

O4

C14H14

O5

C14H14

O6

C13H11

O4

C12H11

O3

C8H10

O4

C16H18

O6

C16H18

O7

C13H12

O5

C14H15

O5

C15H15

O6

C6H6O

2

C6H6O

3

C12H10

O2

140.

05

156.

04

246.

09

262.

08

278.

08

231.

07

203.

07

170.

06

306.

11

322.

11

248.

07

263.

09

291.

09

110.

04

126.

03

186.

07

1.0

0.8

0.6

0.4

0.2

0.0

Mas

s F

ract

ion

facto

r1

facto

r2

facto

r3

facto

r4

facto

r5

c). Factor composition

PMF factors composition and signal distribution

f1: 9%

f2: 24%

f3: 27%

f4: 19%

f5: 20%

1.0

0.8

0.6

0.4

0.2

0.0

%

7/27/13 7/30/13 8/2/13 8/5/13 8/8/13 8/11/13 8/14/13 8/17/13 8/20/13 8/23/13

Date&Time (PDT)

Page 7: PMF Analysis of AMS Data: NewStrategiescires1.colorado.edu/.../UsrMtgs/UsersMtg18/PMF_Qi_Zhang.pdfQi Zhang University of California, Davis May 11, 2017, AMS Users’ Meeting ‐‐Beijing

5/10/2017

7

5 10

15 w s 20

25

W

S

N

E

2 4 6 8 10 12

c)

1 2 3 4 5 6

5 10

15 w s 20

25

W

S

N

E

b)

LV-OOA

BL-OOA 24%

BBOA-3 31%

BBOA-2 17%

BBOA-1 20%

f) Average OA composition

8%

1 2 3 4 5 6

5 10

15 w s 20

25

W

S

N

E

d)

0.5 1 1.5 2 2.5 3

5 10

15 w s 20

25

W

S

N

E

e)

5 10 15 20

5 10

15 w s 20

25

W

S

N

E

a)

1.0

0.8

0.6

0.4

0.2

0.0

Ma

ss fr

act

ion

re

ma

inin

g (

%)

2001601208040TD Temperature (ºC)

BBOA-1BBOA-2BBOA-3BL-OOALV-OOASulfateNitrate

g)

BBOA‐1 BBOA‐2 BBOA‐3    BL‐OOA LV‐OOAFresh Aged Aged

Regional/Free Trop.

BoundaryLayer

O/C = 0.35  O/C = 0.65  O/C = 1.06 O/C = 0.69  O/C = 1.09

O/C

Volatility 

• Three types of BBOA, different chemistry and volatility• BBOA ≈70% of OA mass, ~ 60% of BBOA is secondary. 

LV-OOA

BL-OOA 24%

BBOA-3 31%

BBOA-2 17%

BBOA-1 20%

f) Average OA composition

8%

BB POA and SOA in Regional Air Masses

Levoglucosan content

Two methods 

• Analysis of combined organic and inorganic ions  • Include good S/N inorganic ions (NO+, NO2

+, NH2+, NH3

+, SO+, SO2+…)

• to better extract physically meaningful factors and reduce mixing of factors. 

• Additional inorganic signal to assist interpretation of factors.

• Rolling window analysis of long term data • Small chunk of MS matrix, continue roll over on time axis

• Better capture time‐dependent variations of factor profiles. 

Page 8: PMF Analysis of AMS Data: NewStrategiescires1.colorado.edu/.../UsrMtgs/UsersMtg18/PMF_Qi_Zhang.pdfQi Zhang University of California, Davis May 11, 2017, AMS Users’ Meeting ‐‐Beijing

5/10/2017

8

15

Rolling Window Analysis

Parworth, C., Fast, J., Mei, F., Shippert, T., Sivaraman, C., Tilp, A., Watson, T., and Zhang, Q.: Atmospheric Environment doi:10.1016/j.atmosenv.2015.01.060, 2015.

http://www.sciencedirect.com/science/article/pii/S1352231015000837

Long‐term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM)

• Location: The Southern Great Plains (SGP) site of DOE’s Atmospheric Radiation Measurement (ARM) program, a rural site in central Oklohoma. 

• 19 months of continuous ACSM data (30 min resolution)

• Average NR‐PM1: 6.7 ± 8.9 µg m‐3. Org % of total: 65 ± 21%

Rolling Window PMF Methodology

• Standard pretreatment method applied (Ulbrich et al., 2009)

• Rolling window size flexible, 2 weeks used here

• Data increment is 1 day until end of data reached

• 2 or 3 factor solutions possible for this rural site: BBOA (if f60 > 0.008) and two types of OOA

• Rolling window length• 1‐week not enough data

• 2 & 3 weeks show similar results

• 2‐weeks contains enough data to capture dynamic variations of aerosols and is representative of avg. lifecycle of aerosols in atmosphere

Page 9: PMF Analysis of AMS Data: NewStrategiescires1.colorado.edu/.../UsrMtgs/UsersMtg18/PMF_Qi_Zhang.pdfQi Zhang University of California, Davis May 11, 2017, AMS Users’ Meeting ‐‐Beijing

5/10/2017

9

0.300.250.200.150.100.050.00

Fra

ctio

n o

f to

tal s

igna

l

0.300.250.200.150.100.050.00

806040200

x10-3

1201101009080706050403020m/z

OOA-1

OOA-2

BBOA

(a)

(b)

(c)

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

40x10-33020100

f60

1 10 50 100 200Org (µg m

-3)

(b)0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

f 44

0.120.080.040.00

f43

806040200

% of BBOA

(a)

OOA-1 OOA-2 BBOA

Standard LV-OOA Standard SV-OOA

Pasadena LV-OOA Pasadena SV-OOA

Paris BBOA

Zurich BBOA (summer) Zurich BBOA (winter)

Fresno BBOA

lodgepole ponderosa

Average OA mass spectra over entire study with standard error bars from rolling window analysis.

Box and whisker plots show range in values of each factors obtained from rolling window analysis. 

Monthly variations in average NR‐PM1 concentration,composition, and wind data for one year (2011)

Page 10: PMF Analysis of AMS Data: NewStrategiescires1.colorado.edu/.../UsrMtgs/UsersMtg18/PMF_Qi_Zhang.pdfQi Zhang University of California, Davis May 11, 2017, AMS Users’ Meeting ‐‐Beijing

5/10/2017

10

Acknowledgements

Shan Zhou, Caroline Parworth, Yele SunSonya Collier, Xinlei Ge, , Jianzhong Xu, Hwajin Kim, Lu Yu

References:Sun, Y. L., Q. Zhang, J. J. Schwab, T. Yang, N. L. Ng, and K. L. Demerjian (2012), Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements, Atmospheric Chemistry and Physics, 12(18), 8537‐8551, doi:10.5194/acp‐12‐8537‐2012.

Parworth, C., J. Fast, F. Mei, T. Shippert, C. Sivaraman, A. Tilp, T. Watson, and Q. Zhang (2015), Long‐term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM), Atmospheric Environment, 106, 43‐55, doi:http://dx.doi.org/10.1016/j.atmosenv.2015.01.060.

Zhou, S., S. Collier, J. Xu, F. Mei, J. Wang, Y.‐N. Lee, A. J. Sedlacek, S. R. Springston, Y. Sun, and Q. Zhang (2016), Influences of upwind emission sources and atmospheric processing on aerosol chemistry and properties at a rural location in the Northeastern U.S, Journal of Geophysical Research: Atmospheres, 2015JD024568, doi:10.1002/2015JD024568.

Zhou, S., S. Collier, D. A. Jaffe, N. L. Briggs, J. Hee, A. J. Sedlacek Iii, L. Kleinman, T. B. Onasch, and Q. Zhang (2017), Regional Influence of Wildfires on Aerosol Chemistry in the Western US and Insights into Atmospheric Aging of Biomass Burning Organic Aerosol, Atmos. Chem. Phys., 17, 2477‐2493, doi:10.5194/acp‐17‐2477‐2017.