plastic theory of bending - materials - engineering reference with worked examples.pdf

9
Plastic Theory of Bending Describes Bending above the yield Stress for elastic materials (Mild Steel). Engineering › Materials › Contents 1. Introduction 2. Assumptions In The Plastic Theory. 3. The Moment Of Resistance At A Plastic Hinge. 4. Moments Of Resistance For Various Crosssections. 5. Collapse Loads 6. Combined Bending And Direct Stress 7. Collapse Loads In Portal Frames 8. Page Comments Introduction Bending Beyond The Yield Stress. Most Engineering design is based on the "Elastic Theory of Bending" and the method is to calculate the maximum Stresses which occur, and to then keep them within the working Stresses in both compression and Tension. These working Stresses are calculated from the Yield (or ultimate) Stress and a Factor of Safety. This approach is a little unrealistic since Mild Steel Structures do not fail when the edge Stress of any cross section reaches the Yield point, and will continue to withstand the load as long as the central core of the section remains within the Elastic State. Plastic Bending Of Beams As the load on a particular beam is gradually increased, the greatest Stresses will occur at the extreme fibres of the "weakest" section (Note : In some Steels when the elastic limit is reached there is a marked reduction in Stress and in any calculations the lower Yield Stress is taken See graph). These outer fibres are said to be in the plastic state, and any increase in loading will result in a considerable increase in Strain and hence deflection at that section of the Beam. There will also be a redistribution of Stress. With Mild Steel this increase in Strain can take place without the Stress rising above the yield point (i.e. any Strain Hardening effects can be neglected and the plastic Strain at yield is in the order of 10 20 times the Elastic Strain). It can therefore be assumed that the Stress in the plastic region is Constant. When the whole cross section at any point in a structure becomes Plastic, no further increase in the moment of resistance is possible without excessive Strain (equivalent to an increase in the Curvature at that section) and a plastic hinge has been developed; one or more such hinges are required for a complete collapse. The number depends upon the type of structure and whether it is, for example, a simply supported beam, a builtin beam or a rigid frame. The value of the load required to produce this state is called the Collapse Load, and the ratio of the Collapse Load to the Working Load is called the Load Factor. In plastic design this factor is used instead of the normal Factor of Safety. Assumptions In The Plastic Theory. The requirement is to calculate the Bending Moment needed to form a Plastic hinge in any particular cross section, and to determine the distribution of Bending Moment along the beam at the Collapse Load. To do this it is normal to make the following assumptions: That the material exhibits a marked yield and can undergo considerable Strain at Yield without any further increase in Stress. In effect this limits the theory to applications using Mild Steels as the material has a drop in Stress at Yield. The lower yield stress is used in calculations. The Yield Stress is the same in Tension and Compression. Transverse crosssections remain plane so that the Strain is proportional to the distance from the Neutral Axis. However, in the Plastic region the Stress will remain Constant and is not proportional to the Strain. Once a Plastic Hinge has developed at any cross section, the Moment of Resistance at that point will remain Constant until the collapse of the whole structure has taken effect. This will only happen when the required number of Plastic Hinges at other points have developed. The Moment Of Resistance At A Plastic Hinge. The diagram shows the variations in Stress and Strain in a beam of symmetrical cross section subjected to a working load.

Upload: lk-anhdung

Post on 08-Sep-2015

7 views

Category:

Documents


0 download

TRANSCRIPT

  • PlasticTheoryofBendingDescribesBendingabovetheyieldStressforelasticmaterials(MildSteel).

    EngineeringMaterials

    Contents

    1. Introduction2. AssumptionsInThePlastic

    Theory.3. TheMomentOfResistance

    AtAPlasticHinge.4. MomentsOfResistanceFor

    VariousCrosssections.5. CollapseLoads6. CombinedBendingAnd

    DirectStress7. CollapseLoadsInPortal

    Frames8. PageComments

    Introduction

    BendingBeyondTheYieldStress.MostEngineeringdesignisbasedonthe"ElasticTheoryofBending"andthemethodistocalculatethemaximumStresseswhichoccur,andtothenkeepthemwithintheworkingStressesinbothcompressionandTension.TheseworkingStressesarecalculatedfromtheYield(orultimate)StressandaFactorofSafety.ThisapproachisalittleunrealisticsinceMildSteelStructuresdonotfailwhentheedgeStressofanycrosssectionreachestheYieldpoint,andwillcontinuetowithstandtheloadaslongasthecentralcoreofthesectionremainswithintheElasticState.

    PlasticBendingOfBeamsAstheloadonaparticularbeamisgraduallyincreased,thegreatestStresseswilloccurattheextremefibresofthe"weakest"section(Note:InsomeSteelswhentheelasticlimitisreachedthereisamarkedreductioninStressandinanycalculationsthelowerYieldStressistakenSeegraph).Theseouterfibresaresaidtobeintheplasticstate,andanyincreaseinloadingwillresultinaconsiderableincreaseinStrainandhencedeflectionatthatsectionoftheBeam.TherewillalsobearedistributionofStress.WithMildSteelthisincreaseinStraincantakeplacewithouttheStressrisingabovetheyieldpoint(i.e.anyStrainHardeningeffectscanbeneglectedandtheplasticStrainatyieldisintheorderof1020timestheElasticStrain).

    ItcanthereforebeassumedthattheStressintheplasticregionisConstant.WhenthewholecrosssectionatanypointinastructurebecomesPlastic,nofurtherincreaseinthemomentofresistanceispossiblewithoutexcessiveStrain(equivalenttoanincreaseintheCurvatureatthatsection)andaplastichingehasbeendevelopedoneormoresuchhingesarerequiredforacompletecollapse.Thenumberdependsuponthetypeofstructureandwhetheritis,forexample,asimplysupportedbeam,abuiltinbeamorarigidframe.ThevalueoftheloadrequiredtoproducethisstateiscalledtheCollapseLoad,andtheratiooftheCollapseLoadtotheWorkingLoadiscalledtheLoadFactor.InplasticdesignthisfactorisusedinsteadofthenormalFactorofSafety.

    AssumptionsInThePlasticTheory.TherequirementistocalculatetheBendingMomentneededtoformaPlastichingeinanyparticularcrosssection,andtodeterminethedistributionofBendingMomentalongthebeamattheCollapseLoad.Todothisitisnormaltomakethefollowingassumptions:

    ThatthematerialexhibitsamarkedyieldandcanundergoconsiderableStrainatYieldwithoutanyfurtherincreaseinStress.IneffectthislimitsthetheorytoapplicationsusingMildSteelsasthematerialhasadropinStressatYield.Theloweryieldstressisusedincalculations.

    TheYieldStressisthesameinTensionandCompression.

    TransversecrosssectionsremainplanesothattheStrainisproportionaltothedistancefromtheNeutralAxis.However,inthePlasticregiontheStresswillremainConstantandisnotproportionaltotheStrain.

    OnceaPlasticHingehasdevelopedatanycrosssection,theMomentofResistanceatthatpointwillremainConstantuntilthecollapseofthewholestructurehastakeneffect.ThiswillonlyhappenwhentherequirednumberofPlasticHingesatotherpointshavedeveloped.

    TheMomentOfResistanceAtAPlasticHinge.ThediagramshowsthevariationsinStressandStraininabeamofsymmetricalcrosssectionsubjectedtoaworkingload.

  • (a)UsingtheformulafromtheSimpleTheoryofBending,themaximumworkingStressis .NotethattheStressandStrainareproportionaltothedistancefromtheNeutralAxis.

    (b)TheloadhasbeenincreasedsothattheextremefibresYieldandthebeamisinapartialPlasticstate.NotethatisthelowerYieldStress.

    (c)TheLoadisincreasedfurtheruntilafullyPlasticStateisobtained.Itisnowassumedthatthestress isuniformoverthewholecrosssection.Infactthisisnotstrictlytrue,sincetherewillbeaverysmallelasticregionaroundtheNeutralAxis(shownonthediagram)buttheeffectofthisonthevalueoftheMomentofResistanceisverysmallandcanbeneglected.

    MomentsOfResistanceForVariousCrosssections.a)RectangularSection

    IfthewidthisbandthedepthdthentheTotalloadsaboveandbelowtheNeutralAxisareboth eachactingatfromtheNeutralAxis.Hence,thePlasticMomentisgivenby:

    (2)

    ThiscanbecomparedwithaWorkingMomentof:

    (3)

    ThishasbeencalculatedfromtheElasticTheoryfromwhich:

    (4)

    AndZistheNormalSectionModulus.

    Theratio iscalledtheShapeFactorSsinceitdependsonlyupontheShapeofthecrosssection.Forarectangularsection,fromequations(1)and(3):

    (5)

    Andfromequations(2)and(3)TheNormalFactorofSafetybasedontheinitialYieldequals:

    (6)

    Andfrom(1)and(2)

    (7)

    Notethattheequations(5)and(6)applytoanycrosssection.

    b)Isection

    TheShapefactorwillvaryslightlywiththeproportionsofflangetoweb.TheaveragevalueforSisabout1.15.

    c)UnsymmetricalSections

    IfAistheTotalAreaofacrosssection,thenitisclearthatforpurePlasticBendingthe"NeutralAxis"mustdividetheareainhalf.IftheCentroidsofthesehalvesare atadistanceapartof ,

    then:

    (8)

  • Example: 1 2 3

    Butatfirstyield.

    (9)

    (10)

    [imperial]

    ExampleMomentsOfResistanceForRectangularCrosssectionsProblem

    ASteelbarofrectangularcrosssection3in.by1.25in.isusedasasimplysupportedbeamoveraspanof48in.withacentralload.IftheyieldStressis18tons/sq.in.andthelongedgesofthesectionarevertical,(a)findtheloadwhenyieldingfirstoccurs.

    Assumingthatafurtherincreaseinloadcausesyieldingtospreadinwardstowardstheneutralaxis,withthestressintheyieldedpartremainingat18tons/sq.in.,(b)findtheloadrequiredtocauseyieldingtoadepthof0.5in.atthetopandbottomofthesectionatmidspan.(c)Findalsothelengthofbeamoverwhichyieldinghasoccurred.(U.L.)Workings

    If tonsistheloadatfirstyield,thenfromequation(3):

    (1)

    (2)

    (3)

    UnderahigherloadWthecentralsectionofthebeamisinapartiallyPlasticstate,thestressdistributionbeing

    similartotheouter1/2in.oneachsideoftheneutralaxisbeingunderconstantstressof18tons/sq.in.withnodropofstressatyield.TheMomentofResistancecalculatedfromthestressdiagramis:

    (4)

    (5)

    (6)

    Usingequation(12).AtfirstyieldtheMomentofResistanceis andif

    thisoccursatadistancexfromeitherendunderacentralloadWthen:

    (7)

    Thelengthofbeamoverwhichyieldingoccurs

    Solution

    (a)

    (b)

    (c)Thelengthofbeamoverwhichyieldingoccurs

    CollapseLoadsOncetheMomentsofResistanceataplastichingeinasectionofabeamhasbeenfounditisnecessarytodecidefromtheconditionsatthesupports,howmanyhingesarerequiredtocauseCollapse.Ifthereareanumberofpointsof"local"maximumbendingmomentsalongthebeam(Underworkingloadconditions),itisclearthatthefirstplastichingewilloccuratthenumericalmaximumpoint.Iffurtherplastichingesarerequiredforcollapse,thenthesewilloccuratthenextlowervaluechosenfromtheremaininglocalmaxima.Whensufficientplastichingeshavebeenformedtoconvertthestructureintoamechanism(i.e.thehingesareconsideredtobepinjoints),thencollapsewilloccur.

    Thecaseofasinglebeamsupportedinthreedifferentwayswillnowbeexamined.

    a)ASimplySupportedBeam.

    Lettheloaddividethelengthintheratioofa:b.ThereisonlyonepointofMaximumBendingMoment(i.e.Wab/lundertheload)andthecollapseconditionswillbereachedwhenaPlasticHingeisformedatthispoint,

  • TheBendingMomentatthehingeis ,andhencethecollapseLoadisgivenby:

    (11)

    UsingEquation(#6)

    (12)

    But whereWistheworkingLoad.

    Rearranging:

    (13)

    (14)

    Thisisthesimpleresultwhichwillalwaysbeobtainedwhenonlyoneplastichingeisrequiredforcollapse.ForagivenmaterialandworkingstressitcanbeseenthattheloadfactorisgreaterbytheShapeFactor,thanthenormalfactorofsafetyusedonelasticdesign(thisconsidersthatfailureoccursatfirstyield).ItcanalsobeseenthatdifferentloadFactorswillbeobtainedfrom,say,rectangularandIsections,evenunderthesamesystemofloading.Alternatively,bybasingthedesignonaconstantloadfactortheworkingStressmaybevariedtosuittheparticularsection.

    (15)

    (16)

    (17)

    Theresultsobtainedfordistributedloadsandforsimplecantileversarealsoasinequations(29and(30).

    b)ProppedCantilever

    ThefollowingdiagramshowsacantileverwhichiscarryingacentralloadW,andwhichisproppedatthefreeendtothesameheightasthefixedend.

  • Theloadonthepropunderelasticconditionsis (Seepagesonthedeflectionofbeams).TheBendingMomentdiagramisshownimmediatelyunderneath.Therearelocalmaximaatthefixedendandundertheload,andagradualincreaseinloadwillcauseaplastichingetoformatthefixedendfirstasthecentralB.M.issomewhatless.However,duetothesupportatthefreeend,collapseconditionswillnotbereacheduntilasecondplastichingehasformedundertheload.AtthatpointtheB.M.'satthecentreandfixedendwillbethesameandnumericallyequalto .Thedistributionisshownonthelowerdiagram.NotethattheshapeoftheB.M.diagramatthecollapseconditionsisnotsimilartothatatWorkingconditions.ThisisduetotheredistributionofStressandStrainwhenaplastichingeisformed.Thevalueof isassumedtobethesameateachhinge.IfPistheloadonthepropatcollapse,thenequatingthenumericalvalueoftheB.M.'satthefixedendandthecentregives:

    (18)

    (19)

    (20)

    UnderworkingconditionsthemaximumBendingMomentis:

    (21)

    Usingequation(#27)

    (22)

    andfromequation(6)

    (23)

    Substitutingfromequation(#28)

    (24)

    HencetheLoadFactorLis:

    (25)

    Thisisanincreaseof9:8overasimplysupportedbeamunderthesameworkingconditions.

    c)BuiltinBeamwithaUniformlydistributedLoad.

    ForcollapsetooccurthreePlasticHingesmustbeformed,andastheloadingissymmetrical,thesewillbeateitherendandinthecentre.TheBendingMomentdiagramatcollapseisthenconstructedbymakingthevaluesatthesepointsequalto .

    Byinspectionitcanbeseenthatthereactionsattheendsare andhenceatthecentre:

    (26)

    fromwhich:

    (27)

  • Example: 1

    Fromtheelastictheory:

    (28)

    Substitutinginequation(#34)

    (29)

    Substitutingfromequation(#35)

    (30)

    (31)

    Forallcasesofbuiltinbeamsthecollapseloadisnotalwaysaffectedbyanysinkingofthesupportsorlackofrigidityatthefixedends,providedthattherigidityissufficienttoallowthefullyplasticmomenttodevelop.

    [imperial]ExampleApplicationofCollapseLoadsProblem

    A12in.by4in.BritishStandardBeamiscarriedoveraspanof20ft.andhasrigidlybuiltinends.Findthemaximumpointloadwhichcanbecarriedat8ft.fromoneendandthemaximumworkingstresswhichwillhavebeensetup.Workings

    (8)

    UnderElasticconditionsthemaximumBendingMomentwillbeattheendnearesttotheload.Hence:

    (9)

    Atcollapsehingesmustbeformedateachendandundertheloadanditcanbeseenthatthecollapseload isfoundbyequatingthenumericalvalueoftheBendingMoments.

    (10)

    (11)

    Sincetheloadfactoris1.8xWorkingLoad.

    (12)

    fromequation(40)

    (13)

    (14)

  • Example: 1 2

    (15)

    ItisnowpossibletocalculatetheworkingStressfrom:

    (16)

    (17)

    Solution

    CombinedBendingAndDirectStressWhenaBeamorColumnissubjectedtoanaxialStressaswellasaBendingStress,theneutralaxiswillbedisplacedtoonesideofthecentroid.(a)inthefollowingdiagramshowsthevariationinworkingStress.AnincreaseinloadwillcausethestresstoreachtheYieldPointononesidefirstandthentospreadacrossthesectiontogiveafullyplasticstate(c).

    Itcanbeseenthatthedisplacementoftheneutralaxisintheplasticstateisgivenbyh,where:

    (32)

    Wherebisthewidthofthesectionneartothecentroidaxis.Theplasticmomentofresistanceisgivenby:

    (33)

    (34)

    (35)

    Comparingthistoequation(6)itcanbeseenthattheplasticmomenthasbeenreducedbyatermdependingupontheAxialLoad,theLoadFactorandtheShapeofthesection.Thepermissibleworkingmomentforasinglehingeisthenobtainedfrom

    bydividingbytheLoadFactorL.

    (36)

    [imperial]ExampleApplicationofCombinedBendingAndDirectStressProblem

    A12in.by5in.BritishStandardBeamhastowithstandanaxialloadof10tons.Ifaloadfactorof1.8istobeapplied,determinethemaximumpermissibleBendingMoment.Workings

    (18)

    AtCollapsetheaxialloadis1.8X10=18tonswhichrequiresadepthofWebof .Thiswillbespacedequallyaaboutthecentroidi.e.1.705oneitherside(hofequation(#49)).

    Thereductionin isgivenbytheproductofhalftheaxialloadandthedistancebetweenthecentresofareasofeachhalfload(i.e.GHCDJKintheabovediagram)

    (19)

  • (20)

    (21)

    Notethatthereductionin inthiscaseisonlyabout %,whereasontheelastictheory,withaworkingstressof10tons/sq.in.,thepermissibleBendingStressisgivenby:

    (22)

    (23)

    Andthereductionin duetotheexistenceoftheaxialloadis:

    (24)

    Solution

    CollapseLoadsInPortalFramesInaframeworkwithrigidjoints,underanyappliedload,pointsofmaximumBendingMomentwilloccuratthejoints.AtcollapsesomeorallofthejointswillbecomePlasticHinges.

    Thediagramshowsaportalframeofheighthandspanl.ItisunderacentralverticalloadVandahorizontalloadH.PlastichingesmayforminanycombinationatthepointsABCDandE.ItshouldbenotedthatifAandEarepinjointed,theywillrotateunderzeroBendingMoment.

    Acollapseconditionisreachedwhensufficienthingesareformedtocreatea"mechanism".Theonlythreeformsofcollapsemechanismare:

    BeamCollapsewithhingesatB,CandD.

    SwayCollapsewithhingesatA,B,DandE

    CombinedCollapsewithhingesatA,C,D,andE

    Ifonelinkofthemechanismisgivenarotationof (undertheactionoftheplasticmoment ),thenthevalueofthecollapseloadcanbecalculatedbytheprincipleofwork,choosingtheleastloadforallthepossiblemechanisms.

    Somestandardcasesareconsideredbelow.Toallowfordifferentsectionbeamstheplasticmomentswillbeindicatedasfollows:

    forthestanchionsABandDE.

    forthebeamBD

    forthecornersBandD.

    a)HingedBasePortal

    VerticalLoadonly.ThesymmetricalBeamCollapsewillapply.Ajointrotationof willoccuratBandDwhichequatesto atC.IfitisassumedthatthewholeStraintakesplaceunderaconstantcollapseloadandneglectinganyelasticstrain,thentheworkdonebytheLoadis ,andtheenergydissipatedintheplastichingesis

    .ButworkdonemustequalEnergydissipated.

    HorizontalLoadonly.Thiswillproducea"SwayCollapsewithrotationsof occurringatBandD.EquatingtheWorkdonebytheloadandattheplastichinges:

    (37)

  • Example: 1 2 3

    LastModified:24Nov11@14:40PageRendered:2014021016:44:08

    (38)

    CombinedLoad.GenerallytherewillbenorotationatthepointBandcollapsewillbebyformingplastichingesatCandD.TheworkEnergyequationnowbecomes:

    (39)

    (40)

    Itcanbeshownthatifthesectionisuniformthroughout,thenif ,collapsewilloccurbySway.TheCollapseloadisgivenbyequation(#62)

    b)FixedBasePortal

    VerticalLoadingonly.Thebeamcollapsesinthesamewayasthehingedbaseportalframe.Hence:

    (41)

    HorizontalLoadOnly.Swaycollapsenowrequirestheformationof4hingesandtheworkequationis:

    (42)

    (43)

    CombinedLoading.Thecombinedcollapsemechanismgives:

    (44)

    (45)

    Foraneconomicaldesignequation(#69)andeither(#67)or(#65)shouldbesatisfiedsimultaneously.

    [imperial]ExampleCollapseLoadsInHingedBasePortalFramesProblem

    Ifintheabovediagram obtainanexpressionforthehorizontalandverticalcollapseloadswhenthePlasticmoment isthesameforthebeamandthestanchions.Workings

    Fromequation(#69)

    (25)

    (26)

    (27)

    Iftheothertwomodesofcollapsearecheckedthenitwillbefoundthattheybothrequirehighercollapseloadsandconsequentlythecombinedcollapsemechanismgivestheleastload.

    Themosteconomicalsectionsforagivenloadarecalculatedbysatisfyingequations(#67)and(#69)simultaneously.Solution