pier francesco roggero, michele nardelli, francesco di noto - "the new mersenne prime numbers"

Upload: michele-nardelli

Post on 14-Apr-2018

233 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - "The New Mersenne Prime Numbers"

    1/26

    THE NEW MERSENNE PRIME NUMBERS

    Pier Francesco Roggero, Michele Nardelli1,2

    , Francesco Di Noto

    1 Dipartimento di Scienze della Terra

    Universit degli Studi di Napoli Federico II, Largo S. Marcellino, 10

    80138 Napoli, Italy

    2 Dipartimento di Matematica ed Applicazioni R. Caccioppoli

    Universit degli Studi di Napoli Federico II Polo delle Scienze e delle Tecnologie

    Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

    Abstract

    In this paper we examine in detail the new Mersenne Prime Numbers with their

    important connections with Fermats prime numbers. Furthermore, we have

    described some mathematical connections between some equations regarding theprimitive divisors of Mersenne numbers and some equations concerning the String

    Theory

  • 7/27/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - "The New Mersenne Prime Numbers"

    2/26

    Versione 1.0

    2/10/2013

    Pagina 2 di 26

    Index:

    1. THE NEW MERSENNE PRIME NUMBERS.......................................................................................... 32. ANALYSIS ON NEW MERSENNE NUMBERS...................................................................................... 83. CONNECTION NNM WITH FERMAT NUMBERS................................................................................13

    4. ON SOME EQUATIONS CONCERNING THE PRIMITIVE DIVISORS OF MERSENNE NUMBERS20

    5. REFERENCES. 26

  • 7/27/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - "The New Mersenne Prime Numbers"

    3/26

    Versione 1.0

    2/10/2013

    Pagina 3 di 26

    1. THE NEW MERSENNE PRIME NUMBERS

    In this paper we will discuss the New Mersenne numbers NNM, of form 2n

    +1, of

    their statistical distribution, similar to that of the old Mersenne numbers (of the

    form 2n-1, prime and not prime)). but, as we will see in the end, there are only four

    prime numbers in numbers NNM, based on the same considerations arithmetic

    (common factors) to only five prime numbers of Fermat.

    While the classical Mersenne numbers, Mp are related to perfect numbers, theNNM are related to Fermat prime numbers, and there are in finite number only 4,

    while the Fermat primes are only 5 known.

    They are complementary to the first, but with similar numerically and similar

    statistical distribution.

    While for the known Mersenne numbers the exponent of 2 is odd, and therefore

    potentially prime (the thing that more interested) in our NNM instead is even, andthen to get prime numbers we must add 1 instead of subtracting:

    2

    n

    1

    for the Mersenne numbers, with n odd and prime, and with form 6k +1, for the

    reasons at the time shown in previous work.

    2n

    + 1

    for the NNM, with n even, and then composite, and with form 6k -1.

    We make a small table with the first ten numbers NNM. If they will be of interest

    from the mathematical point of view, we will return later on this topic, here only

    introduced to the attention of mathematicians.

  • 7/27/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - "The New Mersenne Prime Numbers"

    4/26

    Versione 1.0

    2/10/2013

    Pagina 4 di 26

    TABLE

    n even 2n

    +1 Prime or

    not

    Form 6k-1 Ratio Exponent /

    number of digits

    in NNM

    2 5 si Si k=1 24 17 si Si k=3 4/2=2

    6 65 = 5*13 no Si k=10 6/2=38 257 si Si k= 43 8/3= 2,66

    10 1 025 =52*41 no Si k=171 10/4 = 2,5

    12 4 097=17*241 no Si k= 683 12/4=3

    14 16385=5*29*113 no Si k=2731 14/5=2,8

    16 65 537 si Si k=10923 16/5= 3,2

    18 262145=5*13*37*10

    9

    no Si k=43691 18/6=3

    20 1 048 577=17*61681 no Si k=174763 20/7= 2,85

    As we can see, the next ratio n / number of digits in NNM grows slowly, in the end,

    after a few dozen other ratio values will reach almost constant 3.321 as for thenumbers of Mersenne classics, as we shall see in subsequent statistical tables.

    We also note that among the first 10 values of NNM there are four primes (and

    only, as we shall see at the end), while for the Mersenne numbers classics there are

    five, but taking into account here that the exponent is highest (31), while for the

    NNM is 20, and this justifies the units more.

    Now, we note that the number 8, is connected with the modes that correspond tothe physical vibrations of a superstring by the following Ramanujan function:

  • 7/27/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - "The New Mersenne Prime Numbers"

    5/26

    Versione 1.0

    2/10/2013

    Pagina 5 di 26

    ( )

    ++

    +

    =

    4

    2710

    4

    21110log

    '

    142

    '

    cosh

    'cos

    log4

    3

    18

    2

    '

    '4

    0

    '

    2

    2

    wtitwe

    dxex

    txw

    anti

    w

    wt

    wx

    .

    Furthermore, the number that result from 8/3 = 2,666666667 is equal to

    2,66666667 that is a frequency of the universal musical system based on Phi (Phi =

    aurea ratio = 1,61803398875

    But if we consider as maximum exponent 20 for a comparison, then we havenumbers early in equal measure, 4 and 4 for both versions. So the statistical

    distribution is almost similar, as expected.

    But the formula for the NNM cannot be helpful in finding prime numbers more

    large, using exponents equal to 2, instead of the prime odd and as for the first

    version, since the prime numbers in NNM are only four, because of the connectionswith Fermat primes.

    About even perfect numbers, however, cannot be connected to the NNM, we report

    the proof of the form 6k - 2 perfect numbers in this case, but similar to the one

    with the formula of perfect numbers):

    for the odd powers of 2 are in the form 6k - 4, and the even powers are in the form

    6k - 2, we have (6k - 4) - (6k '- 2) = 6k - 4 + 6k '+ 2 = 6k - 6k' - 4 - 2 = 6 (k - k ') - 4 +2 = 6k'' - 2.

    Example:

    32 4 = 28 = 30 - 2

    6*6 - 4 (6*1 2) = 36 - 4 (6*1 - 2) = 36 4 6 + 2 = 6 (6 - 1) - 2 =

  • 7/27/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - "The New Mersenne Prime Numbers"

    6/26

    Versione 1.0

    2/10/2013

    Pagina 6 di 26

    6*5 - 2 = 30 - 2 =28

    Without this clarification about the even perfect numbers of the form 6k 2 (the

    odd perfect numbers do not exist), we now turn to the findings of this Chapter.

  • 7/27/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - "The New Mersenne Prime Numbers"

    7/26

    Versione 1.0

    2/10/2013

    Pagina 7 di 26

    CONCLUSIONS

    This is only a proposal for a extension of the concept of Mersenne numbers to

    numerical form:

    2n

    +1

    possibly to be explored in the future if interested by mathematicians professionalor amateur, and observations of any possible mathematical applications, however,

    excluded by the above (existence of only 4 primes in NNM) attempting to find large

    prime numbers similar to how you do it for the old Mersenne primes,

    As is well known, the 48th number, with about 17 million digits recently

    discovered.

    But this could very well provide our Universal Rule for find all prime numbers

    (Ref.1 and Ref.2, in English, and Ref.3), without having to resort to the formulas ofMersenne, which would require more computation time, especially for primes with

    thousands or millions of digits, useful for cryptographic purposes (RSA in

    particular, while the ECC encryption offers the same security with Prime

    Numbers length ten times less than the RSA numbers and much more difficult to

    crack by hackers).

  • 7/27/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - "The New Mersenne Prime Numbers"

    8/26

    Versione 1.0

    2/10/2013

    Pagina 8 di 26

    2. ANALYSIS ON NEW MERSENNE NUMBERS

    Let us examine in detail the new Mersenne numbers NNM and see what give origin

    to prime numbers.

    NNM = 2

    n

    + 1

    with n even (2, 4, 6, )

    We have the following table

    TAB 1:

    n 2n+1 factorization

    2 54 17

    6 65

    8 257

    10 1025

    12 4097 17 241

    14 16385

    16 65537

    18 262145

    20 1048577 17 6168122 4194305

    24 16777217 97 257 673

    26 67108865

    28 268435457 17 15790321

    30 1073741825

    32 4294967297 641 6700417

    34 17179869185

    36 68719476737 17 241 433 38737

  • 7/27/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - "The New Mersenne Prime Numbers"

    9/26

    Versione 1.0

    2/10/2013

    Pagina 9 di 26

    38 27487790694540 1099511627777 257 4278255361

    42 4398046511105

    44 17592186044417 17 353 2931

    46 70368744177665

    48 281474976710657 193 65537 22253377

    All numbers NNM ensuing have as the last digit 5 or 7.

    Consequently, only those with last digit 7 can give prime numbers.

    So logically we need to consider all n that are only multiples of 4 and we have:

    NNM = 2n

    + 1

    with n multiple of 4 (4, 8, 12, ) with 8 connected with the modes thatcorrespond to the physical vibrations of a superstring by the following Ramanujanfunction:

    ( )

    ++

    +

    =

    4

    2710

    4

    21110log

    '

    142

    '

    cosh

    'cos

    log4

    3

    18

    2

    '

    '4

    0

    '

    2

    2

    wtitwe

    dxex

    txw

    anti

    w

    wt

    wx

    .

  • 7/27/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - "The New Mersenne Prime Numbers"

    10/26

    Versione 1.0

    2/10/2013

    Pagina 10 di 26

    Thus we have the new table:

    TAB. 2:

    n 2n+1 factorization

    4 17

    8 257

    12 4097 17 24116 65537

    20 1048577 17 61681

    24 16777217 97 257 673

    28 268435457 17 15790321

    32 4294967297 641 6700417

    36 68719476737 17 241 433 38737

    40 1099511627777 257 4278255361

    44 17592186044417 17 353 2931

    48 281474976710657 193 65537 22253377

    Considering only the n multiples of 4 in the first 12 numbers we have 4 prime

    numbers (including 5 that derives from p = 2).

    In the "old" Mersenne numbers Mp of the form:

    Mp = 2p

    1

    with p prime, all the prime numbers that emerge from it have a final digit 1 or 7,except for the initial 3 due to the fact that p = 2 even number but prime number.

    In this case, for p 61 (roughly as n 48), there are 9 primes, twice before and

    considering that the latest digits are 1 or 7 instead of only 7 the bill back.

  • 7/27/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - "The New Mersenne Prime Numbers"

    11/26

    Versione 1.0

    2/10/2013

    Pagina 11 di 26

    In addition, each

    n = 8k +4 with k = 0, 1, 2, is divisible by 17

    n = 24k + 12 with k = 0, 1, 2, is divisible by 241

    plus other factors as shown by the TAB .2

    All of the factors resulting lower the probability of finding new Mersenne primes.

    We can therefore say:

    They generate about half of prime numbers with NNM than older Mersenne

    numbers Mp.

    We note that in 8k + 4 and 24k + 12 there are 8 and 24 where 8 is connected with

    the modes that correspond to the physical vibrations of a superstring by the

    following Ramanujan function:

    ( )

    ++

    +

    =

    4

    2710

    4

    21110log

    '

    142

    '

    cosh

    'cos

    log4

    3

    18

    2

    '

    '4

    0

    '

    2

    2

    wtitwe

    dxex

    txw

    anti

    w

    wt

    wx

    Furthermore, with regard the number 24, it is related to the physical vibrations of

    the bosonic strings by the following Ramanujan function:

  • 7/27/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - "The New Mersenne Prime Numbers"

    12/26

    Versione 1.0

    2/10/2013

    Pagina 12 di 26

    ( )

    ++

    +

    =

    4

    2710

    4

    21110log

    '

    142

    '

    cosh

    'cos

    log4

    24

    2

    '

    '4

    0

    '

    2

    2

    wtitwe

    dxex

    txw

    anti

    w

    wt

    wx

    The NNM are interesting from a theoretical point of view as they complete the

    symmetry arithmetic 6k -1 and 6k +1 as general forms of prime numbers.

    At first glance it would seem that there should be no difference between the

    numbers Mp and NNM to a certain n, but in reality, with this work, we found that

    this is not so because the numbers are already numerous Mp (recently it was

    discovered the 48th, with about 17 million digits), while the prime numbers inNNM are only four, see Paragraph 3.

  • 7/27/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - "The New Mersenne Prime Numbers"

    13/26

    Versione 1.0

    2/10/2013

    Pagina 13 di 26

    3. CONNECTION NNM WITH FERMAT NUMBERS

    Returning to Table 2 we try to extend it with the factorization extended to all

    numbers according to the trickery that we already know a priori what are the

    factors of numbers NNM:

    TAB. 3:

    n 2n+1 factorization

    4 17 17

    8 257 257

    12 4097 17 241

    16 65537 65537

    20 1048577 17 61681

    24 16777217 97 257 673

    28 268435457 17 15790321

    32 4294967297 641 6700417

    36 68719476737 17 241 433 38737

    40 1099511627777 257 4278255361

    44 17592186044417 17 353 2931

    48 281474976710657 193 65537 22253377

    52 4,50359963E+15 17 858001 308761441

    56 7,20575940E+16 257 5153 54410972897

    60 1,15292150E+18 17 241 61681 4562284561

    64 1,84467441E+19 274177 67280421310721

    68 2,95147905E+20 17^2 354689 2879347902817

    72 4,72236648E+21 97 257 577 673 487824887233

    76 7,55578637E+22 17 1217 148961 24517014940753

    80 1,20892582E+24 65537 414721 44479210368001

    84 1,93428131E+25 17 241 3361 15790322 89959882481

    88 3,09485010E+26 257 229153 119782433 43872038849

    92 4,95176016E+27 17

    96 7,92281625E+28 641 6700417 18446744069414584321

    100 1,26765060E+30 17

  • 7/27/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - "The New Mersenne Prime Numbers"

    14/26

    Versione 1.0

    2/10/2013

    Pagina 14 di 26

    104 2,02824096E+31 257

    108 3,24518554E+32 17 241

    112 5,19229686E+33 65537

    116 8,30767497E+34 17

    120 1,32922800E+36 257

    124 2,12676479E+37 17

    128 3,40282367E+38 59649589127497217 5704689200685129054721

    132 5,44451787E+39 17 241

    136 8,71122859E+40 257

    140 1,39379657E+42 17

    144 2,23007452E+43 65537

    148 3,56811923E+44 17

    152 5,70899077E+45 257

    156 9,13438523E+46 17 241

    160 1,46150164E+48 641 3602561 6700417 94455684953484563055991838558081

    164 2,33840262E+49 17

    168 3,74144419E+50 257

    172 5,98631071E+51 17

    176 9,57809713E+52 65537

    180 1,53249554E+54 17 241

    184 2,45199287E+55 257

    188 3,92318858E+56 17

    192 6,27710174E+57 769 274177 67280421310721 442499826945303593556473164314770689

    196 1,00433628E+59 17

    200 1,60693804E+60 257

    204 2,57110087E+61 17 241

    208 4,11376139E+62 65537

    212 6,58201823E+63 17

    216 1,05312292E+65 257

    220 1,68499667E+66 17

    224 2,69599467E+67 641 6700417

    228 4,31359147E+68 17 241

    232 6,90174635E+69 257

    236 1,10427942E+71 17

    240 1,76684706E+72 65537

    244 2,82695530E+73 17

    248 4,52312849E+74 257

  • 7/27/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - "The New Mersenne Prime Numbers"

    15/26

    Versione 1.0

    2/10/2013

    Pagina 15 di 26

    252 7,23700558E+75 17 241

    256 1,15792089E+77 1238926361552897, 93461639715357977769163558199606896584051237541638188580280321

    260 1,85267343E+78 17

    264 2,96427748E+79 257

    268 4,74284398E+80 17

    272 7,58855036E+81 65537

    276 1,21416806E+83 17 241

    280 1,94266889E+84 257

    284 3,10827023E+85 17

    288 4,97323236E+86 641 6700417

    292 7,95717178E+87 17

    296 1,27314749E+89 257

    300 2,03703598E+90 17 241

    304 3,25925756E+91 65537

    308 5,21481210E+92 17

    312 8,34369936E+93 257

    316 1,33499190E+95 17

    320 2,13598704E+96 274177 67280421310721

    324 3,41757926E+97 17 241

    328 5,46812681E+98 257

    332 8,74900290E+99 17

    336 1,39984046E+101 65537

    340 2,23974474E+102 17

    344 3,58359159E+103 257

    348 5,73374654E+104 17 241

    352 9,17399446E+105 641 6700417

    356 1,46783911E+107 17

    360 2,34854258E+108 257

    364 3,75766813E+109 17

    368 6,01226901E+110 65537

    372 9,61963042E+111 17 241

    376 1,53914087E+113 257

    380 2,46262539E+114 17

    384 3,94020062E+115 59649589127497217 5704689200685129054721

    388 6,30432099E+116 17

    392 1,00869136E+118 257

    396 1,61390617E+119 17 241

    400 2,58224988E+120 65537

  • 7/27/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - "The New Mersenne Prime Numbers"

    16/26

    Versione 1.0

    2/10/2013

    Pagina 16 di 26

    404 4,13159980E+121 17

    408 6,61055969E+122 257

    412 1,05768955E+124 17

    416 1,69230328E+125 641 6700417

    420 2,70768525E+126 17 241

    424 4,33229640E+127 257

    428 6,93167424E+128 17

    432 1,10906788E+130 65537

    436 1,77450860E+131 17

    440 2,83921377E+132 257

    444 4,54274203E+133 17 241

    448 7,26838724E+134 274177 67280421310721

    452 1,16294196E+136 17

    456 1,86070713E+137 257

    460 2,97713141E+138 17

    464 4,76341026E+139 65537

    468 7,62145642E+140 17 241

    472 1,21943303E+142 257

    476 1,95109284E+143 17

    480 3,12174855E+144 641 6700417

    484 4,99479768E+145 17

    488 7,99167629E+146 257

    492 1,27866821E+148 17 241

    496 2,04586913E+149 65537

    500 3,27339061E+150 17

    504 5,23742497E+151 257

    508 8,37987996E+152 17

    512 1,34078079E+1542424833, 7455602825647884208337395736200454918783366342657,

    741640062627530801524787141901937474059940781097519023905821316144415759504705008092818711693940737

  • 7/27/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - "The New Mersenne Prime Numbers"

    17/26

    Versione 1.0

    2/10/2013

    Pagina 17 di 26

    In fact, the prime factors of NNM are known according to this table of the

    exponents n

    TAB. 4:

    17 n=8k+4

    257 n=16k+8

    65537 n=32k+16

    641, 6700417 n=64k+32

    274177, 67280421310721 n=128k+64

    59649589127497217 5704689200685129054721 n=256k+128

    1238926361552897, 93461639715357977769163558199606896584051237541638188580280321 n=512k+256

    2424833, 7455602825647884208337395736200454918783366342657,

    741640062627530801524787141901937474059940781097519023905821316144415759504705008092818711693940737n=1024k+512

  • 7/27/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - "The New Mersenne Prime Numbers"

    18/26

    Versione 1.0

    2/10/2013

    Pagina 18 di 26

    Now we have the connection with Fermat numbers:

    122 +=n

    Fn

    We know that there are only 5 Fermat primes (see our proof in Ref 6).

    Now from the TAB. 4 we have "overlapping" total of ALL the exponents n

    multiples of 4 and ALL its factors are ALL the factors of Fermat numbers.

    In fact all the exponents n, in multiples of 4, are given by the following table:

    n=8k+4

    n=16k+8

    n=32k+16

    n=64k+32

    n=128k+64

    n=256k+128

    n=512k+256

    n=1024k+512

    In this way we have:

    n = 4, 8 , 12, 16 . ALL multiples of 4

    Also here we note that 8, 16, 32, 64, 128, 256, 512 and 1024 are all divisible for 8,

    i.e. the number that isconnected with the modes that correspond to the physical

    vibrations of a superstring by the following Ramanujan function

  • 7/27/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - "The New Mersenne Prime Numbers"

    19/26

    Versione 1.0

    2/10/2013

    Pagina 19 di 26

    ( )

    ++

    +

    =

    4

    2710

    4

    21110log

    '

    142

    '

    cosh

    'cos

    log4

    3

    18

    2

    '

    '4

    0

    '

    2

    2

    wtitwe

    dxex

    txw

    anti

    w

    wt

    wx

    .

    All prime factors of both numbers NNM and Fermat numbers are exactly the same

    because the frequencies of n are only due ton22 .

    This result validates and demonstrates that there are only 5 Fermat primes.

    In addition:

    1)The numbers of Fermat numbers are a subset of NNM.2)This demonstrates that also for numbers NNM we only have 4 prime

    numbers, the last number is the prime number 65537 and that there are

    others for both the group NNM and the group of Fermat.

    CONCLUSIONS

    1) and 2) are the most interesting and unexpected results of this work, born from

    the idea, now proved incorrect, we can find other very large prime numberssimilar size as the old Mersenne primes Mp.

    Instead we have found only 4, with mathematical certainty that there are no

    others.

  • 7/27/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - "The New Mersenne Prime Numbers"

    20/26

    Versione 1.0

    2/10/2013

    Pagina 20 di 26

    4. ON SOME EQUATIONS CONCERNIG PRIMITIVE DIVISORS OF

    MERSENNE NUMBERS

    In his interesting paper On the sum

    12

    1

    nd

    d (1971), the mathematician Paul

    Erdos considered the divisor function ( ) =md

    dm /11 restricted to Mersenne

    numbers; that is, numbers m of the form 2

    n

    1. It is well known that

    ( ) ( )mOm loglog1 = . (1)

    Thus letting 12 = nm , we trivially have

    ( ) ( )nOn log121 = . (2)

    THEOREM 1

    There is a set of natural numbers S of logarithmic density 1 such that

    ( ) 0lim,

    =

    nnEnSn

    . (3)

    We know that for each 0> the set ( )T of n with ( ) >nnE has logarithmic density

    0. For each prime q , let

    P ( ) {pq = prime: ,mod1 qp 2 is not a qth power }pmod .

    We have that:

    ( )( )( )( )

    =

    plqxp qPpxp

    q

    q xOp

    p

    p

    p

    |, ,

    /11log

    11. (4)

    And by (4) follow also that

  • 7/27/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - "The New Mersenne Prime Numbers"

    21/26

    Versione 1.0

    2/10/2013

    Pagina 21 di 26

    ( )( )( )

    =

    =

    =ndmdl

    m dnA,

    /1 (17)

    so that

    ( ) ( )=nm

    m nAnA . (18)

    There is an 0x such that for all 0xx and any m ,

    # ( ){ }

    +=

    x

    xxxmdlxd

    loglog2

    logloglog3logexp: . (19)

  • 7/27/2019 Pier Francesco Roggero, Michele Nardelli, Francesco Di Noto - "The New Mersenne Prime Numbers"

    24/26

    Versione 1.0

    2/10/2013

    Pagina 24 di 26

    Thus by partial summation

    ( )( )

    =