phys.iit.eduphys.iit.edu/~segre/phys406/17s/lecture_07.pdf · spin-spin coupling e(1) hf = 0g pe2...

180
Today’s Outline - February 02, 2017 C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 1 / 18

Upload: others

Post on 22-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Today’s Outline - February 02, 2017

• Hyperfine interaction

• 21cm line of hydrogen

• Variational method

• Harmonic oscillator

• Delta function

• Helium atom

Homework Assignment #04:Chapter 6:36; 7:1,4,7,13,16due Tuesday, February 14, 2017

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 1 / 18

Page 2: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Today’s Outline - February 02, 2017

• Hyperfine interaction

• 21cm line of hydrogen

• Variational method

• Harmonic oscillator

• Delta function

• Helium atom

Homework Assignment #04:Chapter 6:36; 7:1,4,7,13,16due Tuesday, February 14, 2017

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 1 / 18

Page 3: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Today’s Outline - February 02, 2017

• Hyperfine interaction

• 21cm line of hydrogen

• Variational method

• Harmonic oscillator

• Delta function

• Helium atom

Homework Assignment #04:Chapter 6:36; 7:1,4,7,13,16due Tuesday, February 14, 2017

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 1 / 18

Page 4: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Today’s Outline - February 02, 2017

• Hyperfine interaction

• 21cm line of hydrogen

• Variational method

• Harmonic oscillator

• Delta function

• Helium atom

Homework Assignment #04:Chapter 6:36; 7:1,4,7,13,16due Tuesday, February 14, 2017

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 1 / 18

Page 5: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Today’s Outline - February 02, 2017

• Hyperfine interaction

• 21cm line of hydrogen

• Variational method

• Harmonic oscillator

• Delta function

• Helium atom

Homework Assignment #04:Chapter 6:36; 7:1,4,7,13,16due Tuesday, February 14, 2017

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 1 / 18

Page 6: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Today’s Outline - February 02, 2017

• Hyperfine interaction

• 21cm line of hydrogen

• Variational method

• Harmonic oscillator

• Delta function

• Helium atom

Homework Assignment #04:Chapter 6:36; 7:1,4,7,13,16due Tuesday, February 14, 2017

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 1 / 18

Page 7: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Today’s Outline - February 02, 2017

• Hyperfine interaction

• 21cm line of hydrogen

• Variational method

• Harmonic oscillator

• Delta function

• Helium atom

Homework Assignment #04:Chapter 6:36; 7:1,4,7,13,16due Tuesday, February 14, 2017

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 1 / 18

Page 8: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Today’s Outline - February 02, 2017

• Hyperfine interaction

• 21cm line of hydrogen

• Variational method

• Harmonic oscillator

• Delta function

• Helium atom

Homework Assignment #04:Chapter 6:36; 7:1,4,7,13,16due Tuesday, February 14, 2017

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 1 / 18

Page 9: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Hyperfine interaction review

The proton’s magnetic moment in-teacts with the electron’s spin mag-netic moment to create the hyper-fine splitting

~µp =gpe

2mp

~Sp, ~µe = − gee

2me

~Se

the proton’s magnetic field seen by the electron is

~Bp =µ0

4πr3[3(~µp · r̂)r̂ − ~µp] +

2µ03~µpδ

3(~r)

the hyperfine interaction is simply H ′hf = −~µe · ~Bp which gives an energycorrection of

E(1)hf =

µ0gpe2

8πmpme

⟨3(~Sp · r̂)(~Se · r̂)− ~Sp · ~Se

r3

⟩+µ0gpe

2

3mpme〈~Sp · ~Se〉|ψ(0)|2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 2 / 18

Page 10: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Hyperfine interaction review

The proton’s magnetic moment in-teacts with the electron’s spin mag-netic moment to create the hyper-fine splitting

~µp =gpe

2mp

~Sp

, ~µe = − gee

2me

~Se

the proton’s magnetic field seen by the electron is

~Bp =µ0

4πr3[3(~µp · r̂)r̂ − ~µp] +

2µ03~µpδ

3(~r)

the hyperfine interaction is simply H ′hf = −~µe · ~Bp which gives an energycorrection of

E(1)hf =

µ0gpe2

8πmpme

⟨3(~Sp · r̂)(~Se · r̂)− ~Sp · ~Se

r3

⟩+µ0gpe

2

3mpme〈~Sp · ~Se〉|ψ(0)|2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 2 / 18

Page 11: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Hyperfine interaction review

The proton’s magnetic moment in-teacts with the electron’s spin mag-netic moment to create the hyper-fine splitting

~µp =gpe

2mp

~Sp, ~µe = − gee

2me

~Se

the proton’s magnetic field seen by the electron is

~Bp =µ0

4πr3[3(~µp · r̂)r̂ − ~µp] +

2µ03~µpδ

3(~r)

the hyperfine interaction is simply H ′hf = −~µe · ~Bp which gives an energycorrection of

E(1)hf =

µ0gpe2

8πmpme

⟨3(~Sp · r̂)(~Se · r̂)− ~Sp · ~Se

r3

⟩+µ0gpe

2

3mpme〈~Sp · ~Se〉|ψ(0)|2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 2 / 18

Page 12: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Hyperfine interaction review

The proton’s magnetic moment in-teacts with the electron’s spin mag-netic moment to create the hyper-fine splitting

~µp =gpe

2mp

~Sp, ~µe = − gee

2me

~Se

the proton’s magnetic field seen by the electron is

~Bp =µ0

4πr3[3(~µp · r̂)r̂ − ~µp] +

2µ03~µpδ

3(~r)

the hyperfine interaction is simply H ′hf = −~µe · ~Bp which gives an energycorrection of

E(1)hf =

µ0gpe2

8πmpme

⟨3(~Sp · r̂)(~Se · r̂)− ~Sp · ~Se

r3

⟩+µ0gpe

2

3mpme〈~Sp · ~Se〉|ψ(0)|2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 2 / 18

Page 13: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Hyperfine interaction review

The proton’s magnetic moment in-teacts with the electron’s spin mag-netic moment to create the hyper-fine splitting

~µp =gpe

2mp

~Sp, ~µe = − gee

2me

~Se

the proton’s magnetic field seen by the electron is

~Bp =µ0

4πr3[3(~µp · r̂)r̂ − ~µp] +

2µ03~µpδ

3(~r)

the hyperfine interaction is simply H ′hf = −~µe · ~Bp which gives an energycorrection of

E(1)hf =

µ0gpe2

8πmpme

⟨3(~Sp · r̂)(~Se · r̂)− ~Sp · ~Se

r3

⟩+µ0gpe

2

3mpme〈~Sp · ~Se〉|ψ(0)|2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 2 / 18

Page 14: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Hyperfine interaction review

The proton’s magnetic moment in-teacts with the electron’s spin mag-netic moment to create the hyper-fine splitting

~µp =gpe

2mp

~Sp, ~µe = − gee

2me

~Se

the proton’s magnetic field seen by the electron is

~Bp =µ0

4πr3[3(~µp · r̂)r̂ − ~µp] +

2µ03~µpδ

3(~r)

the hyperfine interaction is simply H ′hf = −~µe · ~Bp

which gives an energycorrection of

E(1)hf =

µ0gpe2

8πmpme

⟨3(~Sp · r̂)(~Se · r̂)− ~Sp · ~Se

r3

⟩+µ0gpe

2

3mpme〈~Sp · ~Se〉|ψ(0)|2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 2 / 18

Page 15: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Hyperfine interaction review

The proton’s magnetic moment in-teacts with the electron’s spin mag-netic moment to create the hyper-fine splitting

~µp =gpe

2mp

~Sp, ~µe = − gee

2me

~Se

the proton’s magnetic field seen by the electron is

~Bp =µ0

4πr3[3(~µp · r̂)r̂ − ~µp] +

2µ03~µpδ

3(~r)

the hyperfine interaction is simply H ′hf = −~µe · ~Bp which gives an energycorrection of

E(1)hf =

µ0gpe2

8πmpme

⟨3(~Sp · r̂)(~Se · r̂)− ~Sp · ~Se

r3

⟩+µ0gpe

2

3mpme〈~Sp · ~Se〉|ψ(0)|2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 2 / 18

Page 16: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Hyperfine interaction review

The proton’s magnetic moment in-teacts with the electron’s spin mag-netic moment to create the hyper-fine splitting

~µp =gpe

2mp

~Sp, ~µe = − gee

2me

~Se

the proton’s magnetic field seen by the electron is

~Bp =µ0

4πr3[3(~µp · r̂)r̂ − ~µp] +

2µ03~µpδ

3(~r)

the hyperfine interaction is simply H ′hf = −~µe · ~Bp which gives an energycorrection of

E(1)hf =

µ0gpe2

8πmpme

⟨3(~Sp · r̂)(~Se · r̂)− ~Sp · ~Se

r3

⟩+µ0gpe

2

3mpme〈~Sp · ~Se〉|ψ(0)|2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 2 / 18

Page 17: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Spin-spin coupling

E(1)hf =

µ0gpe2

8πmpme

⟨3(~Sp · r̂)(~Se · r̂)− ~Sp · ~Se

r3

⟩+µ0gpe

2

3mpme〈~Sp · ~Se〉|ψ(0)|2

for states with l = 0 the first term vanishes and we are left with an energycorrection which depends on a coupling between the spin of the protonand the spin of the electron

for the ground state,

|ψ100(0)|2 =1

πa3

the total spin is now a good opera-tor of the perturbed Hamiltonian

using the usual trick we have

E(1)hf =

µ0gpe2

3πmpmea3〈~Sp · ~Se〉

~S ≡ ~Se + ~Sp

~Se · ~Sp = 12(S2 − S2

e − S2p )

〈~Sp · ~Se〉 =~2

2[s(s + 1)− se(se + 1)− sp(sp + 1)]

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 3 / 18

Page 18: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Spin-spin coupling

E(1)hf =

(((((((

(((((((

((((µ0gpe2

8πmpme

⟨3(~Sp · r̂)(~Se · r̂)− ~Sp · ~Se

r3

⟩+µ0gpe

2

3mpme〈~Sp · ~Se〉|ψ(0)|2

for states with l = 0 the first term vanishes and we are left with an energycorrection which depends on a coupling between the spin of the protonand the spin of the electron

for the ground state,

|ψ100(0)|2 =1

πa3

the total spin is now a good opera-tor of the perturbed Hamiltonian

using the usual trick we have

E(1)hf =

µ0gpe2

3πmpmea3〈~Sp · ~Se〉

~S ≡ ~Se + ~Sp

~Se · ~Sp = 12(S2 − S2

e − S2p )

〈~Sp · ~Se〉 =~2

2[s(s + 1)− se(se + 1)− sp(sp + 1)]

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 3 / 18

Page 19: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Spin-spin coupling

E(1)hf =

(((((((

(((((((

((((µ0gpe2

8πmpme

⟨3(~Sp · r̂)(~Se · r̂)− ~Sp · ~Se

r3

⟩+µ0gpe

2

3mpme〈~Sp · ~Se〉|ψ(0)|2

for states with l = 0 the first term vanishes and we are left with an energycorrection which depends on a coupling between the spin of the protonand the spin of the electron

for the ground state,

|ψ100(0)|2 =1

πa3

the total spin is now a good opera-tor of the perturbed Hamiltonian

using the usual trick we have

E(1)hf =

µ0gpe2

3πmpmea3〈~Sp · ~Se〉

~S ≡ ~Se + ~Sp

~Se · ~Sp = 12(S2 − S2

e − S2p )

〈~Sp · ~Se〉 =~2

2[s(s + 1)− se(se + 1)− sp(sp + 1)]

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 3 / 18

Page 20: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Spin-spin coupling

E(1)hf =

(((((((

(((((((

((((µ0gpe2

8πmpme

⟨3(~Sp · r̂)(~Se · r̂)− ~Sp · ~Se

r3

⟩+µ0gpe

2

3mpme〈~Sp · ~Se〉|ψ(0)|2

for states with l = 0 the first term vanishes and we are left with an energycorrection which depends on a coupling between the spin of the protonand the spin of the electron

for the ground state,

|ψ100(0)|2 =1

πa3

the total spin is now a good opera-tor of the perturbed Hamiltonian

using the usual trick we have

E(1)hf =

µ0gpe2

3πmpmea3〈~Sp · ~Se〉

~S ≡ ~Se + ~Sp

~Se · ~Sp = 12(S2 − S2

e − S2p )

〈~Sp · ~Se〉 =~2

2[s(s + 1)− se(se + 1)− sp(sp + 1)]

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 3 / 18

Page 21: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Spin-spin coupling

E(1)hf =

(((((((

(((((((

((((µ0gpe2

8πmpme

⟨3(~Sp · r̂)(~Se · r̂)− ~Sp · ~Se

r3

⟩+µ0gpe

2

3mpme〈~Sp · ~Se〉|ψ(0)|2

for states with l = 0 the first term vanishes and we are left with an energycorrection which depends on a coupling between the spin of the protonand the spin of the electron

for the ground state,

|ψ100(0)|2 =1

πa3

the total spin is now a good opera-tor of the perturbed Hamiltonian

using the usual trick we have

E(1)hf =

µ0gpe2

3πmpmea3〈~Sp · ~Se〉

~S ≡ ~Se + ~Sp

~Se · ~Sp = 12(S2 − S2

e − S2p )

〈~Sp · ~Se〉 =~2

2[s(s + 1)− se(se + 1)− sp(sp + 1)]

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 3 / 18

Page 22: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Spin-spin coupling

E(1)hf =

(((((((

(((((((

((((µ0gpe2

8πmpme

⟨3(~Sp · r̂)(~Se · r̂)− ~Sp · ~Se

r3

⟩+µ0gpe

2

3mpme〈~Sp · ~Se〉|ψ(0)|2

for states with l = 0 the first term vanishes and we are left with an energycorrection which depends on a coupling between the spin of the protonand the spin of the electron

for the ground state,

|ψ100(0)|2 =1

πa3

the total spin is now a good opera-tor of the perturbed Hamiltonian

using the usual trick we have

E(1)hf =

µ0gpe2

3πmpmea3〈~Sp · ~Se〉

~S ≡ ~Se + ~Sp

~Se · ~Sp = 12(S2 − S2

e − S2p )

〈~Sp · ~Se〉 =~2

2[s(s + 1)− se(se + 1)− sp(sp + 1)]

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 3 / 18

Page 23: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Spin-spin coupling

E(1)hf =

(((((((

(((((((

((((µ0gpe2

8πmpme

⟨3(~Sp · r̂)(~Se · r̂)− ~Sp · ~Se

r3

⟩+µ0gpe

2

3mpme〈~Sp · ~Se〉|ψ(0)|2

for states with l = 0 the first term vanishes and we are left with an energycorrection which depends on a coupling between the spin of the protonand the spin of the electron

for the ground state,

|ψ100(0)|2 =1

πa3

the total spin is now a good opera-tor of the perturbed Hamiltonian

using the usual trick we have

E(1)hf =

µ0gpe2

3πmpmea3〈~Sp · ~Se〉

~S ≡ ~Se + ~Sp

~Se · ~Sp = 12(S2 − S2

e − S2p )

〈~Sp · ~Se〉 =~2

2[s(s + 1)− se(se + 1)− sp(sp + 1)]

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 3 / 18

Page 24: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Spin-spin coupling

E(1)hf =

(((((((

(((((((

((((µ0gpe2

8πmpme

⟨3(~Sp · r̂)(~Se · r̂)− ~Sp · ~Se

r3

⟩+µ0gpe

2

3mpme〈~Sp · ~Se〉|ψ(0)|2

for states with l = 0 the first term vanishes and we are left with an energycorrection which depends on a coupling between the spin of the protonand the spin of the electron

for the ground state,

|ψ100(0)|2 =1

πa3

the total spin is now a good opera-tor of the perturbed Hamiltonian

using the usual trick we have

E(1)hf =

µ0gpe2

3πmpmea3〈~Sp · ~Se〉

~S ≡ ~Se + ~Sp

~Se · ~Sp = 12(S2 − S2

e − S2p )

〈~Sp · ~Se〉 =~2

2[s(s + 1)− se(se + 1)− sp(sp + 1)]

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 3 / 18

Page 25: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Spin-spin coupling

E(1)hf =

(((((((

(((((((

((((µ0gpe2

8πmpme

⟨3(~Sp · r̂)(~Se · r̂)− ~Sp · ~Se

r3

⟩+µ0gpe

2

3mpme〈~Sp · ~Se〉|ψ(0)|2

for states with l = 0 the first term vanishes and we are left with an energycorrection which depends on a coupling between the spin of the protonand the spin of the electron

for the ground state,

|ψ100(0)|2 =1

πa3

the total spin is now a good opera-tor of the perturbed Hamiltonian

using the usual trick we have

E(1)hf =

µ0gpe2

3πmpmea3〈~Sp · ~Se〉

~S ≡ ~Se + ~Sp

~Se · ~Sp = 12(S2 − S2

e − S2p )

〈~Sp · ~Se〉 =~2

2[s(s + 1)− se(se + 1)− sp(sp + 1)]

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 3 / 18

Page 26: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The 21 cm hydrogen line

E(1)hf =

µ0gpe2

3πmpmea3〈~Sp · ~Se〉

=µ0gpe

2

3πmpmea3~2

2[s(s + 1)− se(se + 1)− sp(sp + 1)]

both the proton and the electronhave spin 1/2

but the total spin can be in eithera singlet or a triplet state

E(1)hf =

4gp~4

3mpmec2a4

{+1

4 , triplet

−34 , singlet

∆E = 5.88× 10−6eV

ν =∆E

h= 1420 MHz→ λ = 21cm

se(se + 1) = sp(sp + 1) = 34

s = 0 → s(s + 1) = 0

s = 1 → s(s + 1) = 2

∆E

s=1

s=0

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 4 / 18

Page 27: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The 21 cm hydrogen line

E(1)hf =

µ0gpe2

3πmpmea3〈~Sp · ~Se〉

=µ0gpe

2

3πmpmea3~2

2[s(s + 1)− se(se + 1)− sp(sp + 1)]

both the proton and the electronhave spin 1/2

but the total spin can be in eithera singlet or a triplet state

E(1)hf =

4gp~4

3mpmec2a4

{+1

4 , triplet

−34 , singlet

∆E = 5.88× 10−6eV

ν =∆E

h= 1420 MHz→ λ = 21cm

se(se + 1) = sp(sp + 1) = 34

s = 0 → s(s + 1) = 0

s = 1 → s(s + 1) = 2

∆E

s=1

s=0

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 4 / 18

Page 28: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The 21 cm hydrogen line

E(1)hf =

µ0gpe2

3πmpmea3〈~Sp · ~Se〉

=µ0gpe

2

3πmpmea3~2

2[s(s + 1)− se(se + 1)− sp(sp + 1)]

both the proton and the electronhave spin 1/2

but the total spin can be in eithera singlet or a triplet state

E(1)hf =

4gp~4

3mpmec2a4

{+1

4 , triplet

−34 , singlet

∆E = 5.88× 10−6eV

ν =∆E

h= 1420 MHz→ λ = 21cm

se(se + 1) = sp(sp + 1) = 34

s = 0 → s(s + 1) = 0

s = 1 → s(s + 1) = 2

∆E

s=1

s=0

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 4 / 18

Page 29: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The 21 cm hydrogen line

E(1)hf =

µ0gpe2

3πmpmea3〈~Sp · ~Se〉

=µ0gpe

2

3πmpmea3~2

2[s(s + 1)− se(se + 1)− sp(sp + 1)]

both the proton and the electronhave spin 1/2

but the total spin can be in eithera singlet or a triplet state

E(1)hf =

4gp~4

3mpmec2a4

{+1

4 , triplet

−34 , singlet

∆E = 5.88× 10−6eV

ν =∆E

h= 1420 MHz→ λ = 21cm

se(se + 1) = sp(sp + 1) = 34

s = 0 → s(s + 1) = 0

s = 1 → s(s + 1) = 2

∆E

s=1

s=0

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 4 / 18

Page 30: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The 21 cm hydrogen line

E(1)hf =

µ0gpe2

3πmpmea3〈~Sp · ~Se〉

=µ0gpe

2

3πmpmea3~2

2[s(s + 1)− se(se + 1)− sp(sp + 1)]

both the proton and the electronhave spin 1/2

but the total spin can be in eithera singlet

or a triplet state

E(1)hf =

4gp~4

3mpmec2a4

{+1

4 , triplet

−34 , singlet

∆E = 5.88× 10−6eV

ν =∆E

h= 1420 MHz→ λ = 21cm

se(se + 1) = sp(sp + 1) = 34

s = 0 → s(s + 1) = 0

s = 1 → s(s + 1) = 2

∆E

s=1

s=0

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 4 / 18

Page 31: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The 21 cm hydrogen line

E(1)hf =

µ0gpe2

3πmpmea3〈~Sp · ~Se〉

=µ0gpe

2

3πmpmea3~2

2[s(s + 1)− se(se + 1)− sp(sp + 1)]

both the proton and the electronhave spin 1/2

but the total spin can be in eithera singlet or a triplet state

E(1)hf =

4gp~4

3mpmec2a4

{+1

4 , triplet

−34 , singlet

∆E = 5.88× 10−6eV

ν =∆E

h= 1420 MHz→ λ = 21cm

se(se + 1) = sp(sp + 1) = 34

s = 0 → s(s + 1) = 0

s = 1 → s(s + 1) = 2

∆E

s=1

s=0

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 4 / 18

Page 32: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The 21 cm hydrogen line

E(1)hf =

µ0gpe2

3πmpmea3〈~Sp · ~Se〉

=µ0gpe

2

3πmpmea3~2

2[s(s + 1)− se(se + 1)− sp(sp + 1)]

both the proton and the electronhave spin 1/2

but the total spin can be in eithera singlet or a triplet state

E(1)hf =

4gp~4

3mpmec2a4

{+1

4 , triplet

−34 , singlet

∆E = 5.88× 10−6eV

ν =∆E

h= 1420 MHz→ λ = 21cm

se(se + 1) = sp(sp + 1) = 34

s = 0 → s(s + 1) = 0

s = 1 → s(s + 1) = 2

∆E

s=1

s=0

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 4 / 18

Page 33: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The 21 cm hydrogen line

E(1)hf =

µ0gpe2

3πmpmea3〈~Sp · ~Se〉

=µ0gpe

2

3πmpmea3~2

2[s(s + 1)− se(se + 1)− sp(sp + 1)]

both the proton and the electronhave spin 1/2

but the total spin can be in eithera singlet or a triplet state

E(1)hf =

4gp~4

3mpmec2a4

{+1

4 , triplet

−34 , singlet

∆E = 5.88× 10−6eV

ν =∆E

h= 1420 MHz→ λ = 21cm

se(se + 1) = sp(sp + 1) = 34

s = 0 → s(s + 1) = 0

s = 1 → s(s + 1) = 2

∆E

s=1

s=0

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 4 / 18

Page 34: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The 21 cm hydrogen line

E(1)hf =

µ0gpe2

3πmpmea3〈~Sp · ~Se〉

=µ0gpe

2

3πmpmea3~2

2[s(s + 1)− se(se + 1)− sp(sp + 1)]

both the proton and the electronhave spin 1/2

but the total spin can be in eithera singlet or a triplet state

E(1)hf =

4gp~4

3mpmec2a4

{+1

4 , triplet

−34 , singlet

∆E = 5.88× 10−6eV

ν =∆E

h= 1420 MHz→ λ = 21cm

se(se + 1) = sp(sp + 1) = 34

s = 0 → s(s + 1) = 0

s = 1 → s(s + 1) = 2

∆E

s=1

s=0

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 4 / 18

Page 35: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The 21 cm hydrogen line

E(1)hf =

µ0gpe2

3πmpmea3〈~Sp · ~Se〉

=µ0gpe

2

3πmpmea3~2

2[s(s + 1)− se(se + 1)− sp(sp + 1)]

both the proton and the electronhave spin 1/2

but the total spin can be in eithera singlet or a triplet state

E(1)hf =

4gp~4

3mpmec2a4

{+1

4 , triplet

−34 , singlet

∆E = 5.88× 10−6eV

ν =∆E

h= 1420 MHz

→ λ = 21cm

se(se + 1) = sp(sp + 1) = 34

s = 0 → s(s + 1) = 0

s = 1 → s(s + 1) = 2

∆E

s=1

s=0

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 4 / 18

Page 36: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The 21 cm hydrogen line

E(1)hf =

µ0gpe2

3πmpmea3〈~Sp · ~Se〉

=µ0gpe

2

3πmpmea3~2

2[s(s + 1)− se(se + 1)− sp(sp + 1)]

both the proton and the electronhave spin 1/2

but the total spin can be in eithera singlet or a triplet state

E(1)hf =

4gp~4

3mpmec2a4

{+1

4 , triplet

−34 , singlet

∆E = 5.88× 10−6eV

ν =∆E

h= 1420 MHz→ λ = 21cm

se(se + 1) = sp(sp + 1) = 34

s = 0 → s(s + 1) = 0

s = 1 → s(s + 1) = 2

∆E

s=1

s=0

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 4 / 18

Page 37: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Variational theorem

Suppose that we wish to calculate the ground state energy, Egs , of asystem with Hamiltonian H which cannot be solved exactly (a verycommon occurrence!).

Using the variational principle it is possible toobtain an upper bound on Egs .

If ψ is an arbitrary normalized wavefunction, we can write

where ψn are the (unknown) eigen-functions of H, which form a com-plete set

ψ =∑n

cnψn

Hψn = Enψn

the normalization condition for ψ requires

1 = 〈ψ|ψ〉 =

⟨∑m

cmψm

∣∣∣∣∣ ∑n

cnψn

⟩=∑m

∑n

c∗mcn〈ψm|ψn〉 =∑n

|cn|2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 5 / 18

Page 38: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Variational theorem

Suppose that we wish to calculate the ground state energy, Egs , of asystem with Hamiltonian H which cannot be solved exactly (a verycommon occurrence!). Using the variational principle it is possible toobtain an upper bound on Egs .

If ψ is an arbitrary normalized wavefunction, we can write

where ψn are the (unknown) eigen-functions of H, which form a com-plete set

ψ =∑n

cnψn

Hψn = Enψn

the normalization condition for ψ requires

1 = 〈ψ|ψ〉 =

⟨∑m

cmψm

∣∣∣∣∣ ∑n

cnψn

⟩=∑m

∑n

c∗mcn〈ψm|ψn〉 =∑n

|cn|2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 5 / 18

Page 39: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Variational theorem

Suppose that we wish to calculate the ground state energy, Egs , of asystem with Hamiltonian H which cannot be solved exactly (a verycommon occurrence!). Using the variational principle it is possible toobtain an upper bound on Egs .

If ψ is an arbitrary normalized wavefunction, we can write

where ψn are the (unknown) eigen-functions of H, which form a com-plete set

ψ =∑n

cnψn

Hψn = Enψn

the normalization condition for ψ requires

1 = 〈ψ|ψ〉 =

⟨∑m

cmψm

∣∣∣∣∣ ∑n

cnψn

⟩=∑m

∑n

c∗mcn〈ψm|ψn〉 =∑n

|cn|2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 5 / 18

Page 40: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Variational theorem

Suppose that we wish to calculate the ground state energy, Egs , of asystem with Hamiltonian H which cannot be solved exactly (a verycommon occurrence!). Using the variational principle it is possible toobtain an upper bound on Egs .

If ψ is an arbitrary normalized wavefunction, we can write

where ψn are the (unknown) eigen-functions of H, which form a com-plete set

ψ =∑n

cnψn

Hψn = Enψn

the normalization condition for ψ requires

1 = 〈ψ|ψ〉 =

⟨∑m

cmψm

∣∣∣∣∣ ∑n

cnψn

⟩=∑m

∑n

c∗mcn〈ψm|ψn〉 =∑n

|cn|2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 5 / 18

Page 41: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Variational theorem

Suppose that we wish to calculate the ground state energy, Egs , of asystem with Hamiltonian H which cannot be solved exactly (a verycommon occurrence!). Using the variational principle it is possible toobtain an upper bound on Egs .

If ψ is an arbitrary normalized wavefunction, we can write

where ψn are the (unknown) eigen-functions of H, which form a com-plete set

ψ =∑n

cnψn

Hψn = Enψn

the normalization condition for ψ requires

1 = 〈ψ|ψ〉 =

⟨∑m

cmψm

∣∣∣∣∣ ∑n

cnψn

⟩=∑m

∑n

c∗mcn〈ψm|ψn〉 =∑n

|cn|2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 5 / 18

Page 42: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Variational theorem

Suppose that we wish to calculate the ground state energy, Egs , of asystem with Hamiltonian H which cannot be solved exactly (a verycommon occurrence!). Using the variational principle it is possible toobtain an upper bound on Egs .

If ψ is an arbitrary normalized wavefunction, we can write

where ψn are the (unknown) eigen-functions of H, which form a com-plete set

ψ =∑n

cnψn

Hψn = Enψn

the normalization condition for ψ requires

1 = 〈ψ|ψ〉 =

⟨∑m

cmψm

∣∣∣∣∣ ∑n

cnψn

⟩=∑m

∑n

c∗mcn〈ψm|ψn〉 =∑n

|cn|2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 5 / 18

Page 43: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Variational theorem

Suppose that we wish to calculate the ground state energy, Egs , of asystem with Hamiltonian H which cannot be solved exactly (a verycommon occurrence!). Using the variational principle it is possible toobtain an upper bound on Egs .

If ψ is an arbitrary normalized wavefunction, we can write

where ψn are the (unknown) eigen-functions of H, which form a com-plete set

ψ =∑n

cnψn

Hψn = Enψn

the normalization condition for ψ requires

1 = 〈ψ|ψ〉 =

⟨∑m

cmψm

∣∣∣∣∣ ∑n

cnψn

⟩=∑m

∑n

c∗mcn〈ψm|ψn〉 =∑n

|cn|2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 5 / 18

Page 44: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Variational theorem

Suppose that we wish to calculate the ground state energy, Egs , of asystem with Hamiltonian H which cannot be solved exactly (a verycommon occurrence!). Using the variational principle it is possible toobtain an upper bound on Egs .

If ψ is an arbitrary normalized wavefunction, we can write

where ψn are the (unknown) eigen-functions of H, which form a com-plete set

ψ =∑n

cnψn

Hψn = Enψn

the normalization condition for ψ requires

1 = 〈ψ|ψ〉

=

⟨∑m

cmψm

∣∣∣∣∣ ∑n

cnψn

⟩=∑m

∑n

c∗mcn〈ψm|ψn〉 =∑n

|cn|2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 5 / 18

Page 45: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Variational theorem

Suppose that we wish to calculate the ground state energy, Egs , of asystem with Hamiltonian H which cannot be solved exactly (a verycommon occurrence!). Using the variational principle it is possible toobtain an upper bound on Egs .

If ψ is an arbitrary normalized wavefunction, we can write

where ψn are the (unknown) eigen-functions of H, which form a com-plete set

ψ =∑n

cnψn

Hψn = Enψn

the normalization condition for ψ requires

1 = 〈ψ|ψ〉 =

⟨∑m

cmψm

∣∣∣∣∣ ∑n

cnψn

=∑m

∑n

c∗mcn〈ψm|ψn〉 =∑n

|cn|2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 5 / 18

Page 46: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Variational theorem

Suppose that we wish to calculate the ground state energy, Egs , of asystem with Hamiltonian H which cannot be solved exactly (a verycommon occurrence!). Using the variational principle it is possible toobtain an upper bound on Egs .

If ψ is an arbitrary normalized wavefunction, we can write

where ψn are the (unknown) eigen-functions of H, which form a com-plete set

ψ =∑n

cnψn

Hψn = Enψn

the normalization condition for ψ requires

1 = 〈ψ|ψ〉 =

⟨∑m

cmψm

∣∣∣∣∣ ∑n

cnψn

⟩=∑m

∑n

c∗mcn〈ψm|ψn〉

=∑n

|cn|2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 5 / 18

Page 47: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Variational theorem

Suppose that we wish to calculate the ground state energy, Egs , of asystem with Hamiltonian H which cannot be solved exactly (a verycommon occurrence!). Using the variational principle it is possible toobtain an upper bound on Egs .

If ψ is an arbitrary normalized wavefunction, we can write

where ψn are the (unknown) eigen-functions of H, which form a com-plete set

ψ =∑n

cnψn

Hψn = Enψn

the normalization condition for ψ requires

1 = 〈ψ|ψ〉 =

⟨∑m

cmψm

∣∣∣∣∣ ∑n

cnψn

⟩=∑m

∑n

c∗mcn〈ψm|ψn〉 =∑n

|cn|2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 5 / 18

Page 48: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Proof of variational theorem

If we take the expectation value of the Hamiltonian with this arbitrarywave function, ψ we have

〈H〉 =

⟨∑m

cmψm

∣∣∣∣∣ H∑n

cnψn

⟩=∑m

∑n

c∗mEncn〈ψm|ψn〉 =∑n

En|cn|2

since the ground state energy mustbe the smallest eigenvalue of theHamiltonian, then Egs ≤ En andwe can write

〈H〉 ≥ Egs

∑n

|cn|2 = Egs

This is the so-called variational principle which allows us to compute anupper bound on the ground state energy and, if we make a judiciouschoice of arbitrary wave function, ψ (ie. not arbitrary at all!) we can getvery close to the actual ground state energy.

In practice this means we minimize the value of the Hamiltonianexpectation value to achieve this upper bound.

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 6 / 18

Page 49: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Proof of variational theorem

If we take the expectation value of the Hamiltonian with this arbitrarywave function, ψ we have

〈H〉 =

⟨∑m

cmψm

∣∣∣∣∣ H∑n

cnψn

=∑m

∑n

c∗mEncn〈ψm|ψn〉 =∑n

En|cn|2

since the ground state energy mustbe the smallest eigenvalue of theHamiltonian, then Egs ≤ En andwe can write

〈H〉 ≥ Egs

∑n

|cn|2 = Egs

This is the so-called variational principle which allows us to compute anupper bound on the ground state energy and, if we make a judiciouschoice of arbitrary wave function, ψ (ie. not arbitrary at all!) we can getvery close to the actual ground state energy.

In practice this means we minimize the value of the Hamiltonianexpectation value to achieve this upper bound.

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 6 / 18

Page 50: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Proof of variational theorem

If we take the expectation value of the Hamiltonian with this arbitrarywave function, ψ we have

〈H〉 =

⟨∑m

cmψm

∣∣∣∣∣ H∑n

cnψn

⟩=∑m

∑n

c∗mEncn〈ψm|ψn〉

=∑n

En|cn|2

since the ground state energy mustbe the smallest eigenvalue of theHamiltonian, then Egs ≤ En andwe can write

〈H〉 ≥ Egs

∑n

|cn|2 = Egs

This is the so-called variational principle which allows us to compute anupper bound on the ground state energy and, if we make a judiciouschoice of arbitrary wave function, ψ (ie. not arbitrary at all!) we can getvery close to the actual ground state energy.

In practice this means we minimize the value of the Hamiltonianexpectation value to achieve this upper bound.

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 6 / 18

Page 51: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Proof of variational theorem

If we take the expectation value of the Hamiltonian with this arbitrarywave function, ψ we have

〈H〉 =

⟨∑m

cmψm

∣∣∣∣∣ H∑n

cnψn

⟩=∑m

∑n

c∗mEncn〈ψm|ψn〉 =∑n

En|cn|2

since the ground state energy mustbe the smallest eigenvalue of theHamiltonian, then Egs ≤ En andwe can write

〈H〉 ≥ Egs

∑n

|cn|2 = Egs

This is the so-called variational principle which allows us to compute anupper bound on the ground state energy and, if we make a judiciouschoice of arbitrary wave function, ψ (ie. not arbitrary at all!) we can getvery close to the actual ground state energy.

In practice this means we minimize the value of the Hamiltonianexpectation value to achieve this upper bound.

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 6 / 18

Page 52: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Proof of variational theorem

If we take the expectation value of the Hamiltonian with this arbitrarywave function, ψ we have

〈H〉 =

⟨∑m

cmψm

∣∣∣∣∣ H∑n

cnψn

⟩=∑m

∑n

c∗mEncn〈ψm|ψn〉 =∑n

En|cn|2

since the ground state energy mustbe the smallest eigenvalue of theHamiltonian, then Egs ≤ En andwe can write

〈H〉 ≥ Egs

∑n

|cn|2 = Egs

This is the so-called variational principle which allows us to compute anupper bound on the ground state energy and, if we make a judiciouschoice of arbitrary wave function, ψ (ie. not arbitrary at all!) we can getvery close to the actual ground state energy.

In practice this means we minimize the value of the Hamiltonianexpectation value to achieve this upper bound.

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 6 / 18

Page 53: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Proof of variational theorem

If we take the expectation value of the Hamiltonian with this arbitrarywave function, ψ we have

〈H〉 =

⟨∑m

cmψm

∣∣∣∣∣ H∑n

cnψn

⟩=∑m

∑n

c∗mEncn〈ψm|ψn〉 =∑n

En|cn|2

since the ground state energy mustbe the smallest eigenvalue of theHamiltonian, then Egs ≤ En andwe can write

〈H〉 ≥ Egs

∑n

|cn|2

= Egs

This is the so-called variational principle which allows us to compute anupper bound on the ground state energy and, if we make a judiciouschoice of arbitrary wave function, ψ (ie. not arbitrary at all!) we can getvery close to the actual ground state energy.

In practice this means we minimize the value of the Hamiltonianexpectation value to achieve this upper bound.

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 6 / 18

Page 54: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Proof of variational theorem

If we take the expectation value of the Hamiltonian with this arbitrarywave function, ψ we have

〈H〉 =

⟨∑m

cmψm

∣∣∣∣∣ H∑n

cnψn

⟩=∑m

∑n

c∗mEncn〈ψm|ψn〉 =∑n

En|cn|2

since the ground state energy mustbe the smallest eigenvalue of theHamiltonian, then Egs ≤ En andwe can write

〈H〉 ≥ Egs

∑n

|cn|2 = Egs

This is the so-called variational principle which allows us to compute anupper bound on the ground state energy and, if we make a judiciouschoice of arbitrary wave function, ψ (ie. not arbitrary at all!) we can getvery close to the actual ground state energy.

In practice this means we minimize the value of the Hamiltonianexpectation value to achieve this upper bound.

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 6 / 18

Page 55: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Proof of variational theorem

If we take the expectation value of the Hamiltonian with this arbitrarywave function, ψ we have

〈H〉 =

⟨∑m

cmψm

∣∣∣∣∣ H∑n

cnψn

⟩=∑m

∑n

c∗mEncn〈ψm|ψn〉 =∑n

En|cn|2

since the ground state energy mustbe the smallest eigenvalue of theHamiltonian, then Egs ≤ En andwe can write

〈H〉 ≥ Egs

∑n

|cn|2 = Egs

This is the so-called variational principle which allows us to compute anupper bound on the ground state energy and, if we make a judiciouschoice of arbitrary wave function, ψ (ie. not arbitrary at all!) we can getvery close to the actual ground state energy.

In practice this means we minimize the value of the Hamiltonianexpectation value to achieve this upper bound.

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 6 / 18

Page 56: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Proof of variational theorem

If we take the expectation value of the Hamiltonian with this arbitrarywave function, ψ we have

〈H〉 =

⟨∑m

cmψm

∣∣∣∣∣ H∑n

cnψn

⟩=∑m

∑n

c∗mEncn〈ψm|ψn〉 =∑n

En|cn|2

since the ground state energy mustbe the smallest eigenvalue of theHamiltonian, then Egs ≤ En andwe can write

〈H〉 ≥ Egs

∑n

|cn|2 = Egs

This is the so-called variational principle which allows us to compute anupper bound on the ground state energy and, if we make a judiciouschoice of arbitrary wave function, ψ (ie. not arbitrary at all!) we can getvery close to the actual ground state energy.

In practice this means we minimize the value of the Hamiltonianexpectation value to achieve this upper bound.

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 6 / 18

Page 57: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.1 - Harmonic oscillator

Find the ground state energy for the 1-D harmonic oscillator using thevariational theorem

H = − ~2

2m

d2

dx2+

1

2mω2x2

Assume a solution of theform

where b is the variational pa-rameter and A is the normal-ization parameter

Now compute the expecta-tion value of the Hamilto-nian, which must be an up-per bound on the groundstate energy

ψ(x) = Ae−bx2

1 = |A|2∫ ∞−∞

e−2bx2dx = |A|2

√π

2b

A =

(2b

π

)1/4

〈H〉 = 〈T 〉+ 〈V 〉

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 7 / 18

Page 58: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.1 - Harmonic oscillator

Find the ground state energy for the 1-D harmonic oscillator using thevariational theorem

H = − ~2

2m

d2

dx2+

1

2mω2x2

Assume a solution of theform

where b is the variational pa-rameter and A is the normal-ization parameter

Now compute the expecta-tion value of the Hamilto-nian, which must be an up-per bound on the groundstate energy

ψ(x) = Ae−bx2

1 = |A|2∫ ∞−∞

e−2bx2dx = |A|2

√π

2b

A =

(2b

π

)1/4

〈H〉 = 〈T 〉+ 〈V 〉

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 7 / 18

Page 59: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.1 - Harmonic oscillator

Find the ground state energy for the 1-D harmonic oscillator using thevariational theorem

H = − ~2

2m

d2

dx2+

1

2mω2x2

Assume a solution of theform

where b is the variational pa-rameter and A is the normal-ization parameter

Now compute the expecta-tion value of the Hamilto-nian, which must be an up-per bound on the groundstate energy

ψ(x) = Ae−bx2

1 = |A|2∫ ∞−∞

e−2bx2dx = |A|2

√π

2b

A =

(2b

π

)1/4

〈H〉 = 〈T 〉+ 〈V 〉

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 7 / 18

Page 60: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.1 - Harmonic oscillator

Find the ground state energy for the 1-D harmonic oscillator using thevariational theorem

H = − ~2

2m

d2

dx2+

1

2mω2x2

Assume a solution of theform

where b is the variational pa-rameter and A is the normal-ization parameter

Now compute the expecta-tion value of the Hamilto-nian, which must be an up-per bound on the groundstate energy

ψ(x) = Ae−bx2

1 = |A|2∫ ∞−∞

e−2bx2dx = |A|2

√π

2b

A =

(2b

π

)1/4

〈H〉 = 〈T 〉+ 〈V 〉

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 7 / 18

Page 61: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.1 - Harmonic oscillator

Find the ground state energy for the 1-D harmonic oscillator using thevariational theorem

H = − ~2

2m

d2

dx2+

1

2mω2x2

Assume a solution of theform

where b is the variational pa-rameter and A is the normal-ization parameter

Now compute the expecta-tion value of the Hamilto-nian, which must be an up-per bound on the groundstate energy

ψ(x) = Ae−bx2

1 = |A|2∫ ∞−∞

e−2bx2dx = |A|2

√π

2b

A =

(2b

π

)1/4

〈H〉 = 〈T 〉+ 〈V 〉

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 7 / 18

Page 62: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.1 - Harmonic oscillator

Find the ground state energy for the 1-D harmonic oscillator using thevariational theorem

H = − ~2

2m

d2

dx2+

1

2mω2x2

Assume a solution of theform

where b is the variational pa-rameter and A is the normal-ization parameter

Now compute the expecta-tion value of the Hamilto-nian, which must be an up-per bound on the groundstate energy

ψ(x) = Ae−bx2

1 = |A|2∫ ∞−∞

e−2bx2dx

= |A|2√

π

2b

A =

(2b

π

)1/4

〈H〉 = 〈T 〉+ 〈V 〉

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 7 / 18

Page 63: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.1 - Harmonic oscillator

Find the ground state energy for the 1-D harmonic oscillator using thevariational theorem

H = − ~2

2m

d2

dx2+

1

2mω2x2

Assume a solution of theform

where b is the variational pa-rameter and A is the normal-ization parameter

Now compute the expecta-tion value of the Hamilto-nian, which must be an up-per bound on the groundstate energy

ψ(x) = Ae−bx2

1 = |A|2∫ ∞−∞

e−2bx2dx = |A|2

√π

2b

A =

(2b

π

)1/4

〈H〉 = 〈T 〉+ 〈V 〉

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 7 / 18

Page 64: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.1 - Harmonic oscillator

Find the ground state energy for the 1-D harmonic oscillator using thevariational theorem

H = − ~2

2m

d2

dx2+

1

2mω2x2

Assume a solution of theform

where b is the variational pa-rameter and A is the normal-ization parameter

Now compute the expecta-tion value of the Hamilto-nian, which must be an up-per bound on the groundstate energy

ψ(x) = Ae−bx2

1 = |A|2∫ ∞−∞

e−2bx2dx = |A|2

√π

2b

A =

(2b

π

)1/4

〈H〉 = 〈T 〉+ 〈V 〉

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 7 / 18

Page 65: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.1 - Harmonic oscillator

Find the ground state energy for the 1-D harmonic oscillator using thevariational theorem

H = − ~2

2m

d2

dx2+

1

2mω2x2

Assume a solution of theform

where b is the variational pa-rameter and A is the normal-ization parameter

Now compute the expecta-tion value of the Hamilto-nian, which must be an up-per bound on the groundstate energy

ψ(x) = Ae−bx2

1 = |A|2∫ ∞−∞

e−2bx2dx = |A|2

√π

2b

A =

(2b

π

)1/4

〈H〉 = 〈T 〉+ 〈V 〉

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 7 / 18

Page 66: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.1 - Harmonic oscillator

Find the ground state energy for the 1-D harmonic oscillator using thevariational theorem

H = − ~2

2m

d2

dx2+

1

2mω2x2

Assume a solution of theform

where b is the variational pa-rameter and A is the normal-ization parameter

Now compute the expecta-tion value of the Hamilto-nian, which must be an up-per bound on the groundstate energy

ψ(x) = Ae−bx2

1 = |A|2∫ ∞−∞

e−2bx2dx = |A|2

√π

2b

A =

(2b

π

)1/4

〈H〉 = 〈T 〉+ 〈V 〉

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 7 / 18

Page 67: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.1 (cont.)

The kinetic and po-tential energies are in-stances of the Gaus-sian integral

giving

〈H〉 =~2b2m

+mω2

8b

〈T 〉 = − ~2

2m|A|2

∫ ∞−∞

e−bx2 d2

dx2

(e−bx

2)dx

= − ~2

2m

(2b

π

)1/2∫ ∞−∞

(4b2x2 − 2b

)e−2bx

2dx

= − ~2

2m

(2b

π

)1/2 [4b2√

π

32b3− 2b

√π

2b

]=

~2b2m

〈V 〉 =1

2mω2|A|2

∫ ∞−∞

x2e−2bx2dx =

mω2

8b

get the upper bound on energy by minimizing

0 =d

db〈H〉 =

~2

2m− mω2

8b2→ b =

2~→ 〈H〉min =

1

2~ω

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 8 / 18

Page 68: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.1 (cont.)

The kinetic and po-tential energies are in-stances of the Gaus-sian integral

giving

〈H〉 =~2b2m

+mω2

8b

〈T 〉 = − ~2

2m|A|2

∫ ∞−∞

e−bx2 d2

dx2

(e−bx

2)dx

= − ~2

2m

(2b

π

)1/2∫ ∞−∞

(4b2x2 − 2b

)e−2bx

2dx

= − ~2

2m

(2b

π

)1/2 [4b2√

π

32b3− 2b

√π

2b

]=

~2b2m

〈V 〉 =1

2mω2|A|2

∫ ∞−∞

x2e−2bx2dx =

mω2

8b

get the upper bound on energy by minimizing

0 =d

db〈H〉 =

~2

2m− mω2

8b2→ b =

2~→ 〈H〉min =

1

2~ω

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 8 / 18

Page 69: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.1 (cont.)

The kinetic and po-tential energies are in-stances of the Gaus-sian integral

giving

〈H〉 =~2b2m

+mω2

8b

〈T 〉 = − ~2

2m|A|2

∫ ∞−∞

e−bx2 d2

dx2

(e−bx

2)dx

= − ~2

2m

(2b

π

)1/2∫ ∞−∞

(4b2x2 − 2b

)e−2bx

2dx

= − ~2

2m

(2b

π

)1/2 [4b2√

π

32b3− 2b

√π

2b

]=

~2b2m

〈V 〉 =1

2mω2|A|2

∫ ∞−∞

x2e−2bx2dx =

mω2

8b

get the upper bound on energy by minimizing

0 =d

db〈H〉 =

~2

2m− mω2

8b2→ b =

2~→ 〈H〉min =

1

2~ω

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 8 / 18

Page 70: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.1 (cont.)

The kinetic and po-tential energies are in-stances of the Gaus-sian integral

giving

〈H〉 =~2b2m

+mω2

8b

〈T 〉 = − ~2

2m|A|2

∫ ∞−∞

e−bx2 d2

dx2

(e−bx

2)dx

= − ~2

2m

(2b

π

)1/2∫ ∞−∞

(4b2x2 − 2b

)e−2bx

2dx

= − ~2

2m

(2b

π

)1/2 [4b2√

π

32b3− 2b

√π

2b

]

=~2b2m

〈V 〉 =1

2mω2|A|2

∫ ∞−∞

x2e−2bx2dx =

mω2

8b

get the upper bound on energy by minimizing

0 =d

db〈H〉 =

~2

2m− mω2

8b2→ b =

2~→ 〈H〉min =

1

2~ω

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 8 / 18

Page 71: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.1 (cont.)

The kinetic and po-tential energies are in-stances of the Gaus-sian integral

giving

〈H〉 =~2b2m

+mω2

8b

〈T 〉 = − ~2

2m|A|2

∫ ∞−∞

e−bx2 d2

dx2

(e−bx

2)dx

= − ~2

2m

(2b

π

)1/2∫ ∞−∞

(4b2x2 − 2b

)e−2bx

2dx

= − ~2

2m

(2b

π

)1/2 [4b2√

π

32b3− 2b

√π

2b

]=

~2b2m

〈V 〉 =1

2mω2|A|2

∫ ∞−∞

x2e−2bx2dx =

mω2

8b

get the upper bound on energy by minimizing

0 =d

db〈H〉 =

~2

2m− mω2

8b2→ b =

2~→ 〈H〉min =

1

2~ω

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 8 / 18

Page 72: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.1 (cont.)

The kinetic and po-tential energies are in-stances of the Gaus-sian integral

giving

〈H〉 =~2b2m

+mω2

8b

〈T 〉 = − ~2

2m|A|2

∫ ∞−∞

e−bx2 d2

dx2

(e−bx

2)dx

= − ~2

2m

(2b

π

)1/2∫ ∞−∞

(4b2x2 − 2b

)e−2bx

2dx

= − ~2

2m

(2b

π

)1/2 [4b2√

π

32b3− 2b

√π

2b

]=

~2b2m

〈V 〉 =1

2mω2|A|2

∫ ∞−∞

x2e−2bx2dx

=mω2

8b

get the upper bound on energy by minimizing

0 =d

db〈H〉 =

~2

2m− mω2

8b2→ b =

2~→ 〈H〉min =

1

2~ω

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 8 / 18

Page 73: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.1 (cont.)

The kinetic and po-tential energies are in-stances of the Gaus-sian integral

giving

〈H〉 =~2b2m

+mω2

8b

〈T 〉 = − ~2

2m|A|2

∫ ∞−∞

e−bx2 d2

dx2

(e−bx

2)dx

= − ~2

2m

(2b

π

)1/2∫ ∞−∞

(4b2x2 − 2b

)e−2bx

2dx

= − ~2

2m

(2b

π

)1/2 [4b2√

π

32b3− 2b

√π

2b

]=

~2b2m

〈V 〉 =1

2mω2|A|2

∫ ∞−∞

x2e−2bx2dx =

mω2

8b

get the upper bound on energy by minimizing

0 =d

db〈H〉 =

~2

2m− mω2

8b2→ b =

2~→ 〈H〉min =

1

2~ω

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 8 / 18

Page 74: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.1 (cont.)

The kinetic and po-tential energies are in-stances of the Gaus-sian integral

giving

〈H〉 =~2b2m

+mω2

8b

〈T 〉 = − ~2

2m|A|2

∫ ∞−∞

e−bx2 d2

dx2

(e−bx

2)dx

= − ~2

2m

(2b

π

)1/2∫ ∞−∞

(4b2x2 − 2b

)e−2bx

2dx

= − ~2

2m

(2b

π

)1/2 [4b2√

π

32b3− 2b

√π

2b

]=

~2b2m

〈V 〉 =1

2mω2|A|2

∫ ∞−∞

x2e−2bx2dx =

mω2

8b

get the upper bound on energy by minimizing

0 =d

db〈H〉 =

~2

2m− mω2

8b2→ b =

2~→ 〈H〉min =

1

2~ω

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 8 / 18

Page 75: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.1 (cont.)

The kinetic and po-tential energies are in-stances of the Gaus-sian integral

giving

〈H〉 =~2b2m

+mω2

8b

〈T 〉 = − ~2

2m|A|2

∫ ∞−∞

e−bx2 d2

dx2

(e−bx

2)dx

= − ~2

2m

(2b

π

)1/2∫ ∞−∞

(4b2x2 − 2b

)e−2bx

2dx

= − ~2

2m

(2b

π

)1/2 [4b2√

π

32b3− 2b

√π

2b

]=

~2b2m

〈V 〉 =1

2mω2|A|2

∫ ∞−∞

x2e−2bx2dx =

mω2

8b

get the upper bound on energy by minimizing

0 =d

db〈H〉 =

~2

2m− mω2

8b2→ b =

2~→ 〈H〉min =

1

2~ω

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 8 / 18

Page 76: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.1 (cont.)

The kinetic and po-tential energies are in-stances of the Gaus-sian integral

giving

〈H〉 =~2b2m

+mω2

8b

〈T 〉 = − ~2

2m|A|2

∫ ∞−∞

e−bx2 d2

dx2

(e−bx

2)dx

= − ~2

2m

(2b

π

)1/2∫ ∞−∞

(4b2x2 − 2b

)e−2bx

2dx

= − ~2

2m

(2b

π

)1/2 [4b2√

π

32b3− 2b

√π

2b

]=

~2b2m

〈V 〉 =1

2mω2|A|2

∫ ∞−∞

x2e−2bx2dx =

mω2

8b

get the upper bound on energy by minimizing

0 =d

db〈H〉

=~2

2m− mω2

8b2→ b =

2~→ 〈H〉min =

1

2~ω

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 8 / 18

Page 77: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.1 (cont.)

The kinetic and po-tential energies are in-stances of the Gaus-sian integral

giving

〈H〉 =~2b2m

+mω2

8b

〈T 〉 = − ~2

2m|A|2

∫ ∞−∞

e−bx2 d2

dx2

(e−bx

2)dx

= − ~2

2m

(2b

π

)1/2∫ ∞−∞

(4b2x2 − 2b

)e−2bx

2dx

= − ~2

2m

(2b

π

)1/2 [4b2√

π

32b3− 2b

√π

2b

]=

~2b2m

〈V 〉 =1

2mω2|A|2

∫ ∞−∞

x2e−2bx2dx =

mω2

8b

get the upper bound on energy by minimizing

0 =d

db〈H〉 =

~2

2m− mω2

8b2

→ b =mω

2~→ 〈H〉min =

1

2~ω

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 8 / 18

Page 78: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.1 (cont.)

The kinetic and po-tential energies are in-stances of the Gaus-sian integral

giving

〈H〉 =~2b2m

+mω2

8b

〈T 〉 = − ~2

2m|A|2

∫ ∞−∞

e−bx2 d2

dx2

(e−bx

2)dx

= − ~2

2m

(2b

π

)1/2∫ ∞−∞

(4b2x2 − 2b

)e−2bx

2dx

= − ~2

2m

(2b

π

)1/2 [4b2√

π

32b3− 2b

√π

2b

]=

~2b2m

〈V 〉 =1

2mω2|A|2

∫ ∞−∞

x2e−2bx2dx =

mω2

8b

get the upper bound on energy by minimizing

0 =d

db〈H〉 =

~2

2m− mω2

8b2→ b =

2~

→ 〈H〉min =1

2~ω

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 8 / 18

Page 79: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.1 (cont.)

The kinetic and po-tential energies are in-stances of the Gaus-sian integral

giving

〈H〉 =~2b2m

+mω2

8b

〈T 〉 = − ~2

2m|A|2

∫ ∞−∞

e−bx2 d2

dx2

(e−bx

2)dx

= − ~2

2m

(2b

π

)1/2∫ ∞−∞

(4b2x2 − 2b

)e−2bx

2dx

= − ~2

2m

(2b

π

)1/2 [4b2√

π

32b3− 2b

√π

2b

]=

~2b2m

〈V 〉 =1

2mω2|A|2

∫ ∞−∞

x2e−2bx2dx =

mω2

8b

get the upper bound on energy by minimizing

0 =d

db〈H〉 =

~2

2m− mω2

8b2→ b =

2~→ 〈H〉min =

1

2~ω

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 8 / 18

Page 80: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.2 - Delta function

Find the ground state energy of adelta function potential

Start with the same Gaussian trialfunction as for the harmonic oscil-lator

We know that

〈T 〉 =~2b2m

we need to compute 〈V 〉

the upper bound for the energy isthus

minimizing wrt b

H = − ~2

2m

d2

dx2− αδ(x)

ψ(x) = Ae−bx2

〈V 〉 = −α|A|2∫ ∞−∞

δ(x)e−2bx2dx

=− α√

2b

π

〈H〉 =~2b2m− α

√2b

π

0 =d

db〈H〉 =

~2

2m− α√

2πb

b =2m2α2

π~4−→ 〈H〉min = −mα2

π~2≥ −mα2

2~2= Egs

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 9 / 18

Page 81: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.2 - Delta function

Find the ground state energy of adelta function potential

Start with the same Gaussian trialfunction as for the harmonic oscil-lator

We know that

〈T 〉 =~2b2m

we need to compute 〈V 〉

the upper bound for the energy isthus

minimizing wrt b

H = − ~2

2m

d2

dx2− αδ(x)

ψ(x) = Ae−bx2

〈V 〉 = −α|A|2∫ ∞−∞

δ(x)e−2bx2dx

=− α√

2b

π

〈H〉 =~2b2m− α

√2b

π

0 =d

db〈H〉 =

~2

2m− α√

2πb

b =2m2α2

π~4−→ 〈H〉min = −mα2

π~2≥ −mα2

2~2= Egs

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 9 / 18

Page 82: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.2 - Delta function

Find the ground state energy of adelta function potential

Start with the same Gaussian trialfunction as for the harmonic oscil-lator

We know that

〈T 〉 =~2b2m

we need to compute 〈V 〉

the upper bound for the energy isthus

minimizing wrt b

H = − ~2

2m

d2

dx2− αδ(x)

ψ(x) = Ae−bx2

〈V 〉 = −α|A|2∫ ∞−∞

δ(x)e−2bx2dx

=− α√

2b

π

〈H〉 =~2b2m− α

√2b

π

0 =d

db〈H〉 =

~2

2m− α√

2πb

b =2m2α2

π~4−→ 〈H〉min = −mα2

π~2≥ −mα2

2~2= Egs

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 9 / 18

Page 83: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.2 - Delta function

Find the ground state energy of adelta function potential

Start with the same Gaussian trialfunction as for the harmonic oscil-lator

We know that

〈T 〉 =~2b2m

we need to compute 〈V 〉

the upper bound for the energy isthus

minimizing wrt b

H = − ~2

2m

d2

dx2− αδ(x)

ψ(x) = Ae−bx2

〈V 〉 = −α|A|2∫ ∞−∞

δ(x)e−2bx2dx

=− α√

2b

π

〈H〉 =~2b2m− α

√2b

π

0 =d

db〈H〉 =

~2

2m− α√

2πb

b =2m2α2

π~4−→ 〈H〉min = −mα2

π~2≥ −mα2

2~2= Egs

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 9 / 18

Page 84: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.2 - Delta function

Find the ground state energy of adelta function potential

Start with the same Gaussian trialfunction as for the harmonic oscil-lator

We know that

〈T 〉 =~2b2m

we need to compute 〈V 〉

the upper bound for the energy isthus

minimizing wrt b

H = − ~2

2m

d2

dx2− αδ(x)

ψ(x) = Ae−bx2

〈V 〉 = −α|A|2∫ ∞−∞

δ(x)e−2bx2dx

=− α√

2b

π

〈H〉 =~2b2m− α

√2b

π

0 =d

db〈H〉 =

~2

2m− α√

2πb

b =2m2α2

π~4−→ 〈H〉min = −mα2

π~2≥ −mα2

2~2= Egs

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 9 / 18

Page 85: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.2 - Delta function

Find the ground state energy of adelta function potential

Start with the same Gaussian trialfunction as for the harmonic oscil-lator

We know that

〈T 〉 =~2b2m

we need to compute 〈V 〉

the upper bound for the energy isthus

minimizing wrt b

H = − ~2

2m

d2

dx2− αδ(x)

ψ(x) = Ae−bx2

〈V 〉 = −α|A|2∫ ∞−∞

δ(x)e−2bx2dx

=− α√

2b

π

〈H〉 =~2b2m− α

√2b

π

0 =d

db〈H〉 =

~2

2m− α√

2πb

b =2m2α2

π~4−→ 〈H〉min = −mα2

π~2≥ −mα2

2~2= Egs

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 9 / 18

Page 86: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.2 - Delta function

Find the ground state energy of adelta function potential

Start with the same Gaussian trialfunction as for the harmonic oscil-lator

We know that

〈T 〉 =~2b2m

we need to compute 〈V 〉

the upper bound for the energy isthus

minimizing wrt b

H = − ~2

2m

d2

dx2− αδ(x)

ψ(x) = Ae−bx2

〈V 〉 = −α|A|2∫ ∞−∞

δ(x)e−2bx2dx

=− α√

2b

π

〈H〉 =~2b2m− α

√2b

π

0 =d

db〈H〉 =

~2

2m− α√

2πb

b =2m2α2

π~4−→ 〈H〉min = −mα2

π~2≥ −mα2

2~2= Egs

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 9 / 18

Page 87: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.2 - Delta function

Find the ground state energy of adelta function potential

Start with the same Gaussian trialfunction as for the harmonic oscil-lator

We know that

〈T 〉 =~2b2m

we need to compute 〈V 〉

the upper bound for the energy isthus

minimizing wrt b

H = − ~2

2m

d2

dx2− αδ(x)

ψ(x) = Ae−bx2

〈V 〉 = −α|A|2∫ ∞−∞

δ(x)e−2bx2dx

=− α√

2b

π

〈H〉 =~2b2m− α

√2b

π

0 =d

db〈H〉 =

~2

2m− α√

2πb

b =2m2α2

π~4−→ 〈H〉min = −mα2

π~2≥ −mα2

2~2= Egs

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 9 / 18

Page 88: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.2 - Delta function

Find the ground state energy of adelta function potential

Start with the same Gaussian trialfunction as for the harmonic oscil-lator

We know that

〈T 〉 =~2b2m

we need to compute 〈V 〉

the upper bound for the energy isthus

minimizing wrt b

H = − ~2

2m

d2

dx2− αδ(x)

ψ(x) = Ae−bx2

〈V 〉 = −α|A|2∫ ∞−∞

δ(x)e−2bx2dx

=− α√

2b

π

〈H〉 =~2b2m− α

√2b

π

0 =d

db〈H〉 =

~2

2m− α√

2πb

b =2m2α2

π~4−→ 〈H〉min = −mα2

π~2≥ −mα2

2~2= Egs

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 9 / 18

Page 89: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.2 - Delta function

Find the ground state energy of adelta function potential

Start with the same Gaussian trialfunction as for the harmonic oscil-lator

We know that

〈T 〉 =~2b2m

we need to compute 〈V 〉

the upper bound for the energy isthus

minimizing wrt b

H = − ~2

2m

d2

dx2− αδ(x)

ψ(x) = Ae−bx2

〈V 〉 = −α|A|2∫ ∞−∞

δ(x)e−2bx2dx

=− α√

2b

π

〈H〉 =~2b2m− α

√2b

π

0 =d

db〈H〉

=~2

2m− α√

2πb

b =2m2α2

π~4−→ 〈H〉min = −mα2

π~2≥ −mα2

2~2= Egs

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 9 / 18

Page 90: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.2 - Delta function

Find the ground state energy of adelta function potential

Start with the same Gaussian trialfunction as for the harmonic oscil-lator

We know that

〈T 〉 =~2b2m

we need to compute 〈V 〉

the upper bound for the energy isthus

minimizing wrt b

H = − ~2

2m

d2

dx2− αδ(x)

ψ(x) = Ae−bx2

〈V 〉 = −α|A|2∫ ∞−∞

δ(x)e−2bx2dx

=− α√

2b

π

〈H〉 =~2b2m− α

√2b

π

0 =d

db〈H〉 =

~2

2m− α√

2πb

b =2m2α2

π~4−→ 〈H〉min = −mα2

π~2≥ −mα2

2~2= Egs

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 9 / 18

Page 91: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.2 - Delta function

Find the ground state energy of adelta function potential

Start with the same Gaussian trialfunction as for the harmonic oscil-lator

We know that

〈T 〉 =~2b2m

we need to compute 〈V 〉

the upper bound for the energy isthus

minimizing wrt b

H = − ~2

2m

d2

dx2− αδ(x)

ψ(x) = Ae−bx2

〈V 〉 = −α|A|2∫ ∞−∞

δ(x)e−2bx2dx

=− α√

2b

π

〈H〉 =~2b2m− α

√2b

π

0 =d

db〈H〉 =

~2

2m− α√

2πb

b =2m2α2

π~4

−→ 〈H〉min = −mα2

π~2≥ −mα2

2~2= Egs

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 9 / 18

Page 92: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.2 - Delta function

Find the ground state energy of adelta function potential

Start with the same Gaussian trialfunction as for the harmonic oscil-lator

We know that

〈T 〉 =~2b2m

we need to compute 〈V 〉

the upper bound for the energy isthus

minimizing wrt b

H = − ~2

2m

d2

dx2− αδ(x)

ψ(x) = Ae−bx2

〈V 〉 = −α|A|2∫ ∞−∞

δ(x)e−2bx2dx

=− α√

2b

π

〈H〉 =~2b2m− α

√2b

π

0 =d

db〈H〉 =

~2

2m− α√

2πb

b =2m2α2

π~4−→ 〈H〉min = −mα2

π~2

≥ −mα2

2~2= Egs

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 9 / 18

Page 93: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.2 - Delta function

Find the ground state energy of adelta function potential

Start with the same Gaussian trialfunction as for the harmonic oscil-lator

We know that

〈T 〉 =~2b2m

we need to compute 〈V 〉

the upper bound for the energy isthus

minimizing wrt b

H = − ~2

2m

d2

dx2− αδ(x)

ψ(x) = Ae−bx2

〈V 〉 = −α|A|2∫ ∞−∞

δ(x)e−2bx2dx

=− α√

2b

π

〈H〉 =~2b2m− α

√2b

π

0 =d

db〈H〉 =

~2

2m− α√

2πb

b =2m2α2

π~4−→ 〈H〉min = −mα2

π~2≥ −mα2

2~2= Egs

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 9 / 18

Page 94: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.3

It is even possible to work with wave functions with discontinuousderivatives

Find an upper bound on the groundstate energy of the infinite squarewell using a triangular wave func-tion

ψ(x) =

Ax , 0 ≤ x ≤ a

2

A(a− x), a2 ≤ x ≤ a

0, otherwise

first determine the normalization constant A

1 = |A|2[∫ a/2

0x2 dx +

∫ a

a/2(a− x)2 dx

]= |A|2

[x3

3

∣∣∣∣a/20

− (a− x)3

3

∣∣∣∣aa/2

]

= |A|2[a3

24− 0− 0 +

a3

24

]= |A|2 a

3

12→ A =

2

a

√3

a

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 10 / 18

Page 95: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.3

It is even possible to work with wave functions with discontinuousderivatives

Find an upper bound on the groundstate energy of the infinite squarewell using a triangular wave func-tion

ψ(x) =

Ax , 0 ≤ x ≤ a

2

A(a− x), a2 ≤ x ≤ a

0, otherwise

first determine the normalization constant A

1 = |A|2[∫ a/2

0x2 dx +

∫ a

a/2(a− x)2 dx

]= |A|2

[x3

3

∣∣∣∣a/20

− (a− x)3

3

∣∣∣∣aa/2

]

= |A|2[a3

24− 0− 0 +

a3

24

]= |A|2 a

3

12→ A =

2

a

√3

a

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 10 / 18

Page 96: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.3

It is even possible to work with wave functions with discontinuousderivatives

Find an upper bound on the groundstate energy of the infinite squarewell using a triangular wave func-tion

ψ(x) =

Ax , 0 ≤ x ≤ a

2

A(a− x), a2 ≤ x ≤ a

0, otherwise

first determine the normalization constant A

1 = |A|2[∫ a/2

0x2 dx +

∫ a

a/2(a− x)2 dx

]= |A|2

[x3

3

∣∣∣∣a/20

− (a− x)3

3

∣∣∣∣aa/2

]

= |A|2[a3

24− 0− 0 +

a3

24

]= |A|2 a

3

12→ A =

2

a

√3

a

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 10 / 18

Page 97: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.3

It is even possible to work with wave functions with discontinuousderivatives

Find an upper bound on the groundstate energy of the infinite squarewell using a triangular wave func-tion

ψ(x) =

Ax , 0 ≤ x ≤ a

2

A(a− x), a2 ≤ x ≤ a

0, otherwise

first determine the normalization constant A

1 = |A|2[∫ a/2

0x2 dx +

∫ a

a/2(a− x)2 dx

]= |A|2

[x3

3

∣∣∣∣a/20

− (a− x)3

3

∣∣∣∣aa/2

]

= |A|2[a3

24− 0− 0 +

a3

24

]= |A|2 a

3

12→ A =

2

a

√3

a

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 10 / 18

Page 98: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.3

It is even possible to work with wave functions with discontinuousderivatives

Find an upper bound on the groundstate energy of the infinite squarewell using a triangular wave func-tion

ψ(x) =

Ax , 0 ≤ x ≤ a

2

A(a− x), a2 ≤ x ≤ a

0, otherwise

first determine the normalization constant A

1 = |A|2[∫ a/2

0x2 dx +

∫ a

a/2(a− x)2 dx

]

= |A|2[x3

3

∣∣∣∣a/20

− (a− x)3

3

∣∣∣∣aa/2

]

= |A|2[a3

24− 0− 0 +

a3

24

]= |A|2 a

3

12→ A =

2

a

√3

a

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 10 / 18

Page 99: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.3

It is even possible to work with wave functions with discontinuousderivatives

Find an upper bound on the groundstate energy of the infinite squarewell using a triangular wave func-tion

ψ(x) =

Ax , 0 ≤ x ≤ a

2

A(a− x), a2 ≤ x ≤ a

0, otherwise

first determine the normalization constant A

1 = |A|2[∫ a/2

0x2 dx +

∫ a

a/2(a− x)2 dx

]= |A|2

[x3

3

∣∣∣∣a/20

− (a− x)3

3

∣∣∣∣aa/2

]

= |A|2[a3

24− 0− 0 +

a3

24

]= |A|2 a

3

12→ A =

2

a

√3

a

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 10 / 18

Page 100: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.3

It is even possible to work with wave functions with discontinuousderivatives

Find an upper bound on the groundstate energy of the infinite squarewell using a triangular wave func-tion

ψ(x) =

Ax , 0 ≤ x ≤ a

2

A(a− x), a2 ≤ x ≤ a

0, otherwise

first determine the normalization constant A

1 = |A|2[∫ a/2

0x2 dx +

∫ a

a/2(a− x)2 dx

]= |A|2

[x3

3

∣∣∣∣a/20

− (a− x)3

3

∣∣∣∣aa/2

]

= |A|2[a3

24− 0− 0 +

a3

24

]

= |A|2 a3

12→ A =

2

a

√3

a

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 10 / 18

Page 101: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.3

It is even possible to work with wave functions with discontinuousderivatives

Find an upper bound on the groundstate energy of the infinite squarewell using a triangular wave func-tion

ψ(x) =

Ax , 0 ≤ x ≤ a

2

A(a− x), a2 ≤ x ≤ a

0, otherwise

first determine the normalization constant A

1 = |A|2[∫ a/2

0x2 dx +

∫ a

a/2(a− x)2 dx

]= |A|2

[x3

3

∣∣∣∣a/20

− (a− x)3

3

∣∣∣∣aa/2

]

= |A|2[a3

24− 0− 0 +

a3

24

]= |A|2 a

3

12

→ A =2

a

√3

a

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 10 / 18

Page 102: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.3

It is even possible to work with wave functions with discontinuousderivatives

Find an upper bound on the groundstate energy of the infinite squarewell using a triangular wave func-tion

ψ(x) =

Ax , 0 ≤ x ≤ a

2

A(a− x), a2 ≤ x ≤ a

0, otherwise

first determine the normalization constant A

1 = |A|2[∫ a/2

0x2 dx +

∫ a

a/2(a− x)2 dx

]= |A|2

[x3

3

∣∣∣∣a/20

− (a− x)3

3

∣∣∣∣aa/2

]

= |A|2[a3

24− 0− 0 +

a3

24

]= |A|2 a

3

12→ A =

2

a

√3

a

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 10 / 18

Page 103: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.3 (cont.)

In order to get the expectationvalue of H, we need the secondderivative of the wave function.

The first derivative is simply a stepfunction

dx=

+A, 0 ≤ x ≤ a

2

−A, a2 ≤ x ≤ a

0, otherwise

and the second derivative is threedelta functions, one at each edgeand one at the center of the well

d2ψ

dx2= Aδ(x)− 2Aδ(x − a

2)

+ Aδ(x − a)

ψ =

Ax , 0 ≤ x ≤ a

2

A(a− x), a2 ≤ x ≤ a

0, otherwise

ψ

xa0

Aa

2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 11 / 18

Page 104: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.3 (cont.)

In order to get the expectationvalue of H, we need the secondderivative of the wave function.The first derivative is simply a stepfunction

dx=

+A, 0 ≤ x ≤ a

2

−A, a2 ≤ x ≤ a

0, otherwise

and the second derivative is threedelta functions, one at each edgeand one at the center of the well

d2ψ

dx2= Aδ(x)− 2Aδ(x − a

2)

+ Aδ(x − a)

ψ =

Ax , 0 ≤ x ≤ a

2

A(a− x), a2 ≤ x ≤ a

0, otherwise

ψ

xa0

Aa

2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 11 / 18

Page 105: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.3 (cont.)

In order to get the expectationvalue of H, we need the secondderivative of the wave function.The first derivative is simply a stepfunction

dx=

+A, 0 ≤ x ≤ a

2

−A, a2 ≤ x ≤ a

0, otherwise

and the second derivative is threedelta functions, one at each edgeand one at the center of the well

d2ψ

dx2= Aδ(x)− 2Aδ(x − a

2)

+ Aδ(x − a)

ψ =

Ax , 0 ≤ x ≤ a

2

A(a− x), a2 ≤ x ≤ a

0, otherwise

dψdx

A

x

a

A

x

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 11 / 18

Page 106: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.3 (cont.)

In order to get the expectationvalue of H, we need the secondderivative of the wave function.The first derivative is simply a stepfunction

dx=

+A, 0 ≤ x ≤ a

2

−A, a2 ≤ x ≤ a

0, otherwise

and the second derivative is threedelta functions, one at each edgeand one at the center of the well

d2ψ

dx2= Aδ(x)− 2Aδ(x − a

2)

+ Aδ(x − a)

ψ =

Ax , 0 ≤ x ≤ a

2

A(a− x), a2 ≤ x ≤ a

0, otherwise

dψdx

A

x

a

A

x

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 11 / 18

Page 107: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.3 (cont.)

In order to get the expectationvalue of H, we need the secondderivative of the wave function.The first derivative is simply a stepfunction

dx=

+A, 0 ≤ x ≤ a

2

−A, a2 ≤ x ≤ a

0, otherwise

and the second derivative is threedelta functions, one at each edgeand one at the center of the well

d2ψ

dx2= Aδ(x)− 2Aδ(x − a

2)

+ Aδ(x − a)

ψ =

Ax , 0 ≤ x ≤ a

2

A(a− x), a2 ≤ x ≤ a

0, otherwise

d2ψdx2

x

a/2

a

A

x

-2A

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 11 / 18

Page 108: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.3 (cont.)

The expectation value of the Hamiltonian is then

〈H〉 = −~2A2m

∫ψ∗(x)[δ(x)− 2δ(x − a

2)δ(x − a)]ψ(x) dx

= −~2A2m

[����|ψ(0)|2 − 2|ψ( a2)|2 +���

�|ψ(a)|2] =~2A2a

2m=

12~2

2ma2

comparing to the exact ground state energy

Egs =π2~2

2ma2<

12~2

2ma2= 〈H〉

this demonstrates the variational principle even if there is no freeparameter with which to minimize the energy

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 12 / 18

Page 109: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.3 (cont.)

The expectation value of the Hamiltonian is then

〈H〉 = −~2A2m

∫ψ∗(x)[δ(x)− 2δ(x − a

2)δ(x − a)]ψ(x) dx

= −~2A2m

[����|ψ(0)|2 − 2|ψ( a2)|2 +���

�|ψ(a)|2] =~2A2a

2m=

12~2

2ma2

comparing to the exact ground state energy

Egs =π2~2

2ma2<

12~2

2ma2= 〈H〉

this demonstrates the variational principle even if there is no freeparameter with which to minimize the energy

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 12 / 18

Page 110: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.3 (cont.)

The expectation value of the Hamiltonian is then

〈H〉 = −~2A2m

∫ψ∗(x)[δ(x)− 2δ(x − a

2)δ(x − a)]ψ(x) dx

= −~2A2m

[|ψ(0)|2 − 2|ψ( a2)|2 + |ψ(a)|2]

=~2A2a

2m=

12~2

2ma2

comparing to the exact ground state energy

Egs =π2~2

2ma2<

12~2

2ma2= 〈H〉

this demonstrates the variational principle even if there is no freeparameter with which to minimize the energy

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 12 / 18

Page 111: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.3 (cont.)

The expectation value of the Hamiltonian is then

〈H〉 = −~2A2m

∫ψ∗(x)[δ(x)− 2δ(x − a

2)δ(x − a)]ψ(x) dx

= −~2A2m

[����|ψ(0)|2 − 2|ψ( a2)|2 +���

�|ψ(a)|2] =~2A2a

2m

=12~2

2ma2

comparing to the exact ground state energy

Egs =π2~2

2ma2<

12~2

2ma2= 〈H〉

this demonstrates the variational principle even if there is no freeparameter with which to minimize the energy

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 12 / 18

Page 112: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.3 (cont.)

The expectation value of the Hamiltonian is then

〈H〉 = −~2A2m

∫ψ∗(x)[δ(x)− 2δ(x − a

2)δ(x − a)]ψ(x) dx

= −~2A2m

[����|ψ(0)|2 − 2|ψ( a2)|2 +���

�|ψ(a)|2] =~2A2a

2m=

12~2

2ma2

comparing to the exact ground state energy

Egs =π2~2

2ma2<

12~2

2ma2= 〈H〉

this demonstrates the variational principle even if there is no freeparameter with which to minimize the energy

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 12 / 18

Page 113: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.3 (cont.)

The expectation value of the Hamiltonian is then

〈H〉 = −~2A2m

∫ψ∗(x)[δ(x)− 2δ(x − a

2)δ(x − a)]ψ(x) dx

= −~2A2m

[����|ψ(0)|2 − 2|ψ( a2)|2 +���

�|ψ(a)|2] =~2A2a

2m=

12~2

2ma2

comparing to the exact ground state energy

Egs =π2~2

2ma2<

12~2

2ma2= 〈H〉

this demonstrates the variational principle even if there is no freeparameter with which to minimize the energy

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 12 / 18

Page 114: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.3 (cont.)

The expectation value of the Hamiltonian is then

〈H〉 = −~2A2m

∫ψ∗(x)[δ(x)− 2δ(x − a

2)δ(x − a)]ψ(x) dx

= −~2A2m

[����|ψ(0)|2 − 2|ψ( a2)|2 +���

�|ψ(a)|2] =~2A2a

2m=

12~2

2ma2

comparing to the exact ground state energy

Egs =π2~2

2ma2

<12~2

2ma2= 〈H〉

this demonstrates the variational principle even if there is no freeparameter with which to minimize the energy

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 12 / 18

Page 115: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.3 (cont.)

The expectation value of the Hamiltonian is then

〈H〉 = −~2A2m

∫ψ∗(x)[δ(x)− 2δ(x − a

2)δ(x − a)]ψ(x) dx

= −~2A2m

[����|ψ(0)|2 − 2|ψ( a2)|2 +���

�|ψ(a)|2] =~2A2a

2m=

12~2

2ma2

comparing to the exact ground state energy

Egs =π2~2

2ma2

<

12~2

2ma2= 〈H〉

this demonstrates the variational principle even if there is no freeparameter with which to minimize the energy

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 12 / 18

Page 116: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.3 (cont.)

The expectation value of the Hamiltonian is then

〈H〉 = −~2A2m

∫ψ∗(x)[δ(x)− 2δ(x − a

2)δ(x − a)]ψ(x) dx

= −~2A2m

[����|ψ(0)|2 − 2|ψ( a2)|2 +���

�|ψ(a)|2] =~2A2a

2m=

12~2

2ma2

comparing to the exact ground state energy

Egs =π2~2

2ma2

<

12~2

2ma2= 〈H〉

this demonstrates the variational principle even if there is no freeparameter with which to minimize the energy

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 12 / 18

Page 117: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.3 (cont.)

The expectation value of the Hamiltonian is then

〈H〉 = −~2A2m

∫ψ∗(x)[δ(x)− 2δ(x − a

2)δ(x − a)]ψ(x) dx

= −~2A2m

[����|ψ(0)|2 − 2|ψ( a2)|2 +���

�|ψ(a)|2] =~2A2a

2m=

12~2

2ma2

comparing to the exact ground state energy

Egs =π2~2

2ma2<

12~2

2ma2= 〈H〉

this demonstrates the variational principle even if there is no freeparameter with which to minimize the energy

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 12 / 18

Page 118: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Example 7.3 (cont.)

The expectation value of the Hamiltonian is then

〈H〉 = −~2A2m

∫ψ∗(x)[δ(x)− 2δ(x − a

2)δ(x − a)]ψ(x) dx

= −~2A2m

[����|ψ(0)|2 − 2|ψ( a2)|2 +���

�|ψ(a)|2] =~2A2a

2m=

12~2

2ma2

comparing to the exact ground state energy

Egs =π2~2

2ma2<

12~2

2ma2= 〈H〉

this demonstrates the variational principle even if there is no freeparameter with which to minimize the energy

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 12 / 18

Page 119: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Helium atom

The helium atom is an ideal application of the variational principle. Thefull Hamiltonian includes an electron-electron interaction which we ignoredwhen we first discussed it

H = − ~2

2m(∇2

1 +∇22)− e2

4πε0

(2

r1+

2

r2− 1

|~r1 − ~r2|

)We wish to compute the groundstate energy, which is the total en-ergy required to remove both elec-trons. This has been measured tobe

the problem is the electron-electroninteraction

Vee=e2

4πε0

1

|~r1 − ~r2|

which is not exactly soluble

Egs = −78.975 eV

+2e

-e

-e|r1-r2|

|r1||r2|

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 13 / 18

Page 120: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Helium atom

The helium atom is an ideal application of the variational principle. Thefull Hamiltonian includes an electron-electron interaction which we ignoredwhen we first discussed it

H = − ~2

2m(∇2

1 +∇22)− e2

4πε0

(2

r1+

2

r2− 1

|~r1 − ~r2|

)

We wish to compute the groundstate energy, which is the total en-ergy required to remove both elec-trons. This has been measured tobe

the problem is the electron-electroninteraction

Vee=e2

4πε0

1

|~r1 − ~r2|

which is not exactly soluble

Egs = −78.975 eV

+2e

-e

-e|r1-r2|

|r1||r2|

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 13 / 18

Page 121: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Helium atom

The helium atom is an ideal application of the variational principle. Thefull Hamiltonian includes an electron-electron interaction which we ignoredwhen we first discussed it

H = − ~2

2m(∇2

1 +∇22)− e2

4πε0

(2

r1+

2

r2− 1

|~r1 − ~r2|

)We wish to compute the groundstate energy, which is the total en-ergy required to remove both elec-trons. This has been measured tobe

the problem is the electron-electroninteraction

Vee=e2

4πε0

1

|~r1 − ~r2|

which is not exactly soluble

Egs = −78.975 eV

+2e

-e

-e|r1-r2|

|r1||r2|

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 13 / 18

Page 122: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Helium atom

The helium atom is an ideal application of the variational principle. Thefull Hamiltonian includes an electron-electron interaction which we ignoredwhen we first discussed it

H = − ~2

2m(∇2

1 +∇22)− e2

4πε0

(2

r1+

2

r2− 1

|~r1 − ~r2|

)We wish to compute the groundstate energy, which is the total en-ergy required to remove both elec-trons. This has been measured tobe

the problem is the electron-electroninteraction

Vee=e2

4πε0

1

|~r1 − ~r2|

which is not exactly soluble

Egs = −78.975 eV

+2e

-e

-e|r1-r2|

|r1||r2|

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 13 / 18

Page 123: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Helium atom

The helium atom is an ideal application of the variational principle. Thefull Hamiltonian includes an electron-electron interaction which we ignoredwhen we first discussed it

H = − ~2

2m(∇2

1 +∇22)− e2

4πε0

(2

r1+

2

r2− 1

|~r1 − ~r2|

)We wish to compute the groundstate energy, which is the total en-ergy required to remove both elec-trons. This has been measured tobe

the problem is the electron-electroninteraction

Vee=e2

4πε0

1

|~r1 − ~r2|

which is not exactly soluble

Egs = −78.975 eV

+2e

-e

-e|r1-r2|

|r1||r2|

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 13 / 18

Page 124: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Helium atom

The helium atom is an ideal application of the variational principle. Thefull Hamiltonian includes an electron-electron interaction which we ignoredwhen we first discussed it

H = − ~2

2m(∇2

1 +∇22)− e2

4πε0

(2

r1+

2

r2− 1

|~r1 − ~r2|

)We wish to compute the groundstate energy, which is the total en-ergy required to remove both elec-trons. This has been measured tobe

the problem is the electron-electroninteraction

Vee=e2

4πε0

1

|~r1 − ~r2|

which is not exactly soluble

Egs = −78.975 eV

+2e

-e

-e|r1-r2|

|r1||r2|

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 13 / 18

Page 125: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Helium atom

The helium atom is an ideal application of the variational principle. Thefull Hamiltonian includes an electron-electron interaction which we ignoredwhen we first discussed it

H = − ~2

2m(∇2

1 +∇22)− e2

4πε0

(2

r1+

2

r2− 1

|~r1 − ~r2|

)We wish to compute the groundstate energy, which is the total en-ergy required to remove both elec-trons. This has been measured tobe

the problem is the electron-electroninteraction

Vee=e2

4πε0

1

|~r1 − ~r2|

which is not exactly soluble

Egs = −78.975 eV

+2e

-e

-e|r1-r2|

|r1||r2|

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 13 / 18

Page 126: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Trial function for helium

If the electron-electron term is ignored, the exact solution of the heliumatom is a combination of the two hydrogenic atom wave functions

ψ(~r1, ~r2)

≡ ψ100(~r1)ψ100(~r2) =8

πa3e−2r1/ae−2r2/a

the energy of this solution is 8E1 = −109 eV, so we can get a betterapproximation by applying the variational principle with this trial function

Hψ0 = (8E1 + Vee)ψ0

〈H〉 = (8E1 + 〈Vee〉),

Vee =e2/4πε0|~r1 − ~r2|

〈Vee〉

=

(e2

4πε0

)(8

πa3

)2 ∫ e−4r1/a e−4r2/a

|~r1 − ~r2|d3~r1 d

3~r2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 14 / 18

Page 127: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Trial function for helium

If the electron-electron term is ignored, the exact solution of the heliumatom is a combination of the two hydrogenic atom wave functions

ψ(~r1, ~r2)

≡ ψ100(~r1)ψ100(~r2) =8

πa3e−2r1/ae−2r2/a

the energy of this solution is 8E1 = −109 eV, so we can get a betterapproximation by applying the variational principle with this trial function

Hψ0 = (8E1 + Vee)ψ0

〈H〉 = (8E1 + 〈Vee〉),

Vee =e2/4πε0|~r1 − ~r2|

〈Vee〉 =

(e2

4πε0

)(8

πa3

)2

∫e−4r1/a e−4r2/a

|~r1 − ~r2|d3~r1 d

3~r2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 14 / 18

Page 128: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Trial function for helium

If the electron-electron term is ignored, the exact solution of the heliumatom is a combination of the two hydrogenic atom wave functions

ψ(~r1, ~r2) ≡ ψ100(~r1)ψ100(~r2)

=8

πa3e−2r1/ae−2r2/a

the energy of this solution is 8E1 = −109 eV, so we can get a betterapproximation by applying the variational principle with this trial function

Hψ0 = (8E1 + Vee)ψ0

〈H〉 = (8E1 + 〈Vee〉),

Vee =e2/4πε0|~r1 − ~r2|

〈Vee〉 =

(e2

4πε0

)(8

πa3

)2 ∫ e−4r1/a e−4r2/a

|~r1 − ~r2|d3~r1 d

3~r2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 14 / 18

Page 129: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Trial function for helium

If the electron-electron term is ignored, the exact solution of the heliumatom is a combination of the two hydrogenic atom wave functions

ψ(~r1, ~r2) ≡ ψ100(~r1)ψ100(~r2) =8

πa3e−2r1/ae−2r2/a

the energy of this solution is 8E1 = −109 eV, so we can get a betterapproximation by applying the variational principle with this trial function

Hψ0 = (8E1 + Vee)ψ0

〈H〉 = (8E1 + 〈Vee〉),

Vee =e2/4πε0|~r1 − ~r2|

〈Vee〉 =

(e2

4πε0

)(8

πa3

)2 ∫ e−4r1/a e−4r2/a

|~r1 − ~r2|d3~r1 d

3~r2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 14 / 18

Page 130: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Trial function for helium

If the electron-electron term is ignored, the exact solution of the heliumatom is a combination of the two hydrogenic atom wave functions

ψ(~r1, ~r2) ≡ ψ100(~r1)ψ100(~r2) =8

πa3e−2r1/ae−2r2/a

the energy of this solution is 8E1 = −109 eV,

so we can get a betterapproximation by applying the variational principle with this trial function

Hψ0 = (8E1 + Vee)ψ0

〈H〉 = (8E1 + 〈Vee〉),

Vee =e2/4πε0|~r1 − ~r2|

〈Vee〉 =

(e2

4πε0

)(8

πa3

)2 ∫ e−4r1/a e−4r2/a

|~r1 − ~r2|d3~r1 d

3~r2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 14 / 18

Page 131: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Trial function for helium

If the electron-electron term is ignored, the exact solution of the heliumatom is a combination of the two hydrogenic atom wave functions

ψ(~r1, ~r2) ≡ ψ100(~r1)ψ100(~r2) =8

πa3e−2r1/ae−2r2/a

the energy of this solution is 8E1 = −109 eV, so we can get a betterapproximation by applying the variational principle with this trial function

Hψ0 = (8E1 + Vee)ψ0

〈H〉 = (8E1 + 〈Vee〉),

Vee =e2/4πε0|~r1 − ~r2|

〈Vee〉 =

(e2

4πε0

)(8

πa3

)2 ∫ e−4r1/a e−4r2/a

|~r1 − ~r2|d3~r1 d

3~r2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 14 / 18

Page 132: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Trial function for helium

If the electron-electron term is ignored, the exact solution of the heliumatom is a combination of the two hydrogenic atom wave functions

ψ(~r1, ~r2) ≡ ψ100(~r1)ψ100(~r2) =8

πa3e−2r1/ae−2r2/a

the energy of this solution is 8E1 = −109 eV, so we can get a betterapproximation by applying the variational principle with this trial function

Hψ0 = (8E1 + Vee)ψ0

〈H〉 = (8E1 + 〈Vee〉),

Vee =e2/4πε0|~r1 − ~r2|

〈Vee〉 =

(e2

4πε0

)(8

πa3

)2 ∫ e−4r1/a e−4r2/a

|~r1 − ~r2|d3~r1 d

3~r2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 14 / 18

Page 133: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Trial function for helium

If the electron-electron term is ignored, the exact solution of the heliumatom is a combination of the two hydrogenic atom wave functions

ψ(~r1, ~r2) ≡ ψ100(~r1)ψ100(~r2) =8

πa3e−2r1/ae−2r2/a

the energy of this solution is 8E1 = −109 eV, so we can get a betterapproximation by applying the variational principle with this trial function

Hψ0 = (8E1 + Vee)ψ0

〈H〉 = (8E1 + 〈Vee〉),

Vee =e2/4πε0|~r1 − ~r2|

〈Vee〉 =

(e2

4πε0

)(8

πa3

)2 ∫ e−4r1/a e−4r2/a

|~r1 − ~r2|d3~r1 d

3~r2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 14 / 18

Page 134: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Trial function for helium

If the electron-electron term is ignored, the exact solution of the heliumatom is a combination of the two hydrogenic atom wave functions

ψ(~r1, ~r2) ≡ ψ100(~r1)ψ100(~r2) =8

πa3e−2r1/ae−2r2/a

the energy of this solution is 8E1 = −109 eV, so we can get a betterapproximation by applying the variational principle with this trial function

Hψ0 = (8E1 + Vee)ψ0

〈H〉 = (8E1 + 〈Vee〉), Vee =e2/4πε0|~r1 − ~r2|

〈Vee〉 =

(e2

4πε0

)(8

πa3

)2 ∫ e−4r1/a e−4r2/a

|~r1 − ~r2|d3~r1 d

3~r2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 14 / 18

Page 135: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Trial function for helium

If the electron-electron term is ignored, the exact solution of the heliumatom is a combination of the two hydrogenic atom wave functions

ψ(~r1, ~r2) ≡ ψ100(~r1)ψ100(~r2) =8

πa3e−2r1/ae−2r2/a

the energy of this solution is 8E1 = −109 eV, so we can get a betterapproximation by applying the variational principle with this trial function

Hψ0 = (8E1 + Vee)ψ0

〈H〉 = (8E1 + 〈Vee〉), Vee =e2/4πε0|~r1 − ~r2|

〈Vee〉 =

(e2

4πε0

)(8

πa3

)2 ∫ e−4r1/a e−4r2/a

|~r1 − ~r2|d3~r1 d

3~r2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 14 / 18

Page 136: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Setting up the integrals

〈Vee〉 =

(e2

4πε0

)(8

πa3

)2 ∫ e−4r1/a e−4r2/a

|~r1 − ~r2|d3~r1 d

3~r2

r1r2

θ2

φ2

|r -r |1 2

x2

y2

z2

the integral mixes the coordinates but canbe simplified by careful selection of thetwo coordinate systems

taking ~r1 along the z-axis of the ~r2 coor-dinate system, gives

|~r1 − ~r2|

=√

r21 + r22 − 2r1r2 cos θ2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 15 / 18

Page 137: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Setting up the integrals

〈Vee〉 =

(e2

4πε0

)(8

πa3

)2 ∫ e−4r1/a e−4r2/a

|~r1 − ~r2|d3~r1 d

3~r2

r1r2

θ2

φ2

|r -r |1 2

x2

y2

z2

the integral mixes the coordinates but canbe simplified by careful selection of thetwo coordinate systems

taking ~r1 along the z-axis of the ~r2 coor-dinate system, gives

|~r1 − ~r2|

=√

r21 + r22 − 2r1r2 cos θ2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 15 / 18

Page 138: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Setting up the integrals

〈Vee〉 =

(e2

4πε0

)(8

πa3

)2 ∫ e−4r1/a e−4r2/a

|~r1 − ~r2|d3~r1 d

3~r2

r1r2

θ2

φ2

|r -r |1 2

x2

y2

z2

the integral mixes the coordinates but canbe simplified by careful selection of thetwo coordinate systems

taking ~r1 along the z-axis of the ~r2 coor-dinate system, gives

|~r1 − ~r2|

=√

r21 + r22 − 2r1r2 cos θ2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 15 / 18

Page 139: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Setting up the integrals

〈Vee〉 =

(e2

4πε0

)(8

πa3

)2 ∫ e−4r1/a e−4r2/a

|~r1 − ~r2|d3~r1 d

3~r2

r1r2

θ2

φ2

|r -r |1 2

x2

y2

z2

the integral mixes the coordinates but canbe simplified by careful selection of thetwo coordinate systems

taking ~r1 along the z-axis of the ~r2 coor-dinate system, gives

|~r1 − ~r2|

=√

r21 + r22 − 2r1r2 cos θ2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 15 / 18

Page 140: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

Setting up the integrals

〈Vee〉 =

(e2

4πε0

)(8

πa3

)2 ∫ e−4r1/a e−4r2/a

|~r1 − ~r2|d3~r1 d

3~r2

r1r2

θ2

φ2

|r -r |1 2

x2

y2

z2

the integral mixes the coordinates but canbe simplified by careful selection of thetwo coordinate systems

taking ~r1 along the z-axis of the ~r2 coor-dinate system, gives

|~r1 − ~r2| =√

r21 + r22 − 2r1r2 cos θ2

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 15 / 18

Page 141: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

〈Vee〉 =

(e2

4πε0

)(8

πa3

)2 ∫ e−4r1/a e−4r2/a√r21 + r22 − 2r1r2 cos θ2

d3~r1 d3~r2

the ~r2 integral then can be evaluated

I2 ≡

∫e−4r2/a r22 sin θ2√

r21 + r22 − 2r1r2 cos θ2

dr2 dθ2 dφ2

the φ2 integral gives 2π and the θ2 integrand is a perfect derivative

Iθ =

∫ π

0

sin θ2√r21 + r22 − 2r1r2 cos θ2

dθ2

=

√r21 + r22 − 2r1r2 cos θ2

r1 r2

∣∣∣∣∣∣π

0

=1

r1 r2

[(r1 + r2)− |r1 − r2|

]

=

{

2/r1, r2 < r1

2/r2, r2 > r1

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 16 / 18

Page 142: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

〈Vee〉 =

(e2

4πε0

)(8

πa3

)2 ∫ e−4r1/a e−4r2/a√r21 + r22 − 2r1r2 cos θ2

d3~r1 d3~r2

the ~r2 integral then can be evaluated

I2 ≡

∫e−4r2/a r22 sin θ2√

r21 + r22 − 2r1r2 cos θ2

dr2 dθ2 dφ2

the φ2 integral gives 2π and the θ2 integrand is a perfect derivative

Iθ =

∫ π

0

sin θ2√r21 + r22 − 2r1r2 cos θ2

dθ2

=

√r21 + r22 − 2r1r2 cos θ2

r1 r2

∣∣∣∣∣∣π

0

=1

r1 r2

[(r1 + r2)− |r1 − r2|

]

=

{

2/r1, r2 < r1

2/r2, r2 > r1

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 16 / 18

Page 143: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

〈Vee〉 =

(e2

4πε0

)(8

πa3

)2 ∫ e−4r1/a e−4r2/a√r21 + r22 − 2r1r2 cos θ2

d3~r1 d3~r2

the ~r2 integral then can be evaluated

I2 ≡

∫e−4r2/a r22 sin θ2√

r21 + r22 − 2r1r2 cos θ2

dr2 dθ2 dφ2

the φ2 integral gives 2π and the θ2 integrand is a perfect derivative

Iθ =

∫ π

0

sin θ2√r21 + r22 − 2r1r2 cos θ2

dθ2

=

√r21 + r22 − 2r1r2 cos θ2

r1 r2

∣∣∣∣∣∣π

0

=1

r1 r2

[(r1 + r2)− |r1 − r2|

]

=

{

2/r1, r2 < r1

2/r2, r2 > r1

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 16 / 18

Page 144: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

〈Vee〉 =

(e2

4πε0

)(8

πa3

)2 ∫ e−4r1/a e−4r2/a√r21 + r22 − 2r1r2 cos θ2

d3~r1 d3~r2

the ~r2 integral then can be evaluated

I2 ≡∫

e−4r2/a r22 sin θ2√r21 + r22 − 2r1r2 cos θ2

dr2 dθ2 dφ2

the φ2 integral gives 2π and the θ2 integrand is a perfect derivative

Iθ =

∫ π

0

sin θ2√r21 + r22 − 2r1r2 cos θ2

dθ2

=

√r21 + r22 − 2r1r2 cos θ2

r1 r2

∣∣∣∣∣∣π

0

=1

r1 r2

[(r1 + r2)− |r1 − r2|

]

=

{

2/r1, r2 < r1

2/r2, r2 > r1

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 16 / 18

Page 145: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

〈Vee〉 =

(e2

4πε0

)(8

πa3

)2 ∫ e−4r1/a e−4r2/a√r21 + r22 − 2r1r2 cos θ2

d3~r1 d3~r2

the ~r2 integral then can be evaluated

I2 ≡∫

e−4r2/a r22 sin θ2√r21 + r22 − 2r1r2 cos θ2

dr2 dθ2 dφ2

the φ2 integral gives 2π and the θ2 integrand is a perfect derivative

Iθ =

∫ π

0

sin θ2√r21 + r22 − 2r1r2 cos θ2

dθ2

=

√r21 + r22 − 2r1r2 cos θ2

r1 r2

∣∣∣∣∣∣π

0

=1

r1 r2

[(r1 + r2)− |r1 − r2|

]

=

{

2/r1, r2 < r1

2/r2, r2 > r1

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 16 / 18

Page 146: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

〈Vee〉 =

(e2

4πε0

)(8

πa3

)2 ∫ e−4r1/a e−4r2/a√r21 + r22 − 2r1r2 cos θ2

d3~r1 d3~r2

the ~r2 integral then can be evaluated

I2 ≡∫

e−4r2/a r22 sin θ2√r21 + r22 − 2r1r2 cos θ2

dr2 dθ2 dφ2

the φ2 integral gives 2π and the θ2 integrand is a perfect derivative

Iθ =

∫ π

0

sin θ2√r21 + r22 − 2r1r2 cos θ2

dθ2

=

√r21 + r22 − 2r1r2 cos θ2

r1 r2

∣∣∣∣∣∣π

0

=1

r1 r2

[(r1 + r2)− |r1 − r2|

]

=

{

2/r1, r2 < r1

2/r2, r2 > r1

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 16 / 18

Page 147: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

〈Vee〉 =

(e2

4πε0

)(8

πa3

)2 ∫ e−4r1/a e−4r2/a√r21 + r22 − 2r1r2 cos θ2

d3~r1 d3~r2

the ~r2 integral then can be evaluated

I2 ≡∫

e−4r2/a r22 sin θ2√r21 + r22 − 2r1r2 cos θ2

dr2 dθ2 dφ2

the φ2 integral gives 2π and the θ2 integrand is a perfect derivative

Iθ =

∫ π

0

sin θ2√r21 + r22 − 2r1r2 cos θ2

dθ2 =

√r21 + r22 − 2r1r2 cos θ2

r1 r2

∣∣∣∣∣∣π

0

=1

r1 r2

[(r1 + r2)− |r1 − r2|

]

=

{

2/r1, r2 < r1

2/r2, r2 > r1

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 16 / 18

Page 148: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

〈Vee〉 =

(e2

4πε0

)(8

πa3

)2 ∫ e−4r1/a e−4r2/a√r21 + r22 − 2r1r2 cos θ2

d3~r1 d3~r2

the ~r2 integral then can be evaluated

I2 ≡∫

e−4r2/a r22 sin θ2√r21 + r22 − 2r1r2 cos θ2

dr2 dθ2 dφ2

the φ2 integral gives 2π and the θ2 integrand is a perfect derivative

Iθ =

∫ π

0

sin θ2√r21 + r22 − 2r1r2 cos θ2

dθ2 =

√r21 + r22 − 2r1r2 cos θ2

r1 r2

∣∣∣∣∣∣π

0

=1

r1 r2

[√r21 + r22 + 2r1 r2 −

√r21 + r22 − 2r1 r2

]

=

{

2/r1, r2 < r1

2/r2, r2 > r1

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 16 / 18

Page 149: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

〈Vee〉 =

(e2

4πε0

)(8

πa3

)2 ∫ e−4r1/a e−4r2/a√r21 + r22 − 2r1r2 cos θ2

d3~r1 d3~r2

the ~r2 integral then can be evaluated

I2 ≡∫

e−4r2/a r22 sin θ2√r21 + r22 − 2r1r2 cos θ2

dr2 dθ2 dφ2

the φ2 integral gives 2π and the θ2 integrand is a perfect derivative

Iθ =

∫ π

0

sin θ2√r21 + r22 − 2r1r2 cos θ2

dθ2 =

√r21 + r22 − 2r1r2 cos θ2

r1 r2

∣∣∣∣∣∣π

0

=1

r1 r2

[(r1 + r2)− |r1 − r2|

]

=

{

2/r1, r2 < r1

2/r2, r2 > r1

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 16 / 18

Page 150: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

〈Vee〉 =

(e2

4πε0

)(8

πa3

)2 ∫ e−4r1/a e−4r2/a√r21 + r22 − 2r1r2 cos θ2

d3~r1 d3~r2

the ~r2 integral then can be evaluated

I2 ≡∫

e−4r2/a r22 sin θ2√r21 + r22 − 2r1r2 cos θ2

dr2 dθ2 dφ2

the φ2 integral gives 2π and the θ2 integrand is a perfect derivative

Iθ =

∫ π

0

sin θ2√r21 + r22 − 2r1r2 cos θ2

dθ2 =

√r21 + r22 − 2r1r2 cos θ2

r1 r2

∣∣∣∣∣∣π

0

=1

r1 r2

[(r1 + r2)− |r1 − r2|

]=

{

2/r1, r2 < r1

2/r2, r2 > r1

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 16 / 18

Page 151: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

〈Vee〉 =

(e2

4πε0

)(8

πa3

)2 ∫ e−4r1/a e−4r2/a√r21 + r22 − 2r1r2 cos θ2

d3~r1 d3~r2

the ~r2 integral then can be evaluated

I2 ≡∫

e−4r2/a r22 sin θ2√r21 + r22 − 2r1r2 cos θ2

dr2 dθ2 dφ2

the φ2 integral gives 2π and the θ2 integrand is a perfect derivative

Iθ =

∫ π

0

sin θ2√r21 + r22 − 2r1r2 cos θ2

dθ2 =

√r21 + r22 − 2r1r2 cos θ2

r1 r2

∣∣∣∣∣∣π

0

=1

r1 r2

[(r1 + r2)− |r1 − r2|

]=

{2/r1, r2 < r1

2/r2, r2 > r1

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 16 / 18

Page 152: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

〈Vee〉 =

(e2

4πε0

)(8

πa3

)2 ∫ e−4r1/a e−4r2/a√r21 + r22 − 2r1r2 cos θ2

d3~r1 d3~r2

the ~r2 integral then can be evaluated

I2 ≡∫

e−4r2/a r22 sin θ2√r21 + r22 − 2r1r2 cos θ2

dr2 dθ2 dφ2

the φ2 integral gives 2π and the θ2 integrand is a perfect derivative

Iθ =

∫ π

0

sin θ2√r21 + r22 − 2r1r2 cos θ2

dθ2 =

√r21 + r22 − 2r1r2 cos θ2

r1 r2

∣∣∣∣∣∣π

0

=1

r1 r2

[(r1 + r2)− |r1 − r2|

]=

{2/r1, r2 < r1

2/r2, r2 > r1

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 16 / 18

Page 153: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

The r2 integral is thus split into two parts

I2 = 4π

(

1

r1

∫ r1

0r22 e

−4r2/a dr2

+

∫ ∞r1

r2 e−4r2/a dr2

)these can be solved using integration by parts with dv = e−4r2/a dr2

Ired =

−(a

4

)r22 e−4r2/a

∣∣∣r10

+ 2(a

4

)∫ r1

0r2e−4r2/a dr2

= −(a

4

)r21 e−4r1/a

−2(a

4

)2r2e−4r2/a

∣∣∣∣r10

+ 2(a

4

)2 ∫ r1

0e−4r2/a dr2

= −(a

4

)r21 e−4r1/a − 2

(a4

)2r1e−4r1/a

− 2(a

4

)3e−4r1/a + 2

(a4

)3

Iblue =

−(a

4

)r2e−4r2/a

∣∣∣∞r1

+(a

4

)∫ ∞r1

e−4r2/a dr2

= +(a

4

)r1e−4r1/a

+(a

4

)2e−4r1/a

I2 =πa3

8r1

[1−

(1 +

2r1a

)e−4r1/a

]

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 17 / 18

Page 154: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

The r2 integral is thus split into two parts

I2 = 4π

(

1

r1

∫ r1

0r22 e

−4r2/a dr2

+

∫ ∞r1

r2 e−4r2/a dr2

)

these can be solved using integration by parts with dv = e−4r2/a dr2

Ired =

−(a

4

)r22 e−4r2/a

∣∣∣r10

+ 2(a

4

)∫ r1

0r2e−4r2/a dr2

= −(a

4

)r21 e−4r1/a

−2(a

4

)2r2e−4r2/a

∣∣∣∣r10

+ 2(a

4

)2 ∫ r1

0e−4r2/a dr2

= −(a

4

)r21 e−4r1/a − 2

(a4

)2r1e−4r1/a

− 2(a

4

)3e−4r1/a + 2

(a4

)3

Iblue =

−(a

4

)r2e−4r2/a

∣∣∣∞r1

+(a

4

)∫ ∞r1

e−4r2/a dr2

= +(a

4

)r1e−4r1/a

+(a

4

)2e−4r1/a

I2 =πa3

8r1

[1−

(1 +

2r1a

)e−4r1/a

]

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 17 / 18

Page 155: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

The r2 integral is thus split into two parts

I2 = 4π

(1

r1

∫ r1

0r22 e

−4r2/a dr2 +

∫ ∞r1

r2 e−4r2/a dr2

)

these can be solved using integration by parts with dv = e−4r2/a dr2

Ired =

−(a

4

)r22 e−4r2/a

∣∣∣r10

+ 2(a

4

)∫ r1

0r2e−4r2/a dr2

= −(a

4

)r21 e−4r1/a

−2(a

4

)2r2e−4r2/a

∣∣∣∣r10

+ 2(a

4

)2 ∫ r1

0e−4r2/a dr2

= −(a

4

)r21 e−4r1/a − 2

(a4

)2r1e−4r1/a

− 2(a

4

)3e−4r1/a + 2

(a4

)3

Iblue =

−(a

4

)r2e−4r2/a

∣∣∣∞r1

+(a

4

)∫ ∞r1

e−4r2/a dr2

= +(a

4

)r1e−4r1/a

+(a

4

)2e−4r1/a

I2 =πa3

8r1

[1−

(1 +

2r1a

)e−4r1/a

]

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 17 / 18

Page 156: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

The r2 integral is thus split into two parts

I2 = 4π

(1

r1

∫ r1

0r22 e

−4r2/a dr2 +

∫ ∞r1

r2 e−4r2/a dr2

)

these can be solved using integration by parts with dv = e−4r2/a dr2

Ired =

−(a

4

)r22 e−4r2/a

∣∣∣r10

+ 2(a

4

)∫ r1

0r2e−4r2/a dr2

= −(a

4

)r21 e−4r1/a

−2(a

4

)2r2e−4r2/a

∣∣∣∣r10

+ 2(a

4

)2 ∫ r1

0e−4r2/a dr2

= −(a

4

)r21 e−4r1/a − 2

(a4

)2r1e−4r1/a

− 2(a

4

)3e−4r1/a + 2

(a4

)3

Iblue =

−(a

4

)r2e−4r2/a

∣∣∣∞r1

+(a

4

)∫ ∞r1

e−4r2/a dr2

= +(a

4

)r1e−4r1/a

+(a

4

)2e−4r1/a

I2 =πa3

8r1

[1−

(1 +

2r1a

)e−4r1/a

]

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 17 / 18

Page 157: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

The r2 integral is thus split into two parts

I2 = 4π

(1

r1

∫ r1

0r22 e

−4r2/a dr2 +

∫ ∞r1

r2 e−4r2/a dr2

)these can be solved using integration by parts with dv = e−4r2/a dr2

Ired =

−(a

4

)r22 e−4r2/a

∣∣∣r10

+ 2(a

4

)∫ r1

0r2e−4r2/a dr2

= −(a

4

)r21 e−4r1/a

−2(a

4

)2r2e−4r2/a

∣∣∣∣r10

+ 2(a

4

)2 ∫ r1

0e−4r2/a dr2

= −(a

4

)r21 e−4r1/a − 2

(a4

)2r1e−4r1/a

− 2(a

4

)3e−4r1/a + 2

(a4

)3

Iblue =

−(a

4

)r2e−4r2/a

∣∣∣∞r1

+(a

4

)∫ ∞r1

e−4r2/a dr2

= +(a

4

)r1e−4r1/a

+(a

4

)2e−4r1/a

I2 =πa3

8r1

[1−

(1 +

2r1a

)e−4r1/a

]

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 17 / 18

Page 158: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

The r2 integral is thus split into two parts

I2 = 4π

(1

r1

∫ r1

0r22 e

−4r2/a dr2 +

∫ ∞r1

r2 e−4r2/a dr2

)these can be solved using integration by parts with dv = e−4r2/a dr2

Ired =

−(a

4

)r22 e−4r2/a

∣∣∣r10

+ 2(a

4

)∫ r1

0r2e−4r2/a dr2

= −(a

4

)r21 e−4r1/a

−2(a

4

)2r2e−4r2/a

∣∣∣∣r10

+ 2(a

4

)2 ∫ r1

0e−4r2/a dr2

= −(a

4

)r21 e−4r1/a − 2

(a4

)2r1e−4r1/a

− 2(a

4

)3e−4r1/a + 2

(a4

)3

Iblue =

−(a

4

)r2e−4r2/a

∣∣∣∞r1

+(a

4

)∫ ∞r1

e−4r2/a dr2

= +(a

4

)r1e−4r1/a

+(a

4

)2e−4r1/a

I2 =πa3

8r1

[1−

(1 +

2r1a

)e−4r1/a

]

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 17 / 18

Page 159: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

The r2 integral is thus split into two parts

I2 = 4π

(1

r1

∫ r1

0r22 e

−4r2/a dr2 +

∫ ∞r1

r2 e−4r2/a dr2

)these can be solved using integration by parts with dv = e−4r2/a dr2

Ired = −(a

4

)r22 e−4r2/a

∣∣∣r10

+ 2(a

4

)∫ r1

0r2e−4r2/a dr2

= −(a

4

)r21 e−4r1/a

−2(a

4

)2r2e−4r2/a

∣∣∣∣r10

+ 2(a

4

)2 ∫ r1

0e−4r2/a dr2

= −(a

4

)r21 e−4r1/a − 2

(a4

)2r1e−4r1/a

− 2(a

4

)3e−4r1/a + 2

(a4

)3

Iblue =

−(a

4

)r2e−4r2/a

∣∣∣∞r1

+(a

4

)∫ ∞r1

e−4r2/a dr2

= +(a

4

)r1e−4r1/a

+(a

4

)2e−4r1/a

I2 =πa3

8r1

[1−

(1 +

2r1a

)e−4r1/a

]

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 17 / 18

Page 160: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

The r2 integral is thus split into two parts

I2 = 4π

(1

r1

∫ r1

0r22 e

−4r2/a dr2 +

∫ ∞r1

r2 e−4r2/a dr2

)these can be solved using integration by parts with dv = e−4r2/a dr2

Ired = −(a

4

)r22 e−4r2/a

∣∣∣r10

+ 2(a

4

)∫ r1

0r2e−4r2/a dr2

= −(a

4

)r21 e−4r1/a

−2(a

4

)2r2e−4r2/a

∣∣∣∣r10

+ 2(a

4

)2 ∫ r1

0e−4r2/a dr2

= −(a

4

)r21 e−4r1/a − 2

(a4

)2r1e−4r1/a

− 2(a

4

)3e−4r1/a + 2

(a4

)3

Iblue =

−(a

4

)r2e−4r2/a

∣∣∣∞r1

+(a

4

)∫ ∞r1

e−4r2/a dr2

= +(a

4

)r1e−4r1/a

+(a

4

)2e−4r1/a

I2 =πa3

8r1

[1−

(1 +

2r1a

)e−4r1/a

]

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 17 / 18

Page 161: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

The r2 integral is thus split into two parts

I2 = 4π

(1

r1

∫ r1

0r22 e

−4r2/a dr2 +

∫ ∞r1

r2 e−4r2/a dr2

)these can be solved using integration by parts with dv = e−4r2/a dr2

Ired = −(a

4

)r22 e−4r2/a

∣∣∣r10

+ 2(a

4

)∫ r1

0r2e−4r2/a dr2

= −(a

4

)r21 e−4r1/a

−2(a

4

)2r2e−4r2/a

∣∣∣∣r10

+ 2(a

4

)2 ∫ r1

0e−4r2/a dr2

= −(a

4

)r21 e−4r1/a − 2

(a4

)2r1e−4r1/a

− 2(a

4

)3e−4r1/a + 2

(a4

)3

Iblue =

−(a

4

)r2e−4r2/a

∣∣∣∞r1

+(a

4

)∫ ∞r1

e−4r2/a dr2

= +(a

4

)r1e−4r1/a

+(a

4

)2e−4r1/a

I2 =πa3

8r1

[1−

(1 +

2r1a

)e−4r1/a

]

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 17 / 18

Page 162: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

The r2 integral is thus split into two parts

I2 = 4π

(1

r1

∫ r1

0r22 e

−4r2/a dr2 +

∫ ∞r1

r2 e−4r2/a dr2

)these can be solved using integration by parts with dv = e−4r2/a dr2

Ired = −(a

4

)r22 e−4r2/a

∣∣∣r10

+ 2(a

4

)∫ r1

0r2e−4r2/a dr2

= −(a

4

)r21 e−4r1/a −2

(a4

)2r2e−4r2/a

∣∣∣∣r10

+ 2(a

4

)2 ∫ r1

0e−4r2/a dr2

= −(a

4

)r21 e−4r1/a − 2

(a4

)2r1e−4r1/a

− 2(a

4

)3e−4r1/a + 2

(a4

)3

Iblue =

−(a

4

)r2e−4r2/a

∣∣∣∞r1

+(a

4

)∫ ∞r1

e−4r2/a dr2

= +(a

4

)r1e−4r1/a

+(a

4

)2e−4r1/a

I2 =πa3

8r1

[1−

(1 +

2r1a

)e−4r1/a

]

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 17 / 18

Page 163: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

The r2 integral is thus split into two parts

I2 = 4π

(1

r1

∫ r1

0r22 e

−4r2/a dr2 +

∫ ∞r1

r2 e−4r2/a dr2

)these can be solved using integration by parts with dv = e−4r2/a dr2

Ired = −(a

4

)r22 e−4r2/a

∣∣∣r10

+ 2(a

4

)∫ r1

0r2e−4r2/a dr2

= −(a

4

)r21 e−4r1/a −2

(a4

)2r2e−4r2/a

∣∣∣∣r10

+ 2(a

4

)2 ∫ r1

0e−4r2/a dr2

= −(a

4

)r21 e−4r1/a − 2

(a4

)2r1e−4r1/a

− 2(a

4

)3e−4r1/a + 2

(a4

)3

Iblue =

−(a

4

)r2e−4r2/a

∣∣∣∞r1

+(a

4

)∫ ∞r1

e−4r2/a dr2

= +(a

4

)r1e−4r1/a

+(a

4

)2e−4r1/a

I2 =πa3

8r1

[1−

(1 +

2r1a

)e−4r1/a

]

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 17 / 18

Page 164: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

The r2 integral is thus split into two parts

I2 = 4π

(1

r1

∫ r1

0r22 e

−4r2/a dr2 +

∫ ∞r1

r2 e−4r2/a dr2

)these can be solved using integration by parts with dv = e−4r2/a dr2

Ired = −(a

4

)r22 e−4r2/a

∣∣∣r10

+ 2(a

4

)∫ r1

0r2e−4r2/a dr2

= −(a

4

)r21 e−4r1/a −2

(a4

)2r2e−4r2/a

∣∣∣∣r10

+ 2(a

4

)2 ∫ r1

0e−4r2/a dr2

= −(a

4

)r21 e−4r1/a − 2

(a4

)2r1e−4r1/a

− 2(a

4

)3e−4r1/a + 2

(a4

)3Iblue =

−(a

4

)r2e−4r2/a

∣∣∣∞r1

+(a

4

)∫ ∞r1

e−4r2/a dr2

= +(a

4

)r1e−4r1/a

+(a

4

)2e−4r1/a

I2 =πa3

8r1

[1−

(1 +

2r1a

)e−4r1/a

]

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 17 / 18

Page 165: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

The r2 integral is thus split into two parts

I2 = 4π

(1

r1

∫ r1

0r22 e

−4r2/a dr2 +

∫ ∞r1

r2 e−4r2/a dr2

)these can be solved using integration by parts with dv = e−4r2/a dr2

Ired = −(a

4

)r22 e−4r2/a

∣∣∣r10

+ 2(a

4

)∫ r1

0r2e−4r2/a dr2

= −(a

4

)r21 e−4r1/a −2

(a4

)2r2e−4r2/a

∣∣∣∣r10

+ 2(a

4

)2 ∫ r1

0e−4r2/a dr2

= −(a

4

)r21 e−4r1/a − 2

(a4

)2r1e−4r1/a − 2

(a4

)3e−4r1/a + 2

(a4

)3

Iblue =

−(a

4

)r2e−4r2/a

∣∣∣∞r1

+(a

4

)∫ ∞r1

e−4r2/a dr2

= +(a

4

)r1e−4r1/a

+(a

4

)2e−4r1/a

I2 =πa3

8r1

[1−

(1 +

2r1a

)e−4r1/a

]

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 17 / 18

Page 166: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

The r2 integral is thus split into two parts

I2 = 4π

(1

r1

∫ r1

0r22 e

−4r2/a dr2 +

∫ ∞r1

r2 e−4r2/a dr2

)these can be solved using integration by parts with dv = e−4r2/a dr2

Ired = −(a

4

)r22 e−4r2/a

∣∣∣r10

+ 2(a

4

)∫ r1

0r2e−4r2/a dr2

= −(a

4

)r21 e−4r1/a −2

(a4

)2r2e−4r2/a

∣∣∣∣r10

+ 2(a

4

)2 ∫ r1

0e−4r2/a dr2

= −(a

4

)r21 e−4r1/a − 2

(a4

)2r1e−4r1/a − 2

(a4

)3e−4r1/a + 2

(a4

)3Iblue =

−(a

4

)r2e−4r2/a

∣∣∣∞r1

+(a

4

)∫ ∞r1

e−4r2/a dr2

= +(a

4

)r1e−4r1/a

+(a

4

)2e−4r1/a

I2 =πa3

8r1

[1−

(1 +

2r1a

)e−4r1/a

]

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 17 / 18

Page 167: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

The r2 integral is thus split into two parts

I2 = 4π

(1

r1

∫ r1

0r22 e

−4r2/a dr2 +

∫ ∞r1

r2 e−4r2/a dr2

)these can be solved using integration by parts with dv = e−4r2/a dr2

Ired = −(a

4

)r22 e−4r2/a

∣∣∣r10

+ 2(a

4

)∫ r1

0r2e−4r2/a dr2

= −(a

4

)r21 e−4r1/a −2

(a4

)2r2e−4r2/a

∣∣∣∣r10

+ 2(a

4

)2 ∫ r1

0e−4r2/a dr2

= −(a

4

)r21 e−4r1/a − 2

(a4

)2r1e−4r1/a − 2

(a4

)3e−4r1/a + 2

(a4

)3Iblue = −

(a4

)r2e−4r2/a

∣∣∣∞r1

+(a

4

)∫ ∞r1

e−4r2/a dr2

= +(a

4

)r1e−4r1/a

+(a

4

)2e−4r1/a

I2 =πa3

8r1

[1−

(1 +

2r1a

)e−4r1/a

]

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 17 / 18

Page 168: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

The r2 integral is thus split into two parts

I2 = 4π

(1

r1

∫ r1

0r22 e

−4r2/a dr2 +

∫ ∞r1

r2 e−4r2/a dr2

)these can be solved using integration by parts with dv = e−4r2/a dr2

Ired = −(a

4

)r22 e−4r2/a

∣∣∣r10

+ 2(a

4

)∫ r1

0r2e−4r2/a dr2

= −(a

4

)r21 e−4r1/a −2

(a4

)2r2e−4r2/a

∣∣∣∣r10

+ 2(a

4

)2 ∫ r1

0e−4r2/a dr2

= −(a

4

)r21 e−4r1/a − 2

(a4

)2r1e−4r1/a − 2

(a4

)3e−4r1/a + 2

(a4

)3Iblue = −

(a4

)r2e−4r2/a

∣∣∣∞r1

+(a

4

)∫ ∞r1

e−4r2/a dr2

= +(a

4

)r1e−4r1/a

+(a

4

)2e−4r1/a

I2 =πa3

8r1

[1−

(1 +

2r1a

)e−4r1/a

]

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 17 / 18

Page 169: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

The r2 integral is thus split into two parts

I2 = 4π

(1

r1

∫ r1

0r22 e

−4r2/a dr2 +

∫ ∞r1

r2 e−4r2/a dr2

)these can be solved using integration by parts with dv = e−4r2/a dr2

Ired = −(a

4

)r22 e−4r2/a

∣∣∣r10

+ 2(a

4

)∫ r1

0r2e−4r2/a dr2

= −(a

4

)r21 e−4r1/a −2

(a4

)2r2e−4r2/a

∣∣∣∣r10

+ 2(a

4

)2 ∫ r1

0e−4r2/a dr2

= −(a

4

)r21 e−4r1/a − 2

(a4

)2r1e−4r1/a − 2

(a4

)3e−4r1/a + 2

(a4

)3Iblue = −

(a4

)r2e−4r2/a

∣∣∣∞r1

+(a

4

)∫ ∞r1

e−4r2/a dr2

= +(a

4

)r1e−4r1/a

+(a

4

)2e−4r1/a

I2 =πa3

8r1

[1−

(1 +

2r1a

)e−4r1/a

]

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 17 / 18

Page 170: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

The r2 integral is thus split into two parts

I2 = 4π

(1

r1

∫ r1

0r22 e

−4r2/a dr2 +

∫ ∞r1

r2 e−4r2/a dr2

)these can be solved using integration by parts with dv = e−4r2/a dr2

Ired = −(a

4

)r22 e−4r2/a

∣∣∣r10

+ 2(a

4

)∫ r1

0r2e−4r2/a dr2

= −(a

4

)r21 e−4r1/a −2

(a4

)2r2e−4r2/a

∣∣∣∣r10

+ 2(a

4

)2 ∫ r1

0e−4r2/a dr2

= −(a

4

)r21 e−4r1/a − 2

(a4

)2r1e−4r1/a − 2

(a4

)3e−4r1/a + 2

(a4

)3Iblue = −

(a4

)r2e−4r2/a

∣∣∣∞r1

+(a

4

)∫ ∞r1

e−4r2/a dr2

= +(a

4

)r1e−4r1/a +

(a4

)2e−4r1/a

I2 =πa3

8r1

[1−

(1 +

2r1a

)e−4r1/a

]

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 17 / 18

Page 171: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r2 integral

The r2 integral is thus split into two parts

I2 = 4π

(1

r1

∫ r1

0r22 e

−4r2/a dr2 +

∫ ∞r1

r2 e−4r2/a dr2

)these can be solved using integration by parts with dv = e−4r2/a dr2

Ired = −(a

4

)r22 e−4r2/a

∣∣∣r10

+ 2(a

4

)∫ r1

0r2e−4r2/a dr2

= −(a

4

)r21 e−4r1/a −2

(a4

)2r2e−4r2/a

∣∣∣∣r10

+ 2(a

4

)2 ∫ r1

0e−4r2/a dr2

= −(a

4

)r21 e−4r1/a − 2

(a4

)2r1e−4r1/a − 2

(a4

)3e−4r1/a + 2

(a4

)3Iblue = −

(a4

)r2e−4r2/a

∣∣∣∞r1

+(a

4

)∫ ∞r1

e−4r2/a dr2

= +(a

4

)r1e−4r1/a +

(a4

)2e−4r1/a

I2 =πa3

8r1

[1−

(1 +

2r1a

)e−4r1/a

]C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 17 / 18

Page 172: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r1 integral

The expression for 〈Vee〉 becomes

〈Vee〉 =

(e2

4πε0

)(8

πa3

)∫ [1−(

1+2r1a

)e−4r1/a

]e−4r1/ar1 sin θ1 dr1dθ1dφ1

the angular integrals simply give 4π and dropping the subscript on theradial coordinate

〈Vee〉 =

(8e2

πε0a3

)∫ ∞0

[re−4r/a −

(r +

2r2

a

)e−8r/a

]dr

=

(8e2

πε0a3

)[(a4

)2−(a

8

)2− 4

a

(a8

)3]=

(8e2

πε0a3

)[a2

16− a2

64− a2

128

]=

(8e2

πε0a3

)a2[

8− 2− 1

128

]=

5

2

(e2

8πε0a

)= −5

2E1 = +34eV

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 18 / 18

Page 173: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r1 integral

The expression for 〈Vee〉 becomes

〈Vee〉 =

(e2

4πε0

)(8

πa3

)∫ [1−(

1+2r1a

)e−4r1/a

]e−4r1/ar1 sin θ1 dr1dθ1dφ1

the angular integrals simply give 4π and dropping the subscript on theradial coordinate

〈Vee〉 =

(8e2

πε0a3

)∫ ∞0

[re−4r/a −

(r +

2r2

a

)e−8r/a

]dr

=

(8e2

πε0a3

)[(a4

)2−(a

8

)2− 4

a

(a8

)3]=

(8e2

πε0a3

)[a2

16− a2

64− a2

128

]=

(8e2

πε0a3

)a2[

8− 2− 1

128

]=

5

2

(e2

8πε0a

)= −5

2E1 = +34eV

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 18 / 18

Page 174: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r1 integral

The expression for 〈Vee〉 becomes

〈Vee〉 =

(e2

4πε0

)(8

πa3

)∫ [1−(

1+2r1a

)e−4r1/a

]e−4r1/ar1 sin θ1 dr1dθ1dφ1

the angular integrals simply give 4π and dropping the subscript on theradial coordinate

〈Vee〉 =

(8e2

πε0a3

)∫ ∞0

[re−4r/a −

(r +

2r2

a

)e−8r/a

]dr

=

(8e2

πε0a3

)[(a4

)2−(a

8

)2− 4

a

(a8

)3]=

(8e2

πε0a3

)[a2

16− a2

64− a2

128

]=

(8e2

πε0a3

)a2[

8− 2− 1

128

]=

5

2

(e2

8πε0a

)= −5

2E1 = +34eV

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 18 / 18

Page 175: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r1 integral

The expression for 〈Vee〉 becomes

〈Vee〉 =

(e2

4πε0

)(8

πa3

)∫ [1−(

1+2r1a

)e−4r1/a

]e−4r1/ar1 sin θ1 dr1dθ1dφ1

the angular integrals simply give 4π and dropping the subscript on theradial coordinate

〈Vee〉 =

(8e2

πε0a3

)∫ ∞0

[re−4r/a −

(r +

2r2

a

)e−8r/a

]dr

=

(8e2

πε0a3

)[(a4

)2−(a

8

)2− 4

a

(a8

)3]=

(8e2

πε0a3

)[a2

16− a2

64− a2

128

]=

(8e2

πε0a3

)a2[

8− 2− 1

128

]=

5

2

(e2

8πε0a

)= −5

2E1 = +34eV

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 18 / 18

Page 176: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r1 integral

The expression for 〈Vee〉 becomes

〈Vee〉 =

(e2

4πε0

)(8

πa3

)∫ [1−(

1+2r1a

)e−4r1/a

]e−4r1/ar1 sin θ1 dr1dθ1dφ1

the angular integrals simply give 4π and dropping the subscript on theradial coordinate

〈Vee〉 =

(8e2

πε0a3

)∫ ∞0

[re−4r/a −

(r +

2r2

a

)e−8r/a

]dr

=

(8e2

πε0a3

)[(a4

)2−(a

8

)2− 4

a

(a8

)3]

=

(8e2

πε0a3

)[a2

16− a2

64− a2

128

]=

(8e2

πε0a3

)a2[

8− 2− 1

128

]=

5

2

(e2

8πε0a

)= −5

2E1 = +34eV

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 18 / 18

Page 177: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r1 integral

The expression for 〈Vee〉 becomes

〈Vee〉 =

(e2

4πε0

)(8

πa3

)∫ [1−(

1+2r1a

)e−4r1/a

]e−4r1/ar1 sin θ1 dr1dθ1dφ1

the angular integrals simply give 4π and dropping the subscript on theradial coordinate

〈Vee〉 =

(8e2

πε0a3

)∫ ∞0

[re−4r/a −

(r +

2r2

a

)e−8r/a

]dr

=

(8e2

πε0a3

)[(a4

)2−(a

8

)2− 4

a

(a8

)3]=

(8e2

πε0a3

)[a2

16− a2

64− a2

128

]

=

(8e2

πε0a3

)a2[

8− 2− 1

128

]=

5

2

(e2

8πε0a

)= −5

2E1 = +34eV

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 18 / 18

Page 178: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r1 integral

The expression for 〈Vee〉 becomes

〈Vee〉 =

(e2

4πε0

)(8

πa3

)∫ [1−(

1+2r1a

)e−4r1/a

]e−4r1/ar1 sin θ1 dr1dθ1dφ1

the angular integrals simply give 4π and dropping the subscript on theradial coordinate

〈Vee〉 =

(8e2

πε0a3

)∫ ∞0

[re−4r/a −

(r +

2r2

a

)e−8r/a

]dr

=

(8e2

πε0a3

)[(a4

)2−(a

8

)2− 4

a

(a8

)3]=

(8e2

πε0a3

)[a2

16− a2

64− a2

128

]=

(8e2

πε0a3

)a2[

8− 2− 1

128

]

=5

2

(e2

8πε0a

)= −5

2E1 = +34eV

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 18 / 18

Page 179: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r1 integral

The expression for 〈Vee〉 becomes

〈Vee〉 =

(e2

4πε0

)(8

πa3

)∫ [1−(

1+2r1a

)e−4r1/a

]e−4r1/ar1 sin θ1 dr1dθ1dφ1

the angular integrals simply give 4π and dropping the subscript on theradial coordinate

〈Vee〉 =

(8e2

πε0a3

)∫ ∞0

[re−4r/a −

(r +

2r2

a

)e−8r/a

]dr

=

(8e2

πε0a3

)[(a4

)2−(a

8

)2− 4

a

(a8

)3]=

(8e2

πε0a3

)[a2

16− a2

64− a2

128

]=

(8e2

πε0a3

)a2[

8− 2− 1

128

]=

5

2

(e2

8πε0a

)

= −5

2E1 = +34eV

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 18 / 18

Page 180: phys.iit.eduphys.iit.edu/~segre/phys406/17S/lecture_07.pdf · Spin-spin coupling E(1) hf = 0g pe2 8ˇm pm e * 3(~S p ^r)(~S e ^r) ~S p ~S e r3 + + 0g pe2 3m pm e h~S p ~S eij (0)j2

The r1 integral

The expression for 〈Vee〉 becomes

〈Vee〉 =

(e2

4πε0

)(8

πa3

)∫ [1−(

1+2r1a

)e−4r1/a

]e−4r1/ar1 sin θ1 dr1dθ1dφ1

the angular integrals simply give 4π and dropping the subscript on theradial coordinate

〈Vee〉 =

(8e2

πε0a3

)∫ ∞0

[re−4r/a −

(r +

2r2

a

)e−8r/a

]dr

=

(8e2

πε0a3

)[(a4

)2−(a

8

)2− 4

a

(a8

)3]=

(8e2

πε0a3

)[a2

16− a2

64− a2

128

]=

(8e2

πε0a3

)a2[

8− 2− 1

128

]=

5

2

(e2

8πε0a

)= −5

2E1 = +34eV

C. Segre (IIT) PHYS 406 - Spring 2017 February 02, 2017 18 / 18