physics of nanoscale transistors - an introduction to electronics from the bottom up

Upload: liakman

Post on 05-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    1/52

    1

    23rd Symposium on Microelectronics Technology and Devices: SB Micro 2008IEEE / EDS Mini Colloquium

    September 1, 2008, Gramado, Brazil

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    2/52

    2nanoHUB.org

    NCN

    Mark Lundstrom

    Network for Computational Nanotechnology

    Birck Nanotechnology Center

    Discovery Park, Purdue University

    West Lafayette, Indiana USA

    23rd Symposium on Microelectronics Technology and Devices: SB Micro 2008IEEE / EDS Mini Colloquium

    September 1, 2008, Gramado, Brazil

    Physics

    ofNanoscale Transistors:

    An Introduction to Electronics from the Bottom Up

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    3/52

    3

    technology trends..

    logL

    1975

    5 mMoores Law

    5 nm

    2005

    50 nm

    log # chip

    10 3

    10 9

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    4/52

    4

    models for devices (conceptual and computational)

    0.1 mm

    10 m

    1 m

    0.1 m

    10 nm

    1 nm

    0.1 nm

    Macroscopicdimensions

    Atomicdimensions

    drift-diffusion

    drift-diffusion + velocity saturation

    Boltzmann for velocity overshoot

    quasi-ballistic

    quantum mechanical

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    5/52

    5nanoHUB.org

    NCN

    21st Century electronic devices

    HfO2

    10 nm SiO2

    p++ Si

    SD

    Al

    Gate

    SWNTcarbon nanotube

    electronics

    CoFe (2.5)

    Ru (0.85)

    InsulatorCoFeB (3)

    CoFeB (3)

    MgO (0.85)

    spin torque devices

    nanowire PVnanowire

    bio-sensors

    molecular electronics

    nanonets

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    6/52

    6

    Electronics from the Bottom Up

    1) Introduction

    2) Generic model of a nanodevice

    3) The ballistic MOSFET

    4) Scattering in nano-MOSFETs

    5) Discussion

    6) Summary

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    7/52

    7

    Gate

    D(E U)

    generic model

    S. Datta, Quantum Transport: Atom to Transistor, Cambridge, 2005(Concepts of Quantum Transport nanohub.org)

    21

    EF1 EF2

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    8/52

    8

    filling states from the left contact

    1

    d N(E)

    dt =N1

    0 (E) N1

    N10 (E) = D(E U)f1(E)

    Assumption:Each energy channel isindependent

    includes spin

    Gate

    D(E U)EF1

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    9/52

    9

    filling states from the right contact

    2

    d N(E)

    dt=

    N20(E) N

    2

    N20

    (E) = D(E U)f2(E)

    Gate

    D(E U) EF2

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    10/52

    10

    steady-state

    d N(E)

    dt=

    N10 N

    1+

    N20 N

    2= 0

    1 1( )N10 1 1( )N+ 1 2( )N20 1 2( )N = 0

    N E( )=1 1( )

    1 1( )+ 1 2( )N1

    0E( )+

    1 2( )1 1( )+ 1 2( )

    N20

    E( )

    N10

    E( ) D E U( )f1 E( )

    N20

    E( ) D E U( )f2 E( )

    1 = h 1

    1 = h 2

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    11/52

    11

    steady-state electron number, N(E)

    N E( )= 1

    1

    + 2

    D E U( )f1 E( )+2

    1

    + 2

    D E U( )f2 E( )

    N E( )= D1 E U( )f1 E( )+ D2 E U( )f2 E( )

    D1 E U( )=1

    1 + 2D E U( )

    D2 E U( )=2

    1 + 2D E U( )

    DOS that can be filled by

    contact 1

    DOS that can be filled bycontact 2

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    12/52

    12

    steady-state current, I

    ID

    ID

    d N(E)

    dt 1

    =N1

    0 (E) N E( )

    1

    d N(E)

    dt 2

    =N2

    0(E) N

    2

    ID E( )= +qd N(E)

    dt1

    = qd N(E)

    dt2

    Gate

    D(E U)f2 E( )f1 E( )

    EF1 EF2 VDS

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    13/52

    13

    result

    I E( )= qh

    12

    1 + 2

    D E U( ) f1 f2( )

    ID = I E( )dE =2q

    h

    2

    D E U( ) f1 f2( )dE

    1 = 2 =

    N = N E( )dE= D E U( )2 f1 E( )+ f2 E( )( ) dE

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    14/52

    14

    final results

    ID =2q

    h D E U( ) f1 f2( )dE

    1 = 2 = = h

    N = D E U( ) f1 + f2( )dE

    D E U( )= D E U( )2

    density-of-states per spin

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    15/52

    15

    determining ()

    ID E( )=2q

    h

    D E U( ) f1 f2( )

    N E( )= D E U( ) f1 E( )+ f2 E( )

    energy channels are independent:

    qN

    ID

    =h

    =

    if f1 >> f2(source injects, drain collects), then:

    ID =Q

    =

    stored charge

    transit time

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    16/52

    16

    Nanoelectronics and the Meaning of Resistance

    1) What and where is theresistance?

    2) Microscopic model for electricalresistance

    3) Spins and magnets

    4) Energy conversion

    5) Beyond the one-electronpicture

    Electronics from the Bottom Up on nanoHUB.org

    Supriyo Datta

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    17/52

    17

    outline

    1) Introduction

    2) Generic model of a nanodevice

    3) The ballistic MOSFET

    4) Scattering in nano-MOSFETs

    5) Discussion

    6) Summary

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    18/52

    18

    electron energy vs. position

    VDS = 0.05 VVGS

    controlling current with energy barriers

    E = qV

    VDS = 1.0 V

    VGS

    E.O. Johnson, The Insulated-Gate Field EffectTransistor: A Bipolar Transistor in Disguise, RCAReview, 34, pp. 80-94, 1973.

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    19/52

    19

    top of the barrier MOSFET model

    energy

    position

    1 = 2 =

    h

    device

    LDOS

    L

    contact 1 contact 2

    U = EC = EC0 qS

    EF1

    EF2

    EC x( )

    EC 0( )

    low drain bias:

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    20/52

    20

    top of the barrier MOSFET model

    energy

    position

    contact 1 contact 2

    1

    = 2

    =h

    device

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    21/52

    21

    electron density

    U = EC(0)

    Wx

    y

    contact 2contact 1

    D =m*

    2h2

    Wl

    N = D E U( ) f1 + f2( )dE

    f1 E( )=1

    1+ eEF1 EC (0)( ) kBT

    f2 E( )=1

    1+ eEF1 qVDS EC (0)( ) kBT

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    22/52

    22

    electron density

    N = D E U( ) f1 + f2( )dE

    F1 EF1 EC(0)[ ] kB T

    F2 = F1 qVDS kBT

    N2D = m

    *kBT h

    2

    nS 0( )=N

    Wl=

    N2D

    2F0 F1( )+F0 F2( )

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    23/52

    23

    current

    U = EC(0)

    Wx

    y

    contact 2contact 1

    D =

    m*

    2h2 Wl

    =h

    =

    h x

    l

    ID

    =2q

    h D f

    1

    f2

    ( )dE

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    24/52

    24

    current (cont.)

    U = EC(0)

    Wx

    y

    contact 2contact 1

    =h

    =h x

    l

    x = cos = 2 E EC( ) m* cos

    x = cos/2/2

    d = 2

    =

    2 E EC( )m*

    2

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    25/52

    25

    current (cont.)

    ID =2q

    h D f1 f2( )dE

    D E( )= hl

    2 E EC( )m

    *

    2

    m*

    2h2Wl

    D E( )= W2m* E EC( )

    h= M E( )

    ID =2q

    hM E( ) f1 f2( )dE

    M(E) =W

    2( )

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    26/52

    26

    current (final result)

    ID =2q

    hM E( ) f1 f2( )dE

    ID = WqN2D

    2T

    F1/ 2 F1( )F1/ 2 F2( )

    F1 EF1 EC(0)[ ] kB T

    F2 = F1 qVDS kBTT = 2kBT m*

    N2D = m

    *kBT h

    2

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    27/52

    27

    re-cap

    nS 0( )=N2D

    2

    F0 F1( )+F0 F2( )

    (1)

    (2)

    Solve (2) for N2D, then insert in (1):

    ID = WqN2D

    2

    T

    F1/ 2 F1( )F1/ 2 F2( )

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    28/52

    28

    I-V characteristic

    ID = WqnS 0( )TF1/ 2 F1( )F1/ 2 F2( )F

    0

    F1

    ( )+F

    0

    F2

    ( )

    qnS 0( ) Cox VGS VT( ) (simple, 1D MOS electrostaticsVGS> VT)

    ID = WQI 0( ) T

    F1/ 2 F1( )F0 F1( )

    1F1/2 F2( ) F1/2 F1( )1 +F0 F2( ) F0 F1( )

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    29/52

    29

    final result

    ID = WCox VGS VT( )%T1-F1/ 2 F2( ) F1/2 F1( )1 +F0 F2( ) F10 F1( )

    %T 2kBT

    m*F1/ 2 F1( )F0 F1( )

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    30/52

    30

    Boltzmann limit

    ID = WCox VGS VT( )T 1- e qV

    DS

    /kB

    T

    1 + e qVDS /kBT

    T =2kBT

    m*

    Fj F( ) eF

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    31/52

    31

    on-current

    IDS

    VDS

    VDSAT

    kB

    T q

    VGS = VDD

    ID = WCox %T VGS VT( )1-F1/ 2 F2( ) F1/2 F1( )1+F0 F2( ) F10 F1( )

    %T 2kBTm*F1/2 F1( )F0 F1( )

    (100) [110] Si (single subband)

    ID WCox %T VDD VT( )

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    32/52

    32

    velocity saturation in a ballistic MOSFET

    VDS

    VGS = VDD

    ID = WCox %T VGS VT( )1-F1/2 F2( ) F1/ 2 F1( )1 +F0 F2( ) F10 F1( )

    = WQI(0) 0( )

    EF1 EC(0)[ ] q

    IDS

    VDS

    (0)

    T

    ballistic injection

    velocity

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    33/52

    33

    channel resistance of a ballistic MOSFET

    IDS

    VDS

    VDSAT

    kB

    T q

    ID = WCox %T VGS VT( )1-F1/ 2 F2( ) F1/2 F1( )1+F0 F2( ) F10 F1( )

    finite channelresistance

    VGS = VDD

    as T 0

    GCH =1

    RCH M EF1( )

    2q2

    h

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    34/52

    34

    ION ballistic( ) = WQI (0 ) %T

    T 1.8 107 cm/s

    QI(0) q

    is a nanoscale MOSFET really ballistic?

    = Cinv VDD VT( )

    0.8 1013

    cm-2

    ION W ballistic( ) 2 mA/m

    Typical N-channel MOSFET:

    ION 1 mA/m

    (Courtesy, Shuji Ikeda, ATDF, Dec. 2007)

    about 10% of the ballistic limit.

    about 50% of theballistic limit

    li

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    35/52

    35

    outline

    1) Introduction

    2) Generic model of a nanodevice

    3) The ballistic MOSFET

    4) Scattering in nano-MOSFETs5) Discussion

    6) Summary

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    36/52

    3636

    scattering in Si n-channel nano-MOSFETs

    ID =

    W

    L

    nCox VGS VT( )VDS ?

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    37/52

    37

    top of the barrier MOSFET model

    energy

    position

    1

    = 2

    =h

    device

    LDOS

    L

    contact 1 contact 2

    EF1

    EF2

    EC x( )

    EC 0( )

    low drain bias: =

    2 E EC( )

    m*

    cos x + sin y( )

    (ballistic)

    ff

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    38/52

    38

    diffusive current

    U = EC(0)

    L

    W

    x

    ycontact 2contact 1

    =h

    =h x

    L

    ballistic

    ID =2q

    h

    D f1 f2( )dE

    =h

    = ? diffusive

    =L

    2

    2Dn

    b b lli i d diff i

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    39/52

    39

    between ballistic and diffusive

    D =0

    0 + L B D

    =h

    B + D=

    1

    1 + D B

    h

    B

    ID = WCox VGS VT( )0

    0 + L

    %T

    1-F1/ 2 F2( ) F1/ 2 F1( )1 +F0 F2( ) F10 F1( )

    Dn (E) =x

    20 =

    2

    2

    0 T =0

    0 + L

    li i t

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    40/52

    40

    linear-region current

    ID = WCox VGS VT( )0

    0 + L

    T1- e

    qVDS /kBT

    1 + eqVDS /kBT

    Boltzmann statistics:

    Low VDS:

    ID = WCox VGS VT( )0

    0 + L

    T

    2 kBT q( )VDS

    ID =W

    L + 0nCox VGS VT( )VDS

    tt i i Si h l MOSFET

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    41/52

    4141

    scattering in Si n-channel nano-MOSFETs

    ID =W

    LnCox VGS VT( )VDS ID =

    W

    L + 0nCox VGS VT( )VDS

    on-current

    where scattering matters (the most)

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    42/52

    42

    where scattering matters (the most)

    Increasing VDS

    X(nm) --->

    -10 -5 0 5 10

    EC

    (eV)

    --->

    X(nm) --->

    -10 -5 0 5 10

    EC

    (eV)

    --->

    ECvs. xfor VGS= 0.5V

    T =0

    0 +LT =

    0

    0 + l

    ECvs. xfor VGS= 0.5V

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    43/52

    43

    outline

    1) Introduction

    2) Generic model of a nanodevice

    3) The ballistic MOSFET

    4) Scattering in nano-MOSFETs5) Discussion

    6) Summary

    Physics of Nanoscale Transistors

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    44/52

    44

    Physics of Nanoscale Transistors

    1) Review of MOSFET Fundamentals

    2) Elementary Theory of the NanoscaleMOSFET

    3) Theory of the Ballistic MOSFET

    4) Scattering in Nanoscale MOSFETs

    5) Application to State-of-the-ArtMOSFETs

    6) Quantum Transport in NanoscaleMOSFETs

    7) Connection to the Bottom UpApproach Mark Lundstrom

    Electronics from the Bottom Up on nanoHUB.org

    S/D quantum mechanical tunneling

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    45/52

    45

    S/D quantum mechanical tunneling

    from M. Luisier, ETH Zurich

    4) 3)

    2) 1)

    generic model to NEGF

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    46/52

    46

    Gate

    D(E U)

    2

    generic model to NEGF

    S. Datta, Quantum Transport: Atom to Transistor, Cambridge, 2005(Concepts of Quantum Transport nanohub.org)

    1

    EF1 EF2H[ ] S[ ]

    1[ ]/ 1[ ] 2[ ]/ 2[ ]

    randomness is the rule - not the exception!

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    47/52

    47

    randomness is the rule - not the exception!

    side view

    top view

    Random dopant fluctuations

    nanonets

    Percolation in Electronic Devices

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    48/52

    48

    Percolation in Electronic Devices

    1) Percolation in Electronic Devices

    2) Thresholds, Islands, and Fractals

    3) Nonlinear Electrical Conduction inPercolative Systems

    4) Stick Percolation and Nanonet Electronics

    5) 2D Nets in 3D World: Sensors, Solar Cells,

    and Antennas

    M. Ashraf Alam

    Electronics from the Bottom Up on nanoHUB.org

    outline

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    49/52

    49

    outline

    1) Introduction

    2) Generic model of a nanodevice

    3) The ballistic MOSFET

    4) Scattering in nano-MOSFETs5) Discussion

    6) Summary

    summary

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    50/52

    50

    y

    1) The bottom-up view provides a simple, but rigorousapproach to nanoelectronics.

    2) Its useful for familiar devices, like MOSFETs.

    3) Its also a good starting point for new devices.

    4) You can learn more on nanoHUB.org or by attending theannual Electronics from the Bottom Up summerschools at Purdue University.

    nanoHUB.org

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    51/52

    51

    g

    Electronics from the Bottom Up

    Questions & Answers

  • 7/31/2019 Physics of Nanoscale Transistors - an Introduction to Electronics From the Bottom Up

    52/52

    52

    Quest o s & s e s