physics 111 lecture 07 - new jersey institute of technologyjanow/physics 111 spring...

23
Copyright R. Janow – Spring 2012 Physics 111 Lecture 07 Potential Energy & Energy Conservation SJ 8th Ed.: Chap 7.6 – 7.8, 8.1 – 8.5 Potential Energy Conservative Forces Determining Potential Energy Values Gravitational Potential Energy Elastic Potential Energy Conservation of Mechanical Energy Work Done by Kinetic Friction (Non-Conservative Forces) Conservation of Energy (General) Isolated Systems Power Reading Energy Diagrams Finding the Force (Gradient) Turning Points Equilibrium Points 7.6 Potential Energy of a System 7.7 Conservative and Non-Conservative Forces 7.8 Relationship Between Conservative Forces and Potential Energy 7.9 Energy Diagrams and Equilibrium 8.1 Energy in Non-Isolated Systems 8.2 Energy for Isolated Systems 8.3 Kinetic Friction 8.4 Changes in Mechanical Energy for Non-conservative forces 8.5 Power

Upload: others

Post on 13-Jun-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Physics 111 Lecture 07 - New Jersey Institute of Technologyjanow/Physics 111 Spring 2012/Lectures/LectureNotes07.pdfPhysics 111 Lecture 07 Potential Energy & Energy Conservation SJ

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Physics 111 Lecture 07

Potential Energy & Energy Conservation

SJ 8th Ed.: Chap 7.6 –7.8, 8.1 –8.5

•Potential Energy

•Conservative Forces

•Determining Potential Energy Values

–Gravitational Potential Energy

–Elastic Potential Energy

•Conservation of Mechanical Energy

•Work Done by Kinetic Friction

(Non-Conservative Forces)

•Conservation of Energy (General)

–Isolated Systems

•Power

•Reading Energy Diagrams

–Finding the Force (Gradient)

–Turning Points

–Equilibrium Points

7.6

Po

ten

tial E

nerg

y o

f a S

ys

tem

7.7

Co

nserv

ati

ve a

nd

No

n-C

on

serv

ati

ve F

orc

es

7.8

Rela

tio

nsh

ip B

etw

een

Co

nserv

ati

ve

Fo

rces a

nd

Po

ten

tial E

nerg

y

7.9

En

erg

y D

iag

ram

s a

nd

Eq

uilib

riu

m

8.1

En

erg

y in

No

n-I

so

late

d S

yste

ms

8.2

En

erg

y f

or

Iso

late

d S

yste

ms

8.3

Kin

eti

c F

ricti

on

8.4

Ch

an

ges in

Mech

an

ical E

nerg

y f

or

No

n-c

on

serv

ati

ve f

orc

es

8.5

Po

wer

Page 2: Physics 111 Lecture 07 - New Jersey Institute of Technologyjanow/Physics 111 Spring 2012/Lectures/LectureNotes07.pdfPhysics 111 Lecture 07 Potential Energy & Energy Conservation SJ

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Overview

Previou

sly:

•K

ine

tic

En

erg

y2

21m

vK

≡ ≡≡≡∑ ∑∑∑

≡ ≡≡≡s

ys

tem

a

for

jto

t

m

vK

2

21

rd

F d

Wr

or

= ===fo

rce

c

on

sta

nt

rF

Wr

or

∆ ∆∆∆= ===

ge

ne

ral

in

pa

th

rd

F

W∫ ∫∫∫

= ===r

or

forc

es

a

ll

by

d

on

e w

ork

n

et

K

W∆ ∆∆∆

= ===

po

sit

ion

s

pri

ng

in

sto

red

wo

rk

2 f

2 is

p

kx

21

kx

21

W− −−−

= ===

•G

ravit

ati

on

al

Wo

rk

•E

lasti

c,

sp

rin

g f

orc

e

•P

ath

in

dep

en

den

ce

•W

ork

–K

E T

he

ore

m

•W

ork

g

g

jm

gF

yF

W

r

vr

ov

− −−−= ===

∆ ∆∆∆= ===

Now

: M

ore p

owerf

ul v

iew u

sing

ene

rgy c

onse

rvation

•M

ech

an

ical

En

erg

y =

Kin

eti

c +

Po

ten

tial

)r(U

r

)r(U

K

Em

ec

h

r+ +++

≡ ≡≡≡

)

0

( W

E

so

me

tim

es

nc

me

ch

= ==== ===

∆ ∆∆∆

int

me

ch

tot

E E

E+ +++

≡ ≡≡≡

)

0 (

WE

so

me

tim

es

ex

tto

t= ===

= ===∆ ∆∆∆

•C

on

serv

ati

ve F

orc

es <� ���

Po

ten

tia

l E

nerg

y (

so

meti

mes F

ield

s)

•T

ota

l E

nerg

y =

Mech

an

ica

l +

Th

erm

al

an

d I

nte

rnal

•M

ech

an

ical

En

erg

y i

s c

on

sta

nt

wh

en

th

e w

ork

du

e t

o n

on

-co

nserv

ati

ve

fo

rces i

s z

ero

•T

ota

l E

nerg

y i

s c

on

sta

nt

if s

ys

tem

is i

so

late

d

Page 3: Physics 111 Lecture 07 - New Jersey Institute of Technologyjanow/Physics 111 Spring 2012/Lectures/LectureNotes07.pdfPhysics 111 Lecture 07 Potential Energy & Energy Conservation SJ

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Potential Energy -Definition

Pict

ure:

•A p

art

icle in

a s

yst

em f

eels int

ern

al fo

rces

due

to

other

part

icles.

•The n

et

forc

e F

(x,y

,z)due

to

the r

est

of

the s

yst

em d

oes

wor

k o

n a p

art

icle

•while it

chang

es

position

.•

If

F(x

,y,z

)is “

cons

erv

ative

”th

e w

ork

is c

onve

rted t

o “p

otent

ial ene

rgy”

stor

ed

in t

he m

utua

l po

sition

s of

the p

art

icle a

nd t

he r

est

of

the s

yst

em.

•Po

tent

ial ene

rgy s

tora

ge is

reve

rsib

le:

ene

rgy s

tore

d w

hen

a p

art

icle m

oves

subje

ct t

o “c

onse

rvative

”fo

rce c

an

be r

eco

vere

d w

ithou

t loss

.

Pote

ntial ene

rgy i

s repr

ese

nted b

y a

sca

lar

func

tion

U(x

,y,z

) of

the

part

icle’s p

osition

r=

(x,y

,z).

•The P

E

belong

s to

the s

yst

em a

s a w

hole.

•U

(r)of

a p

art

icle d

epe

nds

explicitly

on t

hat

part

icles’

loca

tion

.

•U

(r)depe

nds

implicitly a

lso

on loc

ation

s of

oth

er

part

s of

the s

yst

em.

When

PE c

hang

es,

KE m

ay c

hang

e a

nd/o

r ot

her

non-

cons

erv

ative

exte

rnal

forc

es

may d

o wor

k.

)r(d

U

rd

)r(F

dW

rr

or

r− −−−

≡ ≡≡≡= ===

NET FORCE DUE TO

REST OF SYSTEM

WORK DONE ON

PARTICLE

POTENTIAL

ENERGY CHANGE

Page 4: Physics 111 Lecture 07 - New Jersey Institute of Technologyjanow/Physics 111 Spring 2012/Lectures/LectureNotes07.pdfPhysics 111 Lecture 07 Potential Energy & Energy Conservation SJ

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Conservative and Non-Conservative Forces

Non

-co

nserv

ative

for

ces:

•ca

n be d

issipa

tive

(fr

iction

, dra

g):

they t

rans

form

mech

anica

l ene

rgy

to h

eat

and

caus

e t

he int

ern

al ene

rgy E

intof

syst

em t

o rise

irr

eve

rsib

ly.

•ca

n be c

onta

ct f

orce

s •ca

n no

t be r

epr

ese

nted b

y a

pote

ntial ene

rgy f

unct

ion

Con

serv

ative

for

ces

trans

form

kinetic

to p

otent

ial ene

rgy a

nd b

ack

aga

in r

eve

rsib

ly•

There

is

a p

otent

ial ene

rgy f

unct

ion

for

such

a f

orce

•Examples:

gra

vity

, elast

ic (sp

ring

), e

lect

rost

atic

PE a

nd p

otent

ial (“vo

ltage

”).

A

B

Path

1

Path

2

F

F

F

F

F

F

•T

he w

ork

do

ne o

n a

part

icle

mo

vin

g a

rou

nd

an

yclo

sed

path

is z

ero

.

e.g

. W

AB

,1 +

WB

A,2

= 0

Fo

r a c

on

serv

ati

ve f

orc

e•

An

y p

ath

is r

evers

ible

i.e.,

fo

r an

y p

ath

W

AB

,pa

thn

=

-W

BA

,pa

thn

•T

he w

ork

do

ne o

n a

part

icle

mo

vin

g b

etw

een

an

y

en

dp

oin

ts d

oes n

ot

dep

en

d o

n t

he p

ath

taken

.

i.e.,

WA

B,1

= W

AB

,2 =

….W

AB

,n

Fo

r a n

on

-co

nserv

ati

ve f

orc

e:

wo

rk d

on

e a

rou

nd

a c

losed

path

is >

0.

Page 5: Physics 111 Lecture 07 - New Jersey Institute of Technologyjanow/Physics 111 Spring 2012/Lectures/LectureNotes07.pdfPhysics 111 Lecture 07 Potential Energy & Energy Conservation SJ

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Example: Gra

vita

tion

al Po

tent

ial Ene

rgy

•The s

yst

em is

the a

pple p

lus

the E

art

h

)r(d

U

rd

)r(F

dW

gg

g

rr

or

r− −−−

≡ ≡≡≡= ===

FORCE DUE TO

REST OF SYSTEM

WORK DONE ON PARTICLE BY

CONSERVATIVE FORCE

POTENTIAL

ENERGY CHANGE

y

)r(F

W

)r(

Ug

gg

ro

rr

r∆ ∆∆∆

− −−−= ===

∆ ∆∆∆− −−−

= ===∆ ∆∆∆

jy

y

jm

g

)r(F

forc

e

co

ns

tan

tg

∆ ∆∆∆± ±±±

= ===∆ ∆∆∆

− −−−= ===

rr

r

•PE

inc

rease

s when

Fgdoe

s ne

gative

wor

k•PE

decr

ease

s when

Fgdoe

s po

sitive

wor

k

( (((

U

g= ===

∆ ∆∆∆ri

sin

g

y

mg

∆ ∆∆∆+ +++

fallin

g

y

mg

∆ ∆∆∆− −−−

•The z

ero

point

of

PE h

ere

is

arb

itra

ry –

choo

se a

refe

renc

e leve

l

)y

mg

(y

)y(

U)

yU

U

y

)r(F

W

if

ig

fg

gext

ext

− −−−= ===

− −−−= ===

∆ ∆∆∆= ===

∆ ∆∆∆= ===

∆ ∆∆∆r

or

r

•is a

n exte

rnalfo

rce,

slightly g

reate

r th

an

mg

,so

boo

k mov

es

up (sp

eed r

emains

~ z

ero

)

F ex

t

r

F e

xt

r

Act

ion

of e

xte

rnal, n

on-co

nserv

ative

forc

e:

Page 6: Physics 111 Lecture 07 - New Jersey Institute of Technologyjanow/Physics 111 Spring 2012/Lectures/LectureNotes07.pdfPhysics 111 Lecture 07 Potential Energy & Energy Conservation SJ

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Finding the Potential Energy

rd

F d

Wr

or

= ===fo

rce

c

on

sta

nt

rF

Wr

or

∆ ∆∆∆= ===

∆ ∆∆∆g

en

era

l

inp

ath

rd

F

W∫ ∫∫∫

= ===∆ ∆∆∆

ro

r

Reca

ll: The w

ork

don

e b

y n

on-co

nserv

ative

for

ces

can

depe

nd o

n th

e p

ath

:

can

be t

he n

et

forc

e,

a d

issipa

tive

for

ce,

or a

con

serv

ative

for

ceFr

is t

he w

ork d

one b

y

(w

hate

ver

might

be)

F rW

∆ ∆∆∆F r

For

a c

onse

rvative

for

ce t

here

can

be a

pot

ent

ial ene

rgy f

unct

ion:

∆ ∆∆∆W

cdepe

nds

only o

n th

e e

ndpo

ints

, no

t th

e p

ath

deta

ils

cW

U

∆ ∆∆∆− −−−

= ===∆ ∆∆∆

Change in potential

energy of system

Work done by conservative

force on ANY path

)r(

U)

r(U

rd

)r(F

U

i

f

r rc

i,f

f i

rr

ro

rr

v v

− −−−= ===

− −−−= ===

∆ ∆∆∆∫ ∫∫∫

Path

may b

e c

hos

en

to m

ake

the int

egr

ation

sim

ple

A c

onse

rvative

for

ce is

the g

radient

of

a p

otent

ial ene

rgy f

unct

ion

rd

F

dU

c

ro

r− −−−

= ===

dx

dU

F cx

− −−−= ===

similar

for

y &

z

Page 7: Physics 111 Lecture 07 - New Jersey Institute of Technologyjanow/Physics 111 Spring 2012/Lectures/LectureNotes07.pdfPhysics 111 Lecture 07 Potential Energy & Energy Conservation SJ

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Example: Elast

ic P

otent

ial Ene

rgy d

ue t

o a S

pring

Block

is

att

ach

ed t

o a s

pring

)x(

dU

xd

)x(

F d

Ws

ss

rr

or

r− −−−

≡ ≡≡≡= ===

FORCE SPRING

EXERTS ON BLOCK

WORK DONE ON

BLOCK BY SPRING

CHANGE IN SPRING

POTENTIAL ENERGY

v

v

Fs

Fs

x

k )

x(F

rr

r− −−−

= ===

Upp

er:

•Block

sta

rts

at

x =

0 w

ith v

righ

tward

•Spr

ing

compr

ess

es,

Fsis left

ward

•Nega

tive

wor

k d

one o

n block

•Po

tent

ial ene

rgy o

f sy

stem inc

rease

s, K

E d

ecr

ease

s•Block

sto

ps a

t so

me p

oint

•Po

tent

ial Ene

rgy is

stor

ed r

eve

rsib

lyin d

efo

rmed s

hape

of

the s

pring

•Usu

ally c

hoo

se x

= 0

as

zero

of

U(x

)

Low

er:

•Spr

ing

forc

e s

till

left

ward

•Block

acq

uire

s vleft

ward

•Po

sitive

wor

k don

e o

n block

•Po

tent

ial ene

rgy o

f sy

stem d

ecr

ease

s•PE

gro

ws

aga

in a

s block

pass

es

x =

0

21

kx

)x(

U2

el

= ===r

Page 8: Physics 111 Lecture 07 - New Jersey Institute of Technologyjanow/Physics 111 Spring 2012/Lectures/LectureNotes07.pdfPhysics 111 Lecture 07 Potential Energy & Energy Conservation SJ

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Potential Energy Function for the Block-Spring System

d

x)

x(F

)x(

U)

x(U

i)

(f,

U

f i

x xs

is

fs

s∫ ∫∫∫

− −−−= ===

− −−−≡ ≡≡≡

∆ ∆∆∆•1 d

imens

iona

l mot

ion

along

x

kx

(x

)F

s− −−−

= ===•Hoo

ke’s L

aw r

est

oring

forc

e

f i

f i

x x21

x xs

kx

d

x

x k

i)

(f,

U

2+ +++

= ===+ +++

= ===∆ ∆∆∆

∫ ∫∫∫•Sub

stitut

e:

2kx

)x(

U 21

s= ===

potential function

indefinite

integral

kx

kx

i)

(f,

U

i

21f

21s

22

− −−−= ===

∆ ∆∆∆

∆ ∆∆∆U

sis p

ositive if

|xf| >

|x

i| w

heth

er

spring

is

stre

tched o

r co

mpr

ess

ed

The p

otent

ial ene

rgy f

unct

ion

itse

lf is:

U

kx

)

(xU

021

fs

+ +++= ===

2

para

bola

positive

Usu

ally c

hoo

se:

refe

renc

e leve

l

0

U

0)

(xU

0s

= ===≡ ≡≡≡

= ===po

tent

ial well

Page 9: Physics 111 Lecture 07 - New Jersey Institute of Technologyjanow/Physics 111 Spring 2012/Lectures/LectureNotes07.pdfPhysics 111 Lecture 07 Potential Energy & Energy Conservation SJ

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Application to Gravitation

Ove

r sm

all

region

s ne

ar

the E

art

h’s s

urfa

ce is

cons

tant

gr

)r(

U)

r(U

rd

)r(F

i)

(f,

U

ig

fg

r rg

g

f i

rr

ro

rr

v v

− −−−= ===

− −−−= ===

∆ ∆∆∆∫ ∫∫∫

jg

gr

r− −−−

≡ ≡≡≡

jm

gF g

rr

− −−−≡ ≡≡≡

Gra

vita

tion

is

cons

erv

ative

so

∆ ∆∆∆U d

epe

nds

only o

n end

points

, no

t pa

th

Replace

path

by s

tairca

se-like

segm

ent

s:•hor

izon

tal st

eps

that

are

wor

kless

–∆ ∆∆∆

U =

0•ve

rtical rise

rs f

or w

hich ∆ ∆∆∆

Ui=

mg

∆ ∆∆∆y

i

•ca

n ch

oose

refe

renc

e leve

l –

only

diffe

renc

es

of U

are

meaning

ful

In

example,

roller

coast

er

car

forc

ed t

o st

ay o

n th

e t

rack

desc

ribed b

y

)x(f

y

= ===

PE f

unct

ion

can

be w

ritt

en

in t

erm

s of

x:

f(x)

m

g

m

gy

U

(x)

= ==== ===

x

Ug(x

)

U’

= 0

U =

0

mg

yi

mg

yf

E

) y-

g(y

m

rd

j

mg

i)(f

,U

i

f

r rg

f i

= ===+ +++

= ===∆ ∆∆∆

∫ ∫∫∫v v

ro

r

But

betw

een

end

points

rf, r

ith

epo

tent

ial diffe

renc

e is

as

abov

edue

to

path

ind

epe

ndenc

e

WO

RK

DO

NE

BY

GR

AV

ITY

ON

PA

RT

ICL

E

Page 10: Physics 111 Lecture 07 - New Jersey Institute of Technologyjanow/Physics 111 Spring 2012/Lectures/LectureNotes07.pdfPhysics 111 Lecture 07 Potential Energy & Energy Conservation SJ

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

A

B

CD

E

Where is the Potential Energy Largest?

7-1

: In

th

e f

igu

re, th

e g

ravit

ati

on

al p

ote

nti

al en

erg

y o

f a p

art

icle

mo

vin

g

alo

ng

th

e t

rack v

ari

es. A

rran

ge p

oin

ts A

, B

, C

, D

, E

in

ord

er

of

decre

asin

g p

ote

nti

al en

erg

y.

A.

C,

D, E

, A

, B

B.

E,

D,

C,

B,

A

C.

A,

B,

C,

D, E

D.

E,

A,

C,

D,

B

E.

B,

D, C

, A

, E

7-2

: In

th

e f

igu

re t

he b

lock is s

ho

wn

at

its e

qu

ilib

riu

m p

oin

t. T

he e

lasti

c

po

ten

tial en

erg

y o

f th

e b

lock v

ari

es a

s it

str

etc

hes o

r co

mp

resses t

he

sp

rin

g. A

rran

ge p

oin

ts A

, B

, C

, D

, E

in

ord

er

of

incre

asin

g p

ote

nti

al

en

erg

y.

AC

DB

A.

C,

D,

A,

B

B.

D,

C, B

, A

C.

B,

C,

A,

D

D.

A,

C,

D,

B

E.

B,

D, C

, A

Page 11: Physics 111 Lecture 07 - New Jersey Institute of Technologyjanow/Physics 111 Spring 2012/Lectures/LectureNotes07.pdfPhysics 111 Lecture 07 Potential Energy & Energy Conservation SJ

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Total Energy E

totof a system -Definition

•Kinetic

Ene

rgy:

Ass

ociate

d w

ith m

ovement

of

members

of

a s

yst

em

•Po

tent

ial Ene

rgy:

Dete

rmined b

y t

he c

onfigu

ration

of

the s

yst

em

•Int

ern

al Ene

rgy:

Relate

d t

o th

e t

empe

ratu

re o

f th

e s

yst

em

int

tot

tot

tot

E U

KE

+ ++++ +++

= ===

Etotcan change only if energy transfers into or out of the system

Non

-isolate

d s

yst

ems:

•Ene

rgy c

an

cros

s th

e s

yst

em b

ound

ary

•Tot

al ene

rgy o

f th

e s

yst

em c

hang

es

Iso

late

d s

yst

ems:

•Ene

rgy d

oes

not

cros

s th

e b

ound

ary

of

the s

yst

em

•Tot

al ene

rgy o

f th

e s

yst

em is

cons

tant

•The t

otal ene

rgy o

f th

e U

nive

rse is

cons

tant

–ene

rgy c

an

not

be c

reate

dor

dest

royed.

Ene

rgy t

rans

fers

mus

t balanc

e t

he a

ccou

nts

of s

yst

ems)

(E

sfe

rsE

nerg

yT

ran

tot∑ ∑∑∑

= ===∆ ∆∆∆

0

Eto

t= ===

∆ ∆∆∆

INCLUDES THERMAL &

CHEMICAL ENERGY

Types of energy transfers into or out of a system

Mech

anica

l W

ork:

Inc

lude o

nly W

ork

due

to

Non

-co

nserv

ative

for

ces

er

et

mt

mw

sfe

rsE

nerg

yT

ran

T

T

T

T

Q

W

)(

+ ++++ +++

+ ++++ +++

+ +++= ===

∑ ∑∑∑Heat

Mech

Wave

sM

ass

Tra

nsfe

rElect

rica

l Tra

nsfe

rEM

Radiation

Page 12: Physics 111 Lecture 07 - New Jersey Institute of Technologyjanow/Physics 111 Spring 2012/Lectures/LectureNotes07.pdfPhysics 111 Lecture 07 Potential Energy & Energy Conservation SJ

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Non

-co

nserv

ative

for

ces

may b

e d

oing

mech

anica

l wor

k on

syst

em

•Syst

em m

ay n

ot b

e iso

late

d•

Wn

cinclud

es

wor

k don

e b

y c

onta

ct f

orce

s and

frict

ion

•Tre

at

these

as

exte

rnal to

the s

yst

em,

neglect

oth

er

trans

fers

•Oft

en

neglect

chang

es

in int

ern

al ene

rgy

Energy Conservation (for mechanics)

nc

tot

WE

≡ ≡≡≡∆ ∆∆∆

Change in total

energy

Work done by non-

conservative forces

For

a p

art

icle:

UK

Em

ec

h+ +++

≡ ≡≡≡

For

a s

yst

em:

∑ ∑∑∑∑ ∑∑∑

+ +++≡ ≡≡≡

forc

es

pa

rtic

les

me

ch

UK

E

Pote

ntial ene

rgy is

exch

ang

ed r

eve

rsib

ly w

ith k

inetic

ene

rgy.

if n

o ot

her

forc

es

are

act

ing

tot

tot

UK

∆ ∆∆∆− −−−

= ===∆ ∆∆∆

The p

otent

ial ene

rgy inc

ludes

only

cons

erv

ative

for

ces

(PE’s e

xist)

act

ing

on s

yst

em

Typica

lly a

llco

nserv

ative

for

ces

are

inc

luded in

the m

ech

anica

l ene

rgy

e.g

., U

gU

sU

ele

cU

ma

g…

Mechanical Energy -Definition

Page 13: Physics 111 Lecture 07 - New Jersey Institute of Technologyjanow/Physics 111 Spring 2012/Lectures/LectureNotes07.pdfPhysics 111 Lecture 07 Potential Energy & Energy Conservation SJ

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Principle of Mechanical Energy Conservation

E

m

ech

0= ===

∆ ∆∆∆

Tot

al mech

anica

l ene

rgy is

cons

tant

, but

ind

ividua

l pa

rticles

can

exch

ang

e k

inetic

and

pot

ent

ial ene

rgy

AD

VA

NT

AG

E O

F

EN

ER

GY

A

PP

RO

AC

H:

•N

eed

to

lo

ok o

nly

at

fin

al

an

d i

nit

ial

sta

tes

•D

eta

ils o

f fo

rce

s m

ay o

fte

n b

e i

gn

ore

d

U

KU

K f

fi

i+ +++

= ===+ +++

For

a s

ingle p

art

icle:

tot

tot

UK

∆ ∆∆∆− −−−

= ===∆ ∆∆∆

U

KU

K f

tot,

f,to

ti,

tot

ito

t,+ +++

= ===+ +++

For

a s

yst

em o

f pa

rticles:

or

or

E co

nsta

nt

mech

= ===

Holds

for

isolate

d s

yst

ems

i.e.,

0

Wn

c

= ===and

when

Ein

tis c

onst

ant

Page 14: Physics 111 Lecture 07 - New Jersey Institute of Technologyjanow/Physics 111 Spring 2012/Lectures/LectureNotes07.pdfPhysics 111 Lecture 07 Potential Energy & Energy Conservation SJ

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Example: Con

serv

ation

of

Emech

in a

Pend

ulum

Osc

illato

r

θ θθθT

mg∆ ∆∆∆

sco

ns

tan

t

U

K

E

gm

ec

h= ===

+ +++= ===

Isolated system

Conservative forces only

due to gravitation

No dissipation

Page 15: Physics 111 Lecture 07 - New Jersey Institute of Technologyjanow/Physics 111 Spring 2012/Lectures/LectureNotes07.pdfPhysics 111 Lecture 07 Potential Energy & Energy Conservation SJ

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Example: B

all in

free F

all

A b

all o

f mass

mis d

ropp

ed f

rom r

est

at

a h

eight

h abov

e t

he g

roun

d.

What

is t

he b

all’s s

peed

when

it is

at

height

yabov

e t

he g

roun

d.

Neglect

air r

esist

anc

e.

The s

yst

em is

the b

all +

the E

art

hThe s

yst

em is

isolate

dThe o

nly f

orce

act

ing

(gra

vity

) is c

onse

rvative

App

ly M

ech

anica

l Ene

rgy C

onse

rvation

E

m

ech

0= ===

∆ ∆∆∆)

fin

al

(E

)in

it(

E m

ec

hm

ec

h= ===

gf

fg

ii

UK

UK

+ +++= ===

+ +++

mg

y

mv

mg

h

mv

f

21i

21+ +++

= ===+ +++

22

]y

[h

g2

v

vi

f− −−−

+ +++= ===

22

Not

e:

0

v

i= ===

]y

[h

g2

v f

− −−−= ===

Sup

pose

ball is

thro

wn

upward

ins

tead w

ith s

peed

vi

App

roach

is

the s

ame,

resu

lt is

]y

[h

g2

v

v

2 if

− −−−+ +++

= ===

Ene

rgy c

onta

ins

velocity

squ

are

d,

resu

lts

do

not

depe

nd o

n direct

ion

of v

i

SAME AS KINEMATICS

FORMULAS (IN THISCASE)

Page 16: Physics 111 Lecture 07 - New Jersey Institute of Technologyjanow/Physics 111 Spring 2012/Lectures/LectureNotes07.pdfPhysics 111 Lecture 07 Potential Energy & Energy Conservation SJ

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Example: Spe

ed a

t Bot

tom o

f a W

ate

r Slide

The c

hild (mass

m) st

art

s at

rest

at

the t

op -

a

vert

ical dista

nce h

abov

e t

he g

roun

d. The s

lide is

friction

less

. Find s

peed a

t bot

tom.

Slope

ang

le θ θθθ

is n

ot k

nown,

so

cann

ot s

olve

using

Newto

n’s

seco

nd L

aw a

lone

mg

N

θ θθθ

su

rface

TO

P

BO

TT

OM

App

ly C

onse

rvation

of

Mech

anica

l Ene

rgy

•Syst

em (Eart

h +

child +

slide) is iso

late

d•Nor

mal fo

rce N

(no

n-co

nserv

ative

) doe

s zero

wor

k•Net

forc

e (gr

avity

) is c

onse

rvative

E

m

ec

h0

= ===∆ ∆∆∆

)b

ot

(E

)to

p(

E m

ec

hm

ec

h= ===

)b

ot

(U

(b

ot)

K )

top

(U

)to

p(

K g

g+ +++

= ===+ +++

bo

tb

ot

top

top

mg

y

m

v

g

ym

mv

+ +++

= ===+ +++

2

212

21

y

SOLVE

]y

[y

g

v

vb

ot

top

top

bo

t− −−−

+ +++= ===

22

2

Same as kinematics formula

USE:

h

y

0 y

0v

top

bo

tto

p= ===

= ==== ===

2

gh

v b

ot

= ===

Page 17: Physics 111 Lecture 07 - New Jersey Institute of Technologyjanow/Physics 111 Spring 2012/Lectures/LectureNotes07.pdfPhysics 111 Lecture 07 Potential Energy & Energy Conservation SJ

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Example: Bun

gee J

umpe

rA B

unge

e jum

per

(mass

m =

61 k

g) st

eps

off

the c

liff

a d

ista

nce s

abov

e t

he g

roun

d.

He f

ree-fa

lls

a

dista

nce

Lbefo

re t

he B

unge

e (exact

ly like a

spr

ing

with c

onst

ant

k) begins

to

stre

tch.

How

close

to

the

grou

nd d

own

he t

urn

aro

und?

Doe

s he h

it?

•Two

cons

erv

ative

for

ces

act

, and

no

others

•Gra

vity

Ug(y

) =

mg

y•Spr

ing

Us(x

) =

½kx

2

•The s

yst

em (ju

mpe

r + E

art

h +

Bun

gee) is iso

late

d

k =

160 N

/m

s

m =

61 k

g

s =

45 m

L =

25

m

Low point

Ef

Start point

Ei

•Q

uadra

tic

equ

ation

for

d:

02

22

Lkm

g

d

kmg

d= ===

− −−−− −−−

•Choo

se p

ositive r

oot:

m

.d

91

17

= ===

•Find low

point

h:

m

2.1

dL

s

h= ===

− −−−− −−−

= ===Close

! h

ope jum

per

is n

ot t

oo t

all

Note: Did not need detailed analysis of forces, acceleration, velocity

E

EE

i

fm

ec

h0

= ===− −−−

= ===∆ ∆∆∆

0

UU

Kg

s= ===

∆ ∆∆∆+ +++

∆ ∆∆∆+ +++

∆ ∆∆∆

•Spe

ed =

0 a

t ju

mpe

r’s

start

and

low

point

0

K

= ===∆ ∆∆∆

∴ ∴∴∴

d]

[L m

g

Ug

+ +++− −−−

= ===∆ ∆∆∆

d =

maxim

um B

unge

e s

tretc

h2

kd

U

21

s= ===

∆ ∆∆∆

Mech

anica

l Ene

rgy is

cons

erv

ed, meaning

….

Page 18: Physics 111 Lecture 07 - New Jersey Institute of Technologyjanow/Physics 111 Spring 2012/Lectures/LectureNotes07.pdfPhysics 111 Lecture 07 Potential Energy & Energy Conservation SJ

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Friction in Energy Conservation

Kinetic

friction

for

ces

dissipa

te e

nerg

y b

y o

ppos

ing

the m

otion

•Reduc

e t

he m

ech

anica

l ene

rgy,

conv

ert

ing

it t

o heat

•W

ork

don

e b

y f

rict

ion

may b

e int

ern

al (inc

rease

s E

int) o

r exte

rnal

f

rd

f

W

f

le

ss

- w

ork

iss

kf

d

on

e

Wo

rk"

"fo

rce

.

fric

tio

n

kin

eti

ck

ro

rv

∫ ∫∫∫≡ ≡≡≡

≡ ≡≡≡

EXAM

PLE

vi

•Block

sliding

righ

tward

with f

rict

ion

and

exte

rnal fo

rce F

•Nor

mal fo

rce a

nd w

eight

do

no w

ork

as

they a

re

perp

end

icular

to t

he d

isplace

ment

along

x-axis

•No

chang

es

in g

ravita

tion

al po

tent

ial ene

rgy

•For

ces

are

con

stant

as

block

mov

es

by ∆ ∆∆∆

x

A) Con

sider

syst

em t

o be b

lock

alone

. Frict

ion

and

con

tact

for

ce F

are

bot

h e

xte

rnal

xF

xf

WE

kn

cm

ec

h∆ ∆∆∆

+ +++∆ ∆∆∆

− −−−= ===

= ===∆ ∆∆∆

xf

W

kf

∆ ∆∆∆+ +++

≡ ≡≡≡x

F

Wo

the

r∆ ∆∆∆

+ +++≡ ≡≡≡

B) Con

sider

syst

em t

o be b

lock

+ s

urfa

ce.

Frict

ion

is int

ern

al and

raises

inte

rnal ene

rgy.

For

ce F

is

exte

rnal

xf

E

xF

EE

kin

tin

tm

ec

h∆ ∆∆∆

= ===∆ ∆∆∆

∆ ∆∆∆+ +++

= ===∆ ∆∆∆

+ +++∆ ∆∆∆

xF

W

oth

er

∆ ∆∆∆+ +++

≡ ≡≡≡

Gene

ralize

for

A) or

B):

W

W

WE

o

ther

fn

cm

ech

∑ ∑∑∑+ +++

− −−−= ===

= ===∆ ∆∆∆

Page 19: Physics 111 Lecture 07 - New Jersey Institute of Technologyjanow/Physics 111 Spring 2012/Lectures/LectureNotes07.pdfPhysics 111 Lecture 07 Potential Energy & Energy Conservation SJ

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Example: B

lock

Pulled o

n a R

ough

Sur

face

vi

Find t

he s

peed o

f th

e b

lock

aft

er

it h

as

mov

ed a

hor

izon

tal dista

nce o

f3.0

m,

start

ing

from

rest

. Ass

ume:

m =

6.0

kg

F =

12

Nµ µµµ

k=

0.1

5 W

W

WE

o

ther

fn

cm

ech

∑ ∑∑∑+ +++

= ==== ===

∆ ∆∆∆

App

ly m

ech

anica

l ene

rgy c

onse

rvation

for

ano

n-isolate

d s

yst

em w

ith f

rict

ion

22

i21

f21

if

gm

ech

mv

mv

K K

U

K

E

− −−−= ===

− −−−= ===

∆ ∆∆∆+ +++

∆ ∆∆∆= ===

∆ ∆∆∆

x

fW

kf

∆ ∆∆∆− −−−

= ===x

F

W

oth

er

∆ ∆∆∆+ +++

= ===m

g

N

mg

- N

F

y= ===

⇒ ⇒⇒⇒= ===

= ===∑ ∑∑∑

0

Find f

k

89

06

15

0.

x.

x.

gm

N

f

kk

k= ===

µ µµµ= ===

µ µµµ= ===

Gra

vita

tion

al po

tent

ial

ene

rgy is

cons

tant

0 U

g

= ===∆ ∆∆∆

N 8.2

f k

= ===

x

F

xf

mv

mv

k

i21

f21

∆ ∆∆∆+ +++

∆ ∆∆∆− −−−

= ===2

2

]f

F [

xm2

v

v k

if

− −−−∆ ∆∆∆

+ +++= ===

2

Sub

stitut

e n

umerica

l va

lues:

] .

1

2

.0[

6.02

v

f8

28

30

− −−−+ +++

= ===

m

/s

1.8

.78

v

f≈ ≈≈≈

= ===1

Fn

et,

ext

Page 20: Physics 111 Lecture 07 - New Jersey Institute of Technologyjanow/Physics 111 Spring 2012/Lectures/LectureNotes07.pdfPhysics 111 Lecture 07 Potential Energy & Energy Conservation SJ

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Example: R

oller

Coa

ster

with F

rict

ion y

0

yf

v0

The r

oller

coast

er

car

start

s with s

peed v

0when

its

height

is y

0abov

e t

he g

roun

d.

It

reach

es

a

maxim

um h

eight

yfbefo

re s

liding

back

. There

is

friction

. F

ind t

he inc

rease

in

therm

al ene

rgy o

f th

e s

yst

em.

Values:

m = 100 kg

V0= 20 m/s

y0= 25 m

yf= 30 m

•Syst

em =

Eart

h +

tra

ck +

car

•Frict

ion

is int

ern

al -

incr

ease

s E

int

•Can

not

use W

f=

fs∆ ∆∆∆

x(o

r an

inte

gral) t

o eva

luate

wor

k d

one b

y f

rict

ion

as

friction

forc

e v

aries

in a

n un

know

n way.

Syst

em is

isolate

d,

so…

0

W

E

E

E

nc

int

me

ch

tot

= ==== ===

∆ ∆∆∆+ +++

∆ ∆∆∆= ===

∆ ∆∆∆

ff

21

21in

tm

gy

mv

mg

y

m

v

E

− −−−− −−−

+ +++= ===

∆ ∆∆∆2

0

2 0

0

v

f= ===

Eva

luate

:30)

5100x9.8

x(2

x

E

21in

t− −−−

+ +++= ===

∆ ∆∆∆2

20

10

0

Jo

ule

s

15,1

00

E

int

= ===∆ ∆∆∆

How

high w

ould

the c

ar

go if

friction

were

abse

nt?

f21

mg

y'

mg

y

m

v

− −−−

+ +++= ===

0

2 00

m 45.4

v

y

y'

2g1

f= ===

+ +++= ===

2 00

Page 21: Physics 111 Lecture 07 - New Jersey Institute of Technologyjanow/Physics 111 Spring 2012/Lectures/LectureNotes07.pdfPhysics 111 Lecture 07 Potential Energy & Energy Conservation SJ

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Example: Con

nect

ed B

lock

s in M

otion

with F

rict

ion

Cor

d is

un-st

retc

hable a

nd m

ass

less

. The s

yst

em is

initially a

t re

st w

ith t

he s

pring

neither

stre

tched n

or

compr

ess

ed.

The h

ang

ing

mass

falls

a d

ista

nce h

and

comes

to r

est

. F

ind t

he s

liding

friction

coe

fficient

µ µµµk

.

N

m1g

int

sg

int

me

ch

tot

EU

UK

EE

E

∆ ∆∆∆+ +++

∆ ∆∆∆+ +++

∆ ∆∆∆+ +++

∆ ∆∆∆= ===

∆ ∆∆∆+ +++

∆ ∆∆∆= ===

= ===∆ ∆∆∆

0

0= ===

∆ ∆∆∆K

Sub

stitut

e:

2k

h

U21

s= ===

∆ ∆∆∆g

hm

U

2g

− −−−= ===

∆ ∆∆∆

gh

m

h

f

W

E

kk

fin

t1

µ µµµ= ===

= ===+ +++

= ===∆ ∆∆∆

gh

mkh

gh

m

k2

1

2

210

µ µµµ+ +++

+ +++− −−−

= ===

gm

kh

gm

2k

1

21− −−−

= ===µ µµµ

Variation

: Sup

pose

µ µµµkis k

nown

but

want

to

find

hSolve

qua

dra

tic

abov

e.

Roo

ts a

re:

]m

m [

k2g

h

or

0

h k

21

µ µµµ− −−−

= ==== ===

What does the

system do next?

Define

the s

yst

em t

o be b

oth b

lock

s + E

art

h +

spr

ing

+ t

able +

cor

dSyst

em is

isolate

d:

tota

l ene

rgy is

cons

tant

, but

frict

ion

conv

ert

spo

tent

ial and

kinetic

ene

rgy t

o heat

(int

ern

al ene

rgy).

Page 22: Physics 111 Lecture 07 - New Jersey Institute of Technologyjanow/Physics 111 Spring 2012/Lectures/LectureNotes07.pdfPhysics 111 Lecture 07 Potential Energy & Energy Conservation SJ

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Power

Power

is t

he r

ate

of

ene

rgy t

rans

fer

(using

mech

anica

l wor

k fo

r no

w).

Ave

rage

Pow

er:

tW

P avg

∆ ∆∆∆∆ ∆∆∆≡ ≡≡≡

Insta

nta

neo

us

P

ow

er

tW

Lim

tdW

d

P

t∆ ∆∆∆∆ ∆∆∆

= ===≡ ≡≡≡

→ →→→∆ ∆∆∆

0

Po

wer

is s

cala

r[P

] =

Jo

ule

s/s

= W

att

s t

P

W

a

vg

∆ ∆∆∆= ===

∆ ∆∆∆

Wo

rk d

on

e i

n t

ime ∆ ∆∆∆

t

td

P

W

d = ===

Infi

nit

esim

al w

ork

is d

on

e in

tim

e d

t

Wo

rk d

on

e b

y f

orc

e F

an

d d

isp

lacem

en

t d

r r

d

F

W

d r

or

= ===

d

trd

F

dtW

d

P

r

or

= ==== ===

∴ ∴∴∴

v

F

P

ro

r= ===

Units

and

Con

vers

ions

ft

.lb

/sec

0.7

38

Jo

ule

/s 1

W

att

= ===

≡ ≡≡≡1

ft

.lb

/sec

550

W

att

s746

hp

1

ho

rsep

ow

er

= ==== ===

≡ ≡≡≡1

J.

10

x

.6

sec

3600

x

w

att

s1000

ho

ur

-kilo

watt

63

1= ===

≡ ≡≡≡

td

P

W

∫ ∫∫∫

= ===∆ ∆∆∆

P n

ot

necessari

lyco

nsta

nt

Page 23: Physics 111 Lecture 07 - New Jersey Institute of Technologyjanow/Physics 111 Spring 2012/Lectures/LectureNotes07.pdfPhysics 111 Lecture 07 Potential Energy & Energy Conservation SJ

Co

pyri

gh

t R

. J

an

ow

–S

pri

ng

2012

Example: Po

wer

don

e b

y f

orce

s act

ing

on a

box

Two

cons

tant

for

ces

act

as

show

n on

a b

ox

sliding

acr

oss

a f

rict

ionless

sur

face

F1

= 2

.0 N

, F

2=

4.0

N,

v =

3.0

m/s

ec

Find t

he p

ower

trans

ferr

ed b

y e

ach

for

ce

and

the n

et

power.

Is

Pn

etch

ang

ing?

v

F

P

ro

r= ===

App

ly ins

tant

ane

ous

power

form

ula

Watt

s6.0

)co

s(1

80

3.0

2.0

v

F

P o

11

− −−−= ===

× ×××× ×××

= ==== ===

ro

r

Watt

s6.0

)co

s(6

03.0

4.0

v

F

P o

22

+ +++= ===

× ×××× ×××

= ==== ===

ro

r

Watt

s0.0

6.0

6.0

P

P

P 2

1n

et

= ===+ +++

− −−−= ===

+ +++= ===

F1is d

rawing

ene

rgy

F2is s

upplying

ene

rgy

Net

power

trans

fer

= 0

, so

KE is

cons

tant

as

is v

Since

v is

cons

tant

, th

e n

et

power

is a

lso

cons

tant

Now

let

the m

agn

itud

e o

f F

2=

6.0

N.

W

hat

chang

es?

Watt

s9.0

)co

s(6

03.0

6.0

v

F

P o

22

+ +++= ===

× ×××× ×××

= ==== ===

ro

ru

nc

ha

ng

ed

1 -

W

att

s6.0

P − −−−

= ===

Watt

s3.0

9.0

6.0

P

ne

t= ===

+ +++− −−−

= ===Net

power

trans

fer

is p

ositive,

soKE is

incr

easing

as

is v

Since

v is

chang

ing,

the n

et

power

is a

lso

chang

ing