phys 322 chapter 7 lecture 18 the superposition of waves

19
Chapter 7 The superposition of waves Phys 322 Lecture 18

Upload: others

Post on 16-May-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Phys 322 Chapter 7 Lecture 18 The superposition of waves

Chapter 7The superposition of waves

Phys 322Lecture 18

Page 2: Phys 322 Chapter 7 Lecture 18 The superposition of waves

Principle of superposition

2

2

22

2

2

2

2

2 1tzyx

vWave equation:

n

iii trCtr

1

,,

If i are solutions of the wave equation, then their linear combination is also a solution

Principle of superposition: resultant disturbance at any point is is the sum of the separate constituent waves.

For E and B fields it stems from definition: these are forces, and the resultant force is a vector sum of individual forces.

Page 3: Phys 322 Chapter 7 Lecture 18 The superposition of waves

Adding waves of the same frequency kxtEtxE sin, 0Consider a plane wave:

kxx,The case of two waves coexisting in space:

11011011 sincoscossinsin ttEtEE

Resulting wave: 21 EEE

tEEtEEE cossinsinsincoscos 202101202101

22012022 sincoscossinsin ttEtEE

Can simplify: tEE sin0

202101

202101

coscossinsintan

EEEE

210201202

201

20 cos2 EEEEE

If the waves are harmonic, superposition is also harmonic

Interference term

Page 4: Phys 322 Chapter 7 Lecture 18 The superposition of waves

Adding waves of the same frequency tEE sin0

202101

202101

coscossinsintan

EEEE

210201202

201

20 cos2 EEEEE

Crucial factor: phase difference

12

Maximum: =0, ±2, ±4, …in-phaseConstructive interference

Minimum: =±, ±3, …out-of-phaseDestructive interference

Page 5: Phys 322 Chapter 7 Lecture 18 The superposition of waves

Phase and path length difference tEE sin0

202101

202101

coscossinsintan

EEEE

210201202

201

20 cos2 EEEEE

12

Maximum: =0, ±0, ±20, …

Minimum: =±0/2, ±30/2, …

kxx,

2211 kxkx

21212 xx

If the coherent waves are initially in phase (1- 2=0), then:

210

2122 xxnxx

Optical path difference: 21 xxn

Coherent waves: 1- 2=constant

x=0, ±,…x=±/2,…

Page 6: Phys 322 Chapter 7 Lecture 18 The superposition of waves

Phase and path length difference

Maximum: =0, ±0, ±20, …

Minimum: =±0/2, ±30/2, …x=0, ±,…x=±/2,…

Page 7: Phys 322 Chapter 7 Lecture 18 The superposition of waves

Analogy: sound waves

- At any time the two waves have the same magnitude but are 180o

out of phase: complete destructive interference

speakers

‘Noise canceling earphonesuse interference principle

No sound!

Page 8: Phys 322 Chapter 7 Lecture 18 The superposition of waves

Application

Page 9: Phys 322 Chapter 7 Lecture 18 The superposition of waves

Superposition of many waves

Superposition of any number of harmonic waves having given frequency and traveling in the same direction leads to a harmonic wave of that frequency

N

iii tEE

10 cos

N

iii

N

iii

E

E

10

10

cos

sintan

N

i

N

ijjiji

n

ii EEEE

1 100

1

20

20 cos2

tEE cos0

Page 10: Phys 322 Chapter 7 Lecture 18 The superposition of waves

Non-coherent sources

N

i

N

ijjiji

n

ii EEEE

1 100

1

20

20 cos2

tEE cos0

what is the resulting wave amplitude?

Atoms spontaneously emit light that changes phase randomly every ~10 ns.

n

iiEE

1

20

20 For non-coherent sources intensity of the

resulting wave is equal to intensities of constituent waves.

Page 11: Phys 322 Chapter 7 Lecture 18 The superposition of waves

Coherent sources in phase

N

i

N

ijjiji

n

ii EEEE

1 100

1

20

20 cos2

tEE cos0

0 ji

2

10

1 100

1

20

20 2

n

ii

N

i

N

ijji

n

ii EEEEE

For simplicity assume all sources have the same amplitude E01

20

220 iENE

Is the energy conservation law violated?

Page 12: Phys 322 Chapter 7 Lecture 18 The superposition of waves

Superposition: complex representation ti

jjjeEE 0 jjj kx

N

j

tij

jeEE1

0 ti

N

j

ij eeE j

10

tii eeE 0

Can compute irradiance: *0020

ii eEeEE

Complex amplitude

N

j

ij

i jeEeE1

00

Case N=2: 212102010201

20

iiii eEeEeEeEE

tieE 0

Page 13: Phys 322 Chapter 7 Lecture 18 The superposition of waves

Superposition: phasor method

)cos(2

)cos()cos()cos(

120201202

201

20

021

2022

1011

EEEEEtEEEE

tEEtEE

x

y

E01

E02

E0

2-1

Page 14: Phys 322 Chapter 7 Lecture 18 The superposition of waves

Superposition of many waves:

N

iii

N

iii

N

ij

N

ijiji

N

ii

N

iii

E

E

EEEE

tEtEE

10

10

100

1

20

20

01

0

cos

sintan

)cos(2

)cos()cos(

1) Random phase (incoherent light)

) (suppose 010201

1

20

20 EENEEE i

N

ii

2) Uniform phase (coherent and in-phase)

) (suppose

2

010

201

2

100

1

20

20

EE

ENEEEE

i

N

ij

N

iji

N

ii

The interference of coherent waves only redistribute the energy in space, it cannot change the total amount of energy.

Page 15: Phys 322 Chapter 7 Lecture 18 The superposition of waves

Standing wave

In general: txgCtxfCtx vv 21,two waves traveling in opposite direction

Consider 2 waves, incident and reflected:

III tkxEE sin0

RRR tkxEE sin0

RII tkxtkxEE sinsin0

2

cos2

sin2

sinsin

02 sin cos2 2

I R R IIE E kx t

Can select x origin and t=0 so that: tkxEE I cossin2 0

(Typically E=0 on the surface of a metal mirror)

Page 16: Phys 322 Chapter 7 Lecture 18 The superposition of waves

Standing wave tkxEE I cossin2 0

Animation courtesy of Dr. Dan Russell, Kettering University

Page 17: Phys 322 Chapter 7 Lecture 18 The superposition of waves

Standing wave and resonance

If the number of /2 is integer in example above, the string can oscillate forever (if there are no losses) - resonance.

Page 18: Phys 322 Chapter 7 Lecture 18 The superposition of waves

Standing electromagnetic wave1890 - Otto Wiener experiment

Where is the energy when E is zero?

tkxEE cossin2 0

tkxBB sincos2 0 tB

xE

see problem 7.11

Page 19: Phys 322 Chapter 7 Lecture 18 The superposition of waves

Standing wave: microwave

f=2.5 GHz=12 cm

Why is microwave dish designed to spin?How could you measure the wavelength of microwaves?

1946-invention of microwave oven