phase change materials - comsol multiphysics...pcm donato rubinetti appendix a - modeling functions...

50
PCM Donato Rubinetti Introduction Physical Model Numerical Model Application Example Final Remarks 1 Phase Change Materials Modeling Approach to Facilitate Thermal Energy Management in Buildings Donato Rubinetti 1 Daniel A. Weiss 1 Arnab Chaudhuri 2 Dimitrios Kraniotis 2 1 Institute of Thermal and Fluid Engineering University of Applied Sciences and Arts Northwestern Switzerland 2 Department of Civil Engineering and Energy Technology Oslo Metropolitan University, Norway 27.09.2018

Upload: others

Post on 08-Jan-2020

27 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Introduction

PhysicalModel

NumericalModel

ApplicationExample

Final Remarks

1

Phase Change MaterialsModeling Approach to Facilitate Thermal Energy Management in Buildings

Donato Rubinetti 1 Daniel A. Weiss 1 Arnab Chaudhuri 2 Dimitrios Kraniotis 2

1Institute of Thermal and Fluid EngineeringUniversity of Applied Sciences and Arts Northwestern Switzerland

2Department of Civil Engineering and Energy TechnologyOslo Metropolitan University, Norway

27.09.2018

Page 2: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Introduction

Application

Modeling

PhysicalModel

NumericalModel

ApplicationExample

Final Remarks

2

IntroductionWhat are PCMs and what are their application areas?

• Materials with a characteristically large enthalpy of fusion

• Latent heat energy storage systems

• Decouple energy supply and demand → increase efficiency

• Wide range of applications from -40 to 500◦C, i.e. space to photovoltaics

Page 3: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Introduction

Application

Modeling

PhysicalModel

NumericalModel

ApplicationExample

Final Remarks

3

IntroductionThe need for modeling PCM

• Obtain fundamental understanding for freezing and melting cycle

• Predict the complex behavior well enough

• Efficiently choose among the vast selection of suitable PCM

• Design improvements

• Reduce development costs

Page 4: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Introduction

PhysicalModel

Couplings

NumericalModel

ApplicationExample

Final Remarks

4

Physical ModelMultiphysical couplings

Heat Transfer Fluid Flow

Geometry

Phase Change

Natural Convection

Page 5: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Introduction

PhysicalModel

NumericalModel

Implementation

Melted fraction

ApplicationExample

Final Remarks

5

Numerical ModelImplementation into COMSOL Multiphysics

Laminar Flow (CFD)

Heat Transfer in Fluids

auxiliary algebraicequations for material

properties

Page 6: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Introduction

PhysicalModel

NumericalModel

Implementation

Melted fraction

ApplicationExample

Final Remarks

6

Numerical ModelMelted fraction θ(T )

θ(T ) =

0, solidT−(Tm−∆T/2)

∆T, mushy

1, liquid

(1)

Temperature T [°C]M

elt F

ract

ion

θ(T

)

0.0

0.5

1.0

35.4 36.4 37.4

Tm

Tm + 1

2 ∆T

Tm − 1

2 ∆T

Page 7: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Introduction

PhysicalModel

NumericalModel

ApplicationExample

Temperature

Crossection 1

Results

Crosssection 2

Thermostat

Wall coretemperature

Final Remarks

7

Application ExampleObserved week in Oslo, temperature profile

Operation / Day Time [h]

Tem

pera

ture

T [°

C]

0 24 48 72 96 120 144 168

01/0

4/18

02/0

4/18

03/0

4/18

04/0

4/18

05/0

4/18

06/0

4/18

07/0

4/18−10

−5

05

10

Weather Forecast Oslo. 2018. url: https://www.wunderground.com/weather/no/oslo

Page 8: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Introduction

PhysicalModel

NumericalModel

ApplicationExample

Temperature

Crossection 1

Results

Crosssection 2

Thermostat

Wall coretemperature

Final Remarks

8

Application ExampleWall crossection of a typical Norwegian building

9 15 15 50 50 120 100

x [mm] 21

1 2 3 4 5 6 7

1

2

Thermostat: Keep 19 < T < 26 °C+ internal heat gains

Weather data for T

Page 9: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Introduction

PhysicalModel

NumericalModel

ApplicationExample

Temperature

Crossection 1

Results

Crosssection 2

Thermostat

Wall coretemperature

Final Remarks

9

Application ExampleResults - energy savings?

Page 10: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Introduction

PhysicalModel

NumericalModel

ApplicationExample

Temperature

Crossection 1

Results

Crosssection 2

Thermostat

Wall coretemperature

Final Remarks

10

Application ExampleA less instulated wall crosssection

9 50 50 100

x [mm] 2

1

Indo

orro

om(a

ir)

PCM

CLT

woo

d

Am

bien

t(a

ir)

100 C

LT w

ood

1

Page 11: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Introduction

PhysicalModel

NumericalModel

ApplicationExample

Temperature

Crossection 1

Results

Crosssection 2

Thermostat

Wall coretemperature

Final Remarks

11

Application ExampleResults - substantial energy savings!

Operation Time [h]

Roo

m H

eatin

g

0 24 48 72 96 120 144 168

Off

On

w/o PCM (66%)w/ PCM (13%)

Page 12: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Introduction

PhysicalModel

NumericalModel

ApplicationExample

Temperature

Crossection 1

Results

Crosssection 2

Thermostat

Wall coretemperature

Final Remarks

12

Application ExampleWall core temperature

Operation / Day Time [h]

Wal

l Tem

pera

ture

[°C

]

0 24 48 72 96 120 144 168

1518

.520

2325

Time−averaged Room Temperature without PCM

Time−averaged Room Temperature with PCM

Melting Temperature (Liquefaction / Heat Absorption)

Freezing Temperature (Liquefaction / Heat Release)

With PCMWithout PCMPhase State

0.0

0.2

0.4

0.6

0.8

1.0

Mel

t / L

iqui

d F

ract

ion

θ(t)

Page 13: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Introduction

PhysicalModel

NumericalModel

ApplicationExample

Final Remarks

13

Final Remarks

Discussion• Release heat to reduce heating demand• For well insulated walls → marginal savings!• But: PCM reduces peak temperatures on both extremes• Cold climates → main benefit in summer

Conclusion• Comprehensive and suitable modeling approach for phase change phenomena

developed• Rapid orientation whether a PCM meets thermal, technical and economic

requirements• Model shows the importance of including indoor dynamics to assess the PCM

potential• Numerically stable model, extendable to enhanced PCM

Page 14: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Introduction

PhysicalModel

NumericalModel

ApplicationExample

Final Remarks

14

Thank you for your attention!

Page 15: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Melt Fraction

Gaussian

Heat Capacity

Density

Th. Conductivity

Carman-Kozeny

Viscosity

Requirements

Mushy zone

2D Test-case

BC

Carman-Kozeny

Validation

C - Results

D -ApplicationExample

E - 2DTest-Case

F -DimensionlessEstimation

15

A - Modeling FunctionsMelt Fraction θ(T )

θ(T ) =

0, solidT−(Tm−∆T/2)

∆T, mushy

1, liquid

(2)

Temperature T [°C]M

elt F

ract

ion

θ(T

)

0.0

0.5

1.0

35.4 36.4 37.4

Tm

Tm + 1

2 ∆T

Tm − 1

2 ∆T

Page 16: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Melt Fraction

Gaussian

Heat Capacity

Density

Th. Conductivity

Carman-Kozeny

Viscosity

Requirements

Mushy zone

2D Test-case

BC

Carman-Kozeny

Validation

C - Results

D -ApplicationExample

E - 2DTest-Case

F -DimensionlessEstimation

16

A - Modeling FunctionsGaussian Distribution Function D(T )

D(T ) =e−

(T − Tm)2

(∆T/4)2√π(∆T/4)2

(3)

Temperature T [°C]G

auss

ian

Dis

trib

utio

n D

(T)

0.0

0.5

1.0

35.4 36.4 37.4

Tm

34.9 37.9

∆T = 2 K

∆T = 3 K

Page 17: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Melt Fraction

Gaussian

Heat Capacity

Density

Th. Conductivity

Carman-Kozeny

Viscosity

Requirements

Mushy zone

2D Test-case

BC

Carman-Kozeny

Validation

C - Results

D -ApplicationExample

E - 2DTest-Case

F -DimensionlessEstimation

17

A - Modeling FunctionsModified Heat Capacity Cp(T )

Cp(T ) = Cp,s+θ(T )(Cp,l−Cp,s)+D(T )L(4)

Temperature T [°C]H

eat C

apac

ity C

P(T

) [J

/(kg

K)]

1926

2400

35.4 36.4 37.4

Cp,l

Cp,s

∆T

D(T) L

Page 18: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Melt Fraction

Gaussian

Heat Capacity

Density

Th. Conductivity

Carman-Kozeny

Viscosity

Requirements

Mushy zone

2D Test-case

BC

Carman-Kozeny

Validation

C - Results

D -ApplicationExample

E - 2DTest-Case

F -DimensionlessEstimation

18

A - Modeling FunctionsModified Material Density ρ(T )

ρ(T ) = ρs+θ(T )(ρl−ρs)(5)

780

820

860

900

Temperature T [°C]M

odifi

ed D

ensi

ty ρ

(T)

[kg/

(m^3

K)]

35.4 36.4 37.4

ρs

ρl

Tm − 1

2 ∆T

Tm + 1

2 ∆T

Tm

Page 19: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Melt Fraction

Gaussian

Heat Capacity

Density

Th. Conductivity

Carman-Kozeny

Viscosity

Requirements

Mushy zone

2D Test-case

BC

Carman-Kozeny

Validation

C - Results

D -ApplicationExample

E - 2DTest-Case

F -DimensionlessEstimation

19

A - Modeling FunctionsModified Thermal Conductivity k(T )

k(T ) = ks+k(T )(kl−ks)(6)

0.15

0.20

0.25

0.30

0.35

0.40

Temperature T [°C]M

odifi

ed T

herm

al C

ondu

ctiv

ity k

(T)

[W/(

mK

)]

35.4 36.4 37.4

ks

kl

Tm − 1

2 ∆T

Tm + 1

2 ∆T

Tm

Page 20: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Melt Fraction

Gaussian

Heat Capacity

Density

Th. Conductivity

Carman-Kozeny

Viscosity

Requirements

Mushy zone

2D Test-case

BC

Carman-Kozeny

Validation

C - Results

D -ApplicationExample

E - 2DTest-Case

F -DimensionlessEstimation

20

A - Modeling FunctionsCarman-Kozeny Porosity Function S(T )

S(T ) = Am(1− θ(T ))2

θ(T )3 + ε(7)

0e+

004e

+08

8e+

08

Temperature T [°C]

Car

man

−K

ozen

y F

unct

ion

S(T

)

Solid dominatedmushy−zone

Liquid dominatedmushy−zone

35.4 36.4 37.4

Tm

Ali C. Kheirabadi and Dominic Groulx. “Simulating Phase Change Heat Transfer using COMSOL and FLUENT: Effect of the Mushy-ZoneConstant”. In: Computational Thermal Sciences: An International Journal 7.5-6 (2015). doi: 10.1615/ComputThermalScien.2016014279

Page 21: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Melt Fraction

Gaussian

Heat Capacity

Density

Th. Conductivity

Carman-Kozeny

Viscosity

Requirements

Mushy zone

2D Test-case

BC

Carman-Kozeny

Validation

C - Results

D -ApplicationExample

E - 2DTest-Case

F -DimensionlessEstimation

21

A - Modeling FunctionsViscosity of n-eicosane µ(T )

µ(T ) = (9×10−4 T 2−0.6529 T+119.94)×10−3

(8)

40 50 60 70 80 90

0.00

00.

001

0.00

20.

003

0.00

4

Temperature T [°C]D

ynam

ic V

isco

sity

µ(T

) [P

a s]

Tm

n − eicosanewater

Page 22: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Melt Fraction

Gaussian

Heat Capacity

Density

Th. Conductivity

Carman-Kozeny

Viscosity

Requirements

Mushy zone

2D Test-case

BC

Carman-Kozeny

Validation

C - Results

D -ApplicationExample

E - 2DTest-Case

F -DimensionlessEstimation

22

A - Modeling FunctionsBasic numerical requirements to govern the physics of PCM

conservation equation solid fraction liquid fraction

continuity Xmomentum Xenergy X X

→ direct approach: two subdomains for liquid and solid fraction with front trackingalgorithm

Page 23: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Melt Fraction

Gaussian

Heat Capacity

Density

Th. Conductivity

Carman-Kozeny

Viscosity

Requirements

Mushy zone

2D Test-case

BC

Carman-Kozeny

Validation

C - Results

D -ApplicationExample

E - 2DTest-Case

F -DimensionlessEstimation

23

A - Modeling FunctionsAlternative approach: introduction of a mushy zone

• Idea: material properties are smeared out over an user-defined meltingtemperature range

• Method: use of porosity formulation, liquid and solid co-exist in the mushyzone• Benefits:

• avoid numerical singularities• use one single mesh• easy to implement

• Setback: highly mesh-dependent solution in terms of physical accuracy

Page 24: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Melt Fraction

Gaussian

Heat Capacity

Density

Th. Conductivity

Carman-Kozeny

Viscosity

Requirements

Mushy zone

2D Test-case

BC

Carman-Kozeny

Validation

C - Results

D -ApplicationExample

E - 2DTest-Case

F -DimensionlessEstimation

24

A - Modeling Functions2D Test-case

Ω 1 x 1 cm2

x

y

n-eicosane

𝑇𝑇1 = 55 °C

Page 25: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Melt Fraction

Gaussian

Heat Capacity

Density

Th. Conductivity

Carman-Kozeny

Viscosity

Requirements

Mushy zone

2D Test-case

BC

Carman-Kozeny

Validation

C - Results

D -ApplicationExample

E - 2DTest-Case

F -DimensionlessEstimation

25

A - Modeling FunctionsBoundary conditions and setup

x

y

❹Ω

Boundary CFD Heat Transfer

No slipwall

𝑻𝑻𝑹𝑹 = 𝟒𝟒𝟒𝟒,𝟓𝟓𝟓𝟓,𝟕𝟕𝟒𝟒 °𝐂𝐂

Thermal insulation❸

𝒈𝒈

Pressure constraint point, 𝒑𝒑 = 𝟒𝟒 𝐏𝐏𝐏𝐏

Transient study, 𝟒𝟒 < 𝒕𝒕 < 𝟏𝟏𝟒𝟒𝟒𝟒𝟒𝟒 𝐬𝐬

Page 26: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Melt Fraction

Gaussian

Heat Capacity

Density

Th. Conductivity

Carman-Kozeny

Viscosity

Requirements

Mushy zone

2D Test-case

BC

Carman-Kozeny

Validation

C - Results

D -ApplicationExample

E - 2DTest-Case

F -DimensionlessEstimation

26

A - Modeling FunctionsCarman-Kozeny porosity function S(T )

S(T ) = Am(1− θ(T ))2

θ(T )3 + ε(9)

0e+

004e

+08

8e+

08

Temperature T [°C]

Car

man

−K

ozen

y F

unct

ion

S(T

)

Solid dominatedmushy−zone

Liquid dominatedmushy−zone

35.4 36.4 37.4

Tm

Ali C. Kheirabadi and Dominic Groulx. “Simulating Phase Change Heat Transfer using COMSOL and FLUENT: Effect of the Mushy-ZoneConstant”. In: Computational Thermal Sciences: An International Journal 7.5-6 (2015). doi: 10.1615/ComputThermalScien.2016014279

Page 27: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Validation

Results

Model Setup

Material properties

C - Results

D -ApplicationExample

E - 2DTest-Case

F -DimensionlessEstimation

27

B - Comparison to Experimental DataResults

−30 −20 −10 0 10 20 30

010

2030

4050

60

Radial Distance r [mm]

Axi

al D

ista

nce

z [m

m]

SimulationExperiment

t = 2164 s

−30 −20 −10 0 10 20 30

010

2030

4050

60

Radial Distance r [mm]A

xial

Dis

tanc

e z

[mm

]

SimulationExperiment

t = 6964 s

−30 −20 −10 0 10 20 30

010

2030

4050

60

Radial Distance r [mm]

Axi

al D

ista

nce

z [m

m] Simulation

Experiment

t = 11524 s

Page 28: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Validation

Results

Model Setup

Material properties

C - Results

D -ApplicationExample

E - 2DTest-Case

F -DimensionlessEstimation

28

B - Comparison to Experimental DataModel Setup

z

r

𝑻𝑻𝑹𝑹 = 45 °C

n-eicosane

𝑯𝑯 = 59.8 mm

𝟐𝟐𝑹𝑹 = 63.8 mm

𝑻𝑻𝑩𝑩 = 32 °C

Ω

Page 29: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Validation

Results

Model Setup

Material properties

C - Results

D -ApplicationExample

E - 2DTest-Case

F -DimensionlessEstimation

29

B - Comparison to Experimental DataMaterial properties of n-eicosane, comparison with water

n-eicosane watersolid liquid solid liquid

density ρ [kg m−3] 910 769 916 997thermal conductivity k [W m−1 K−1] 0.423 0.146 1.6 0.6heat capacity Cp [kJ kg−1 K−1] 1.9 2.4 2.1 4.2melting temperature Tm [◦C] 36.4 - 0 -latent heat of fusion L [kJ kg−1] 248 - 334 -

Page 30: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Validation

C - Results

Grashof Number

Melt Fraction

Mesh sensisitvity

Melt fraction

Gr

Validation I

Validation II

D -ApplicationExample

E - 2DTest-Case

F -DimensionlessEstimation

30

C - ResultsGrashof Number

Page 31: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Validation

C - Results

Grashof Number

Melt Fraction

Mesh sensisitvity

Melt fraction

Gr

Validation I

Validation II

D -ApplicationExample

E - 2DTest-Case

F -DimensionlessEstimation

31

C - ResultsMelt Fraction

Page 32: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Validation

C - Results

Grashof Number

Melt Fraction

Mesh sensisitvity

Melt fraction

Gr

Validation I

Validation II

D -ApplicationExample

E - 2DTest-Case

F -DimensionlessEstimation

32

C - ResultsMesh sensitivity - melting front prediction

0.000 0.002 0.004 0.006 0.008 0.010

0.00

00.

002

0.00

40.

006

0.00

80.

010

x−Coordinate [m]

y−C

oord

inat

e [m

]

100 s

300 s

500 s

700 s

900 s

Mesh cells25 x 2550 x 50100 x 100150 x 150

Page 33: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Validation

C - Results

Grashof Number

Melt Fraction

Mesh sensisitvity

Melt fraction

Gr

Validation I

Validation II

D -ApplicationExample

E - 2DTest-Case

F -DimensionlessEstimation

33

C - ResultsMelt fraction - curvature of melting front

Page 34: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Validation

C - Results

Grashof Number

Melt Fraction

Mesh sensisitvity

Melt fraction

Gr

Validation I

Validation II

D -ApplicationExample

E - 2DTest-Case

F -DimensionlessEstimation

34

C - ResultsLocal Grashof number - influence of natural convection

Page 35: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Validation

C - Results

Grashof Number

Melt Fraction

Mesh sensisitvity

Melt fraction

Gr

Validation I

Validation II

D -ApplicationExample

E - 2DTest-Case

F -DimensionlessEstimation

35

C - ResultsValidation case - setup

z

r

𝑻𝑻𝑹𝑹 = 45 °C

n-eicosane

𝑯𝑯 = 59.8 mm

𝟐𝟐𝑹𝑹 = 63.8 mm

𝑻𝑻𝑩𝑩 = 32 °C

Ω

Benjamin J. Jones et al. “Experimental and numerical study of melting in a cylinder”. In: International Journal of Heat and Mass Transfer49.15-16 (2006), pp. 2724–2738

Page 36: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Validation

C - Results

Grashof Number

Melt Fraction

Mesh sensisitvity

Melt fraction

Gr

Validation I

Validation II

D -ApplicationExample

E - 2DTest-Case

F -DimensionlessEstimation

36

C - ResultsValidation case - comparison to experimental data

−30 −20 −10 0 10 20 30

010

2030

4050

60

Radial Distance r [mm]

Axi

al D

ista

nce

z [m

m]

SimulationExperiment

t = 2164 s

−30 −20 −10 0 10 20 30

010

2030

4050

60Radial Distance r [mm]

Axi

al D

ista

nce

z [m

m]

SimulationExperiment

t = 6964 s

−30 −20 −10 0 10 20 30

010

2030

4050

60

Radial Distance r [mm]

Axi

al D

ista

nce

z [m

m] Simulation

Experiment

t = 11524 s

Page 37: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Validation

C - Results

D -ApplicationExample

Internal Heat Gains,Hourly

Indoor Temperaturew/o PCM

Indoor Temperaturew/ PCM

Thermostat

Wall CoreTemperature

Wall Cross-Section

E - 2DTest-Case

F -DimensionlessEstimation

37

D - Application ExampleInternal Heat Gains, Hourly

050

010

0015

00

Hour of day [h]

Sen

sibl

e H

eat G

ain

[W]

0:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 24:00

PeopleLightingEl. equipmentRadiationSum

Komite-SN/K-034. Bygningers energiytelse, Beregning av energibehov of energiforsyning (engl.: Energy performance of buildings, calculationof energy needs and energy supply). URL:https://www.standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=859500. 2016

Page 38: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Validation

C - Results

D -ApplicationExample

Internal Heat Gains,Hourly

Indoor Temperaturew/o PCM

Indoor Temperaturew/ PCM

Thermostat

Wall CoreTemperature

Wall Cross-Section

E - 2DTest-Case

F -DimensionlessEstimation

38

D - Application ExampleIndoor Temperature w/o PCM

Operation / Day Time [h]

Tem

pera

ture

T [°

C]

0 24 48 72 96 120 144 168

01/0

4/18

02/0

4/18

03/0

4/18

04/0

4/18

05/0

4/18

06/0

4/18

07/0

4/18

−10

−5

05

1015

2025 Comfort

TemperatureRange

AmbientIndoor

Weather Forecast Oslo. 2018. url: https://www.wunderground.com/weather/no/oslo

Page 39: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Validation

C - Results

D -ApplicationExample

Internal Heat Gains,Hourly

Indoor Temperaturew/o PCM

Indoor Temperaturew/ PCM

Thermostat

Wall CoreTemperature

Wall Cross-Section

E - 2DTest-Case

F -DimensionlessEstimation

39

D - Application ExampleIndoor Temperature w/ PCM

Operation / Day Time [h]

Tem

pera

ture

T [°

C]

0 24 48 72 96 120 144 168

01/0

4/18

02/0

4/18

03/0

4/18

04/0

4/18

05/0

4/18

06/0

4/18

07/0

4/18

−10

−5

05

1015

2025 Comfort

TemperatureRange

AmbientIndoor

Weather Forecast Oslo. 2018. url: https://www.wunderground.com/weather/no/oslo

Page 40: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Validation

C - Results

D -ApplicationExample

Internal Heat Gains,Hourly

Indoor Temperaturew/o PCM

Indoor Temperaturew/ PCM

Thermostat

Wall CoreTemperature

Wall Cross-Section

E - 2DTest-Case

F -DimensionlessEstimation

40

D - Application ExampleThermostat

Operation Time [h]

Roo

m H

eatin

g

0 24 48 72 96 120 144 168

Off

On

w/o PCM (66%)w/ PCM (13%)

Page 41: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Validation

C - Results

D -ApplicationExample

Internal Heat Gains,Hourly

Indoor Temperaturew/o PCM

Indoor Temperaturew/ PCM

Thermostat

Wall CoreTemperature

Wall Cross-Section

E - 2DTest-Case

F -DimensionlessEstimation

41

D - Application ExampleWall Core Temperature

Operation / Day Time [h]

Wal

l Tem

pera

ture

[°C

]

0 24 48 72 96 120 144 168

1518

.520

2325

Time−averaged Room Temperature without PCM

Time−averaged Room Temperature with PCM

Melting Temperature (Liquefaction / Heat Absorption)

Freezing Temperature (Liquefaction / Heat Release)

With PCMWithout PCMPhase State

0.0

0.2

0.4

0.6

0.8

1.0

Mel

t / L

iqui

d F

ract

ion

θ(t)

Page 42: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Validation

C - Results

D -ApplicationExample

Internal Heat Gains,Hourly

Indoor Temperaturew/o PCM

Indoor Temperaturew/ PCM

Thermostat

Wall CoreTemperature

Wall Cross-Section

E - 2DTest-Case

F -DimensionlessEstimation

42

D - Application ExampleWall Cross-Section

9 15 15 50 50 120 100

x [mm] 21

Indo

orro

om(a

ir)

Soft

woo

d

PCM

CLT

woo

d

Soft

woo

d

Min

eral

woo

l

Am

bien

t(a

ir)

1 2 3 4 5 6 7

Page 43: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Validation

C - Results

D -ApplicationExample

E - 2DTest-Case

2D Test-Case

Couplings

2D Test-case

F -DimensionlessEstimation

43

E - 2D Test-Case2D Test-Case

Ω 0.01 x 0.01 m2

𝑻𝑻𝑹𝑹

x

y

n-eicosane

Page 44: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Validation

C - Results

D -ApplicationExample

E - 2DTest-Case

2D Test-Case

Couplings

2D Test-case

F -DimensionlessEstimation

44

E - 2D Test-CaseMultiphysical couplings

Solid

𝑻𝑻𝑹𝑹 ≫ 𝑻𝑻𝒎𝒎

𝑻𝑻𝑹𝑹 > 𝑻𝑻𝒎𝒎

Liquid

𝑻𝑻𝑹𝑹: Boundary Temperature

𝑻𝑻𝒎𝒎: Melting Temperature

Page 45: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Validation

C - Results

D -ApplicationExample

E - 2DTest-Case

2D Test-Case

Couplings

2D Test-case

F -DimensionlessEstimation

45

E - 2D Test-Case2D Test-case

Ω 0.01 x 0.01 m2

𝑻𝑻𝑹𝑹= 40, 55, 70 °C

x

y

n-eicosane

Page 46: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Validation

C - Results

D -ApplicationExample

E - 2DTest-Case

F -DimensionlessEstimation

Mushy ZoneInvestigation

Scaling Variables

DimensionlessEquations

DimensionlessNumbers

Values For LiquidFraction

46

F - Dimensionless EstimationMushy Zone Investigation

Temperature T [°C]

Mel

t Fra

ctio

n θ(

T)

0.0

0.5

1.0

Tm−1/2∆T Tm Tm+1/2∆T

Solid dominated

mushy−zone

Liquid dominated

mushy−zone

0

1

2

3

4

5

6

7

8

9

10

Page 47: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Validation

C - Results

D -ApplicationExample

E - 2DTest-Case

F -DimensionlessEstimation

Mushy ZoneInvestigation

Scaling Variables

DimensionlessEquations

DimensionlessNumbers

Values For LiquidFraction

47

F - Dimensionless EstimationScaling Variables

x =x

Hy =

y

Hp =

p − prefρu0

2

t =u0t

Huuu =

uuu

u0T =

T − Tref

TR − Tref

Φv =

(H

u0

)2

Φv ∇ = H∇ D

Dt=

(H

u0

)D

Dt

Page 48: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Validation

C - Results

D -ApplicationExample

E - 2DTest-Case

F -DimensionlessEstimation

Mushy ZoneInvestigation

Scaling Variables

DimensionlessEquations

DimensionlessNumbers

Values For LiquidFraction

48

F - Dimensionless EstimationDimensionless Equations

∇ · uuu = 0 (10)

Duuu

Dt= −∇p +

u0ρH

]∇2uuu −

[gβ(TR − Tm)H

u02

](ggg

g

)(T − Tm) (11)

DT

Dt=

[k

u0ρHCp

]∇2T +

[µu0

ρHCp(TR − Tm)

]Φv (12)

Page 49: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Validation

C - Results

D -ApplicationExample

E - 2DTest-Case

F -DimensionlessEstimation

Mushy ZoneInvestigation

Scaling Variables

DimensionlessEquations

DimensionlessNumbers

Values For LiquidFraction

49

F - Dimensionless EstimationDimensionless Numbers

Brinkman Br =µu0

2

k∆Theat production visc. dissipation vs heat transport by cond.

Grashof Gr =gβ∆TH3

ν2buoyant forces vs viscous forces

Prandtl Pr =ν

αmomentum diffusivity vs thermal diffusivity

Rayleigh Ra =gβ∆TH3

αν= GrPr heat transport conv. vs cond.

Reynolds Re =ρu0H

µinertial vs viscous forces

Page 50: Phase Change Materials - COMSOL Multiphysics...PCM Donato Rubinetti Appendix A - Modeling Functions Melt Fraction Gaussian Heat Capacity Density Th. Conductivity Carman-Kozeny Viscosity

PCM

DonatoRubinetti

Appendix

A - ModelingFunctions

Validation

C - Results

D -ApplicationExample

E - 2DTest-Case

F -DimensionlessEstimation

Mushy ZoneInvestigation

Scaling Variables

DimensionlessEquations

DimensionlessNumbers

Values For LiquidFraction

50

F - Dimensionless EstimationValues For Liquid Fraction

Dimensionless group TR

40 ◦C 55 ◦C 70 ◦C[µ

u0ρH

]=

1

Re1 1 1

[gβ(TR − Tm)H

u02

]=

Gr

Re2=

Ra

PrRe2266 1376 2486

[k

u0ρHCp

]=

1

RePr0.008 0.008 0.008

[µu0

ρHCp(TR − Tm)

]=

Br

RePr1.25 × 10−10 2.42 × 10−11 1.34 × 10−11