pg16: epigenetics of lung disease designing studies of … · designing studies of dna methylation....

43
Andrea Baccarelli, MD, PhD, MPH Laboratory of Environmental Epigenetics Harvard School of Public Health PG16: Epigenetics of Lung Disease Designing Studies of DNA Methylation

Upload: phungdung

Post on 07-May-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Andrea Baccarelli, MD, PhD, MPHLaboratory of Environmental Epigenetics

Harvard School of Public Health

PG16: Epigenetics of Lung Disease Designing Studies of DNA

Methylation

Presentation Outline

Applying Epigenetics to Human Studies

Intro to Epigenetics

Design a Study

Challenges & Opportunities

Intro to Epigenetics

What it is, why we care about it

Epigenetics

• Programming of gene expression that:– does not depend on the DNA code– (relatively) stable, i.e., replicated through:

• cell mitosis• meiosis, i.e. transgenerational (limited evidence in humans)

• Characteristics of epigenetic programming– Modifiable (can be reprogrammed)– Active or poised to be activated:

• Potentially associated with current health states or predict future events

A Symphonic Example

DNA Phenotype

Epigenetics

Epigen

etics &

 Music Use th

e Same Markings

Epigen

etics &

 Music Use th

e Same Markings

pencilmarkings(can be erased)

markings in ink(permanent)

DNA methylationMethyl marks added to certain DNA bases repress gene transcription

Histone modificationsA combination of different molecules can attach to the ‘tails’ of proteins called histones. These alter the activity of the DNA wrapped around them 

Epigeneticmarkings

DNA methylatio

nDNA methylation suppresses RNA expression(more accurately: it is usually associated with suppressed RNA)

DNA methylationinactive DNA 

demethylationactive or poised to be activated

Histone

 mod

ificatio

nsChromosomal structureNucleosome – fundamental unit of chromatin

147 bp DNA wound 1.75 turns around histones

histone octamer:2 x (H2A, H2B, H3, H4)

Histone

 mod

ificatio

nsHistone modificationstypes and functions

Ac ‐ acetyl (lysine), Me ‐methyl (lysine), P ‐ phosphoryl (Ser or Thr) 

Why Epigenetics in Biomedical Research?

• The epigenome is environmentally sensitive– May provide records of past exposures (including prenatal and transgenerational) and help to reconstruct risk‐factor experience

• The epigenome harbors profiles potentially useful to identify at‐risk individuals– May help to predict future risks of disease

• Epigenomic investigations might bring further mechanistic understanding– Challenges in human studies need to be considered

Design an epigenetic study

sample collection, tissue specificity, and reverse causation

‘Each living organism has two histories that determine its biology: 

an evolutionary history whose duration is in the hundreds of thousands of years, and a developmental history that starts at the time of its conception.’

Ze'ev Hochberg, 2011

Epigenetic history

Disease programming throughout the lifecourse

Fetallife

Childhood & adult life

Beforeconception

Epigenome at birth

In-utero exposures

Epigenome in childhood

Early lifeexposures

Preconceptionalexposures

Epigenome(Parental)

Programming of disease risks

Adult/agingepigenome

Later lifeexposures

Genome(parental)

Genome(offspring)

Exposure of gametes

Figure adapted from Fleisch, Wright & Baccarelli, J Mol Endocrinol, 2013

2,000 CASESRecruit from 14

hospitals

2,000 CONTROLSRecruit from census(letters, phone calls)

Self‐administeredQuestionnaire

Blood orBuccal 

Specimens

Tissue Collection Fresh frozen Paraffin blocks Tissue slides

CAPI ClinicalData

Hospitals Homes

CAPIBlood orBuccal 

Specimens

Self‐administeredQuestionnaire

Study DocumentationCenter

Scan Data – Verify completeness within 30 days

CentralLaboratory

Data Processing CenterCluster server with mirrored 

database

TransportationTeam

within 4hours

Blood Components: Fresh frozen Whole blood PBMC (white cells) RBC (red cells) Serum Plasma Buffy coat  → DNA RNA Blood cards

PRINCIPALINVESTIGATORS

documents are shipped

at the end of the study

ship weekly in:

•liquid nitrogen

•dry ice

•room

 temp

weekly

within 4hours

SIBLINGS

ACD 2x7 ml (real

volume)

spin

PBMC3 vials

5 millions cells/ml in 1.5 ml vials

Plasma6 vials

1 ml each in 1.5 ml

vials

RBC and granulocytes

3 vials1 ml each in 1.5 ml vials

EDTA1x7 ml (real

volume)1x3ml (real vol)

Buffy coat1ml

Plasma3 vials,1 ml

each in 1.5 ml criovials

RBC and granulocytes3vials, 1 ml

each in 1.5 ml criovials

Serum1x7 ml (real

volume)

3 vials 1.5 ml, with 1 ml each

2 Blood cards DNA

extraction 50 g

9 vials 1.5 ml with 1 g each and 2 vials

with the rest(3 in Italy and 6 + 2 in

USA)

7 ml Tube

3 vials 1.5 mlwith 0,2 ml

buffyeach

6 vials 1.5 mlwith 3 g RNA

each vials

Storage: : vapor phase of liquid

nitrogenShipping: vapor phase of liquid

nitrogen Storage: -80°CShipping: dry ice

Storage: vapor phase of liquid nitrogenShipping: vapor phase of liquid

nitrogen

Storage: -80°CShipping: dry

ice

Storage: vapor phase of liquid

nitrogenShipping: vapor phase of liquid

nitrogen

125 l in one

microtube

3 ml Tube

3 vials, whole blood,1 ml each in 1.5 ml criovials

Storage: -80°C

Shipping: dry ice

1 preanalitix

tube

Storage: -80°Shipping: dry

ice

PreAnalytix Tube2x2,5 ml (real

volume)

Storage: -20°C

Shipping: dry ice

Flowchart for blood collection, EAGLE study

Effect of tim

e to storage

on DNA methylatio

nSix samples from each of three placental areas (A, B, C) left at room temperature for 

0 to 24 hours before ‐80 C freezing

Villahur N, Epigenomics 2013

Time to storage and DNA methylation

Villahur N, Epigenomics 2013Repeated elements: CV=2.6%LUMA: CV=9.3%

Cross‐sectional correlation between Body Mass Index (BMI) and DNA methylation

Manhattan plot showing the distribution of p‐values of the association of methylation probes with body‐mass index in the discovery cohort

The red dots indicate probes that fall within KLF13 (chromosome 15), CLUH (chromosome 17), and HIF3A (chromosome 19).

Data from the Dick et al., Lancet 2014

The ideal world

Relton and Davey‐Smith Int J Epidemiol 2012

Epigenome

Epigenetic Inheritance Systems

IntermediatePhenotypes / Biomarkers

DiseaseGerm‐line Genetic Variation

Stochastic Events

Environment

The real world

Relton and Davey‐Smith Int J Epidemiol 2012

Epigenome

Epigenetic Inheritance Systems

IntermediatePhenotypes / Biomarkers

DiseaseGerm‐line Genetic Variation

Stochastic Events

Environment

The real world

Relton and Davey‐Smith Int J Epidemiol 2012

Epigenome

Epigenetic Inheritance Systems

IntermediatePhenotypes / Biomarkers

DiseaseGerm‐line Genetic Variation

Stochastic Events

Environment

?

?

?

Reverse Causation

• In reverse causation:– Cause and effect are reversed

• BMI Study:– methyla on → BMI– BMI → methyla on– Either is equally probable

• Study design– Cross‐sectional and case‐control studies are susceptible to reverse causation

– Longitudinal studies should be preferred in epigenetic epidemiology

– Two‐step mendelian randomization can provide an analytical approach to test for causality (Relton and Davey Smith Int J Epidemiol 2012)

Epigenetic markings are Tissue Specific. 

Potentially each tissue or cell type has a specific methylation profile.

Tissue specificity

Epigenetics contribute totissue differentiation

Blood Counts and Methylation(combined‐analysis of 5 studies)

Alu LINE‐1

Beta * P‐value * Beta * P‐value *

White blood cells, 103cell/mm3 0.002 0.938 0.078 0.168

Neutrophils, % 0.009 0.226 0.036 0.005

Lymphocytes, % ‐0.009 0.246 ‐0.039 0.004

Monocytes, % ‐0.001 0.981 ‐0.033 0.374

Eosinophils, % ‐0.014 0.643 0.007 0.888

Basophils, % 0.005 0.968 ‐0.202 0.399* Adjusted for age, gender and study.

Zhu et al., Int J Epidemiology 2012

Need to account for signals from cell type differences Adjust for cell type in multivariate analysis Normalize methylation data for cell types before data analysis

DNA methylation arrays as surrogate measures of cell mixture distribution

Houseman et al, BMC Bioinformatics 2012

Predicting DNA methylation level across human tissues

• Two datasets:– 450K Illumina data (480,000 CpGs, n=14) on PBLs, atrium, and internal 

mammary artery (IMA).– HumanMethylation27 data (27,000 CpGs, n=39) on peripheral blood 

leukocytes (PBLs) and Epstein‐Barr Virus (EBV) transformed lymphoblastoid cell lines (LCLs) 

• Between tissue patterns:– Relatively high ‘background’ correlations between tissues – Differences between tissues highly consistent and reliably 

reproducible across multiple individuals• Linear regression and Support Vector Machine (SVM) models for 

each CpG site to predict methylation in ‘target’ tissues based on ‘surrogates’.– PBLs→Atrium, Raw R2=0.83; calibrated R2=0.99– PBLs→IMA, Raw R2=0.81; calibrated R2=0.94– LCLs→PBLs, Raw R2=0.92; calibrated R2=0.99

Ma B et al. Nucleic Acid Research 2014 (Epub ahead of print)

Baccarelli et al, Epigenomics, 2012

Nasal brush in 36 Children with asthma(studied twice, n=72)

DNA methylation and asthma‐related inflammation

Piko FEV‐1(obstruction)

FeNO(inflammation)

p=0.001

30 40 50 60 70 80

2

3

4

5

6

iNOS promoter methylation (%5mC)

Exha

led

Nitr

ic O

xide

(log

scal

e)

Baccarelli et al. Epigenomics, 2012

DNA Methylation in Nasal Epithelial Cells vs. Exhaled Nitric Oxide and FEV1

p=0.003

20 40 60 80 1001

2

3

4

IL-6 promoter methylation (%5mC)

FEV-

1(lo

g sc

ale)

MT-

TF &

MT-

RN

R1

Met

hyla

tion

(%) P=0.002

Controls(n=20)

High-exposed steel workers

(n=20)

Mitochondrial mtDNA methylationin steel workers exposed to metal‐rich air particles (PM1)

Byun et al, Particle Fib Tox, 2013

Other cytosine modifications

Relation between 5‐hydroxy‐methyl‐cytosines and 5‐methylcytosine in human blood DNA

Hou et al, in preparation

N=237R=0.21 p=0.001

Different mechanisms, same design issues?

• Interest in other epigenetic modifications is growing– mtDNA methylation– 5‐hydroxy‐methylcytosine, 5‐formylcytosine and 5‐carboxylcytosine

– Non CpG DNA methylation– Others (including histone modifications, miRNAs, etc)

• Most of the same design considerations will apply– Sample collection– Time to storage– Reverse causation– Tissue specificity

Challenges & Opportunities

Problems or resources?

Challenges in epigenetics

• How many epigenomes in one body?– Tissue specificity

• Most studies in humans are on blood DNA• Need to investigate tissues relevant for the exposure‐disease of interest (challenging in epidemiology)

• How many epigenomes in one lifetime?– The epigenome changes over time

• Reverse causation is always a potential issue• Need for longitudinal studies

• How many epigenomic markings in one epigenome?– DNA methylation, histone modifications, others

• Which is most informative?

Opportunities in epigenetics

• How many epigenomes in one body?– Opportunities for screenings of multiple epigenomes:

• Multiple tissues • Multiple cell types (e.g., blood subpopulations)

• How many epigenomes in one lifetime?– Opportunities for lifecourse epigenetics:

• The epigenome might record recent or past experiences• The epigenome might predict future risk of disece

• How many epigenomic markings in one epigenome?– Integrate multiple epigenomic markings

• Coordinated and complementary mechanisms

Environmental Epigenetics Lab

[email protected]!