Permeable reactive barrier for groundwater remediation

Download Permeable reactive barrier for groundwater remediation

Post on 26-Jun-2016

223 views

Category:

Documents

0 download

Embed Size (px)

TRANSCRIPT

  • Revie

    Permeable reactive barrier fo

    R. Thiruvenkatachari a, S. Vigneswaran a,*, R. Naidu b

    5. Mechanism of interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

    small percentage of the total water distribution [1,2,3]. The

    Available online at www.sciencedirect.com

    Journal of Industrial and Engineering Ch14. PRB studies in Australia and New Zealand. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

    Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

    1. Introduction

    Groundwater is a limited ecological resource representing a13.1. Use of oxidants . . . . . . . . . . . . . . . . . . . . . . . . . . . .13. In situ chemical oxidation (ISCO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15212. Sequential reactive media . . . . . . . . . . . . . . . . . . . . . . . . . .7. Zero-valent iron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

    8. Activated carbon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

    9. Zeolites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

    10. Alkaline materials-complexing agents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

    11. Bioremediation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

    11.1. Organic carbon for denitrification and sulphate reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1526. Treatment of inorganic and organic pollutants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1494.1. Conventional systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147a Faculty of Engineering, University of Technology, Sydney, P.O. Box 123, Broadway, NSW 2007, Australiab CRC CARE, University of South Australia, Australia

    Received 14 December 2006; accepted 26 October 2007

    Abstract

    This article aims to provide an overview of the upcoming technology of permeable reactive barriers for groundwater remediation. A

    comprehensive list of references and web-links are also provided for further in-depth understanding. A brief discussion on the Australian

    perspective on this emerging technology is also included.

    # 2008 Published by Elsevier B.V. on behalf of The Korean Society of Industrial and Engineering Chemistry.

    Keywords: Permeable reactive barriers; Groundwater; Remediation; Pollution

    Contents

    1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

    2. Sources and types of groundwater contamination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

    3. Permeable reactive barrier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

    4. Configuration of PRBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

    4.2. Advanced methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147* Corresponding author. Tel.: +61 2 9514 2641; fax: +61 2 9514 2633.

    E-mail address: s.vigneswaran@uts.edu.au (S. Vigneswaran).

    1226-086X/$ see front matter # 2008 Published by Elsevier B.V. on behalf ofdoi:10.1016/j.jiec.2007.10.001w

    r groundwater remediation

    www.elsevier.com/locate/jiec

    emistry 14 (2008) 145156contribution from groundwater is vital; perhaps as many as two

    billion people depend directly upon aquifers for drinking water,

    and 40% of theworlds food is produced by irrigated agriculture

    The Korean Society of Industrial and Engineering Chemistry.

  • Groundwater can also be contaminated by diffuse sources

    over a wide area, for instance widespread use of fertilisers on

    gardens and fields. Diffuse contamination may have greater

    environmental impacts than contamination from point sources

    because a much larger volume of water is affected. Pollutants

    from point sources are generally related to urban development,

    while diffuse sources are generally rural in nature. Some of the

    examples of point and diffuse pollutions are given in Table 1.

    Analysts estimate that there are between 300,000 and

    400,000 sites in the USA contaminated with a wide variety of

    al and Engineering Chemistry 14 (2008) 145156groundwater. Due to the cap on surface water extractions in the

    MurrayDarling Basin and the scarcity of surface water

    resources in other areas, groundwater use across Australia has

    increased significantly in the last 10 years [4]. South Australia,

    New South Wales and Victoria use more than 60% of

    groundwater for irrigation, while Western Australia uses

    72% for urban and industrial purposes [5,6].

    Studies by [4,7] identified increased demand for water in

    Australia and called for proper management of groundwater.

    The report also revealed that groundwater resource in Australia

    has been highly committed in some places, or of poor quality in

    others, and poorly investigated in others [8]. If not managed

    properly, groundwater resources are highly vulnerable to

    widespread contamination. There are many reports of serious

    incidents of groundwater contamination due to accidental

    spills, or unsatisfactory disposal of industrial chemicals,

    agricultural practices, mining activities, etc.

    Attempts at large-scale groundwater cleanup began in

    earnest in the 1980s and the results of early remediation efforts

    seldom produced the expected reduction in contamination

    levels. Studies by the U.S. Environmental Protection Agency

    (EPA) [9,10] found that the commonly used pump-and-treat

    (P&T) technologies (pump the water and treat it at the surface)

    rarely restored sites that had contaminated groundwater to

    background conditions. This was confirmed in a much more

    extensive 1994 National Research Council (NRC) study that

    explicitly reviewed 77 sites across the United States where full-

    scale pump-and-treat was being used [11,12]. One of the most

    promising remediation technologies is the use of permeable

    reactive barriers (PRBs) filled with reactive material(s) to

    intercept and decontaminate plumes in the subsurface. In the

    last decade, there has been an explosion of activities directed at

    the development and implementation of PRBs. This study

    presents a comprehensive review on PRBs technology.

    2. Sources and types of groundwater contamination

    Broadly, groundwater contaminants come from two cate-

    gories of sources:

    (a) Point Sources and

    (b) Distributed, or Non-Point Sources.

    Localised sources are known as point sources of contam-

    ination. The contaminant interacts with the moving ground-

    water and the soil and spreads out to form a plume moving in

    the same direction as the groundwater. The resulting ground-

    water contamination plume may extend several hundred metresTerri

    wateor etory, and the Pilbara are entirely dependent on ground-

    r. Most of the countrys premium wine districts rely onregions like arid zones of South Australia, the Northernthat relies largely on groundwater. Australia has 25,780 GL of

    groundwater suitable for potable, stock and domestic use, and

    irrigated agriculture that can be extracted sustainably each year.

    It is extensively used for urban water supplies, agriculture,

    irrigation, industry and mining. In Australia, some of the

    R. Thiruvenkatachari et al. / Journal of Industri146ven further away from the source of pollution.toxic chemicals, representing clean up cost in the range of $500

    billion to $1 trillion [11]. Many of these sites experience

    groundwater contamination by complex mixtures of chlori-

    nated solvents, fuels, metals, and/or radioactive materials.

    Europes groundwater is polluted in several ways: nitrates,

    pesticides, hydrocarbons, chlorinated hydrocarbons, sulphate,

    phosphate and bacteria. Some of the most serious problems are

    pollution by nitrates and pesticides. The key findings of

    Australia: State of the Environment

Recommended

View more >