particle physics with muon at j-parc - kek...2019/07/09  · strange charm bottom top electron...

45
Particle physics with muon at J-PARC KEK summer student program July 9, 2019 Tsutomu Mibe (IPNS) g-2.kek.jp comet.kek.jp

Upload: others

Post on 18-Jul-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

Particle physics with muonat J-PARC

KEK summer student programJuly 9, 2019

Tsutomu Mibe (IPNS)

g-2.kek.jpcomet.kek.jp

Page 2: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

Particle physics after the Higgs discovery

• Enter a new chapter of the particle physics• The Higgs particle itself is a tool to explore New

Physics.• There are no clear signals beyond the Higgs particle

at the LHC experiment.• Indirect ways to look for new physics becomes

more and more important.

4

Y. Okada (cLFV 2019)

Page 3: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

Approaches to new physics

Energy

frontier

experiments

Deviation

form the SM

predictions

Null or

suppressed

processes

LHCb, SuperKEKB/Belle II,

Kaon rare decays, muon g-2 … EDM, LFV, …

LHC->HL-LHC

Higgs factory, (ILC, …)

Higher energy pp collider

“Generic” vs “Specific”

6

Y. Okada (cLFV 2019)

Page 4: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

4

Quarks

Leptons

up

downstrange

charm

bottom

top

electron

electron neutrino

muon

muon neutrino

tau

tau neutrino

Elementary particles

Page 5: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

particle data group (2018)x 200 heavierthan electron

Weak decay(longer lifetime)

c.f.Lifetime of tau leptonis 0.3 ps.

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

LEPTONSLEPTONSLEPTONSLEPTONS

eeee J = 12

Mass m = (548.579909070 ± 0.000000016)× 10−6 uMass m = 0.5109989461 ± 0.0000000031 MeV∣

∣me+ − me−

∣/m < 8 × 10−9, CL = 90%∣

∣qe+ + qe−

/

e < 4 × 10−8

Magnetic moment anomaly(g−2)/2 = (1159.65218091 ± 0.00000026)× 10−6

(ge+ − ge−) / gaverage = (−0.5 ± 2.1) × 10−12

Electric dipole moment d < 0.87 × 10−28 e cm, CL = 90%Mean life τ > 6.6 × 1028 yr, CL = 90% [a]

µµµµ J = 12

Mass m = 0.1134289257 ± 0.0000000025 uMass m = 105.6583745 ± 0.0000024 MeVMean life τ = (2.1969811 ± 0.0000022)× 10−6 sτ µ+/τ µ− = 1.00002 ± 0.00008

cτ = 658.6384 mMagnetic moment anomaly (g−2)/2 = (11659209 ± 6) × 10−10

(gµ+ − gµ−) / gaverage = (−0.11 ± 0.12) × 10−8

Electric dipole moment d = (−0.1 ± 0.9) × 10−19 e cm

Decay parametersDecay parametersDecay parametersDecay parameters [b]

ρ = 0.74979 ± 0.00026η = 0.057 ± 0.034δ = 0.75047 ± 0.00034ξPµ = 1.0009+0.0016

−0.0007[c ]

ξPµδ/ρ = 1.0018+0.0016−0.0007

[c ]

ξ′ = 1.00 ± 0.04ξ′′ = 0.98 ± 0.04α/A = (0 ± 4) × 10−3

α′/A = (−10 ± 20) × 10−3

β/A = (4 ± 6) × 10−3

β′/A = (2 ± 7) × 10−3

η = 0.02 ± 0.08

HTTP://PDG.LBL.GOV Page 1 Created: 6/5/2018 18:58

muon

electron

electron neutrino

muon neutrino

micro second

Spin

Page 6: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

particle data group (2018)

Charged Lepton flavor is conserved (⇄ quark flavor, neutrino flavor)

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

µ+ modes are charge conjugates of the modes below.

p

µ− DECAY MODESµ− DECAY MODESµ− DECAY MODESµ− DECAY MODES Fraction (Γi /Γ) Confidence level (MeV/c)

e− νe νµ ≈ 100% 53

e− νe νµ γ [d] (6.0±0.5) × 10−8 53

e− νe νµ e+ e− [e] (3.4±0.4) × 10−5 53

Lepton Family number (LF ) violating modesLepton Family number (LF ) violating modesLepton Family number (LF ) violating modesLepton Family number (LF ) violating modes

e− νe νµ LF [f ] < 1.2 % 90% 53

e−γ LF < 4.2 × 10−13 90% 53

e− e+ e− LF < 1.0 × 10−12 90% 53

e− 2γ LF < 7.2 × 10−11 90% 53

ττττ J = 12

Mass m = 1776.86 ± 0.12 MeV(mτ+ − mτ−)/maverage < 2.8 × 10−4, CL = 90%Mean life τ = (290.3 ± 0.5) × 10−15 s

cτ = 87.03 µmMagnetic moment anomaly > −0.052 and < 0.013, CL = 95%Re(dτ ) = −0.220 to 0.45 × 10−16 e cm, CL = 95%Im(dτ ) = −0.250 to 0.0080 × 10−16 e cm, CL = 95%

Weak dipole momentWeak dipole momentWeak dipole momentWeak dipole moment

Re(dwτ ) < 0.50 × 10−17 e cm, CL = 95%

Im(dwτ ) < 1.1 × 10−17 e cm, CL = 95%

Weak anomalous magnetic dipole momentWeak anomalous magnetic dipole momentWeak anomalous magnetic dipole momentWeak anomalous magnetic dipole moment

Re(αwτ ) < 1.1 × 10−3, CL = 95%

Im(αwτ ) < 2.7 × 10−3, CL = 95%

τ± → π±K0S ντ (RATE DIFFERENCE) / (RATE SUM) =

(−0.36 ± 0.25)%

Decay parametersDecay parametersDecay parametersDecay parameters

See the τ Particle Listings for a note concerning τ -decay parameters.

ρ(e or µ) = 0.745 ± 0.008ρ(e) = 0.747 ± 0.010ρ(µ) = 0.763 ± 0.020ξ(e or µ) = 0.985 ± 0.030ξ(e) = 0.994 ± 0.040ξ(µ) = 1.030 ± 0.059η(e or µ) = 0.013 ± 0.020η(µ) = 0.094 ± 0.073

HTTP://PDG.LBL.GOV Page 2 Created: 6/5/2018 18:58

MEG(2016)

MEG(2016)

[d] (Eg>40 MeV)

Page 7: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

Lepton flavore, νe μ, νμ τ, ντ

electron number 1 0 0muon

number 0 1 0tau

number 0 0 1

Particle

Flavor

Assign minus sign for anti-particles

Page 8: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

particle data group (2014)

Charged Lepton flavor is conserved (⇄ quark flavor, neutrino flavor)

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

µ+ modes are charge conjugates of the modes below.

p

µ− DECAY MODESµ− DECAY MODESµ− DECAY MODESµ− DECAY MODES Fraction (Γi /Γ) Confidence level (MeV/c)

e− νe νµ ≈ 100% 53

e− νe νµ γ [d] (6.0±0.5) × 10−8 53

e− νe νµ e+ e− [e] (3.4±0.4) × 10−5 53

Lepton Family number (LF ) violating modesLepton Family number (LF ) violating modesLepton Family number (LF ) violating modesLepton Family number (LF ) violating modes

e− νe νµ LF [f ] < 1.2 % 90% 53

e−γ LF < 4.2 × 10−13 90% 53

e− e+ e− LF < 1.0 × 10−12 90% 53

e− 2γ LF < 7.2 × 10−11 90% 53

ττττ J = 12

Mass m = 1776.86 ± 0.12 MeV(mτ+ − mτ−)/maverage < 2.8 × 10−4, CL = 90%Mean life τ = (290.3 ± 0.5) × 10−15 s

cτ = 87.03 µmMagnetic moment anomaly > −0.052 and < 0.013, CL = 95%Re(dτ ) = −0.220 to 0.45 × 10−16 e cm, CL = 95%Im(dτ ) = −0.250 to 0.0080 × 10−16 e cm, CL = 95%

Weak dipole momentWeak dipole momentWeak dipole momentWeak dipole moment

Re(dwτ ) < 0.50 × 10−17 e cm, CL = 95%

Im(dwτ ) < 1.1 × 10−17 e cm, CL = 95%

Weak anomalous magnetic dipole momentWeak anomalous magnetic dipole momentWeak anomalous magnetic dipole momentWeak anomalous magnetic dipole moment

Re(αwτ ) < 1.1 × 10−3, CL = 95%

Im(αwτ ) < 2.7 × 10−3, CL = 95%

τ± → π±K0S ντ (RATE DIFFERENCE) / (RATE SUM) =

(−0.36 ± 0.25)%

Decay parametersDecay parametersDecay parametersDecay parameters

See the τ Particle Listings for a note concerning τ -decay parameters.

ρ(e or µ) = 0.745 ± 0.008ρ(e) = 0.747 ± 0.010ρ(µ) = 0.763 ± 0.020ξ(e or µ) = 0.985 ± 0.030ξ(e) = 0.994 ± 0.040ξ(µ) = 1.030 ± 0.059η(e or µ) = 0.013 ± 0.020η(µ) = 0.094 ± 0.073

HTTP://PDG.LBL.GOV Page 2 Created: 6/5/2018 18:58

MEG(2016)

MEG(2016)

[d] (Eg>40 MeV)

e µ t+2 -1 0+1 0 0+1 0 0+1 0 0

e µ t0 +1 0

e µ t0 +1 00 +1 00 +1 0

Page 9: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

Adapted from: Marciano, Mori & Roney,Annu. Rev. Nucl. Part. Sci. 2008 58:315–41

Charged Lepton Flavor Violation searchesCharged lepton flavor violation searches

Page 10: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

Particle dipole moments

10

Magnetic Dipole Moment

Electric Dipole Moment

P,C,T-even P,T-odd (CP-odd)

Page 11: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

Muon

200 times heavier than electronDecays in 2.2 μsec (conserving “lepton flavor”)Has a spin ½ (à dipole moments)Feels all interactions (including unknown ones if any)

e μ

11

Muon is

Page 12: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

It should be noted that the negative NLO contribution resultsin an anticorrelation between its uncertainty and the uncer-tainty from the LO contribution, consequently resulting in aslight reduction in the overall uncertainty that has beenincorporated into Eq. (3.34).The hadronic LbL contributions, although small compared

to the hadronic vacuum polarization sector, have, in the past,beendetermined throughmodel-dependent approaches.Theseare based on meson exchanges, the large Nc limit, ChPTestimates, short distance constraints from the operator productexpansion, andpQCD.Over time, several different approachesto evaluating ahad;LbLμ have been attempted, resulting in goodagreement for the leading Nc (π0 exchange) contribution, butdiffering for subleading effects. A commonly quoted deter-mination of the LbL contribution is the “Glasgow consensus”estimate of ahad;LbLμ ðGlasgow consensusÞ ¼ ð10.5 $ 2.6Þ ×10−10 [101] (alternatively, see [102–105]). However, recentworks [106–108] have reevaluated the contribution toahad;LbLμ

due to axial exchanges, where it has been found that thiscontribution has, in the past, been overestimated due to anincorrect assumption that the form factors for the axial mesoncontribution are symmetric under the exchange of two photonmomenta [106]. Under this assumption, the determination in[102] previously found the axial vector contribution to beahad;LbL;axialμ ¼ð2.2$ 0.5Þ×10−10. Correcting this reduces thiscontribution to ahad;LbL;axialμ ¼ð0.8$ 0.3Þ×10−10 [106,107].Applying this adjustment to theGlasgow consensus result, theestimate in [108] finds

ahad;LbLμ ¼ ð9.8 $ 2.6Þ × 10−10; ð3:35Þ

which is the chosen estimate for ahad;LbLμ in this work. Thisresult is notably lower than the previously accepted LbLestimates and will incur an overall downward shift on aSMμ . Itis, however, still within the original uncertainties whencomparing with the original Glasgow consensus estimate.Alternatively, it should be noted that the estimate ofahad;LbLμ ¼ ð10.2 $ 3.9Þ × 10−10 [108,109], which is a resultthat is independent of the Glasgow consensus estimate,could be employed here. In addition, the recent work [105]has provided an estimate for the next-to-leading orderhadronic LbL contribution. It has found ahad;NLO-LbLμ ¼ð0.3 $ 0.2Þ × 10−10, which does not alter the hadronicLbL contribution significantly, but is taken into accountin the full SM prediction given below.Much work has also been directed at the possibility of a

model independent calculation of ahad;LbLμ to further consoli-date the SM prediction of aμ. One approach involves themeasurement of transition form factors by KLOE-2 andBESIII, which can be expected to constrain the leadingpseudoscalar-pole (π0, η; η0) contribution to a precision ofapproximately 15% [108]. Alternatively, the pion transitionformfactor (π0 → γ%γ%) canbecalculated on the lattice for thesame purpose [110]. New efforts into the prospects of

determining ahad;LbLμ using dispersive approaches are alsovery promising [111–116], where the dispersion relations areformulated to calculate either thegeneral hadronicLbL tensoror to calculate ahad;LbLμ directly. These approaches will allowfor the determination of the hadronic LbL contributions fromexperimental data and, at the very least, will invoke stringentconstraints on future estimates. Last, there has been hugeprogress in developingmethods for a direct lattice simulationof ahad;LbLμ [110,117–123]. With a proof of principle alreadywell established, an estimate of approximately 10% accuracyseems possible in the near future. Considering these develop-ments and the efforts of the Muon g − 2 Theory Initiative[124] to promote the collaborative work of many differentgroups, the determination of ahad;LbLμ on the level of theGlasgowconsensuswill, at thevery least, be consolidated anda reduction of the uncertainty seems highly probable on thetime scales of the new g − 2 experiments.Following Eq. (3.31), the sum of all the sectors of the SM

results in a total value of the anomalous magnetic momentof the muon of

aSMμ ¼ ð11659182.04 $ 3.56Þ × 10−10; ð3:36Þwhere the uncertainty is determined from the uncertaintiesof the individual SM contributions added in quadrature.Comparing this with the current experimental measurementgiven in Eq. (1.1) results in a deviation of

Δaμ ¼ ð27.06 $ 7.26Þ × 10−10; ð3:37Þcorresponding to a 3.7σ discrepancy. This result is comparedwith other determinations of aSMμ in Fig. 25. In particular, a

160 170 180 190 200 210 220

(aµSM x 1010)−11659000

DHMZ10

JS11

HLMNT11

FJ17

DHMZ17

KNT18

BNL

BNL (x4 accuracy)

3.7σ

7.0σ

FIG. 25. A comparison of recent andprevious evaluations ofaSMμ .The analyses listed in chronological order are DHMZ10 [84], JS11[85], HLMNT11 [9], FJ17 [79], and DHMZ17 [78]. The predictionfrom this work is listed as KNT18, which defines the uncertaintyband that other analyses are compared to. The current uncertaintyon the experimental measurement [1–4] is given by the light blueband. The light grey band represents the hypothetical situation ofthe new experimental measurement at Fermilab yielding the samemean value for aexpμ as the BNL measurement, but achieving theprojected fourfold improvement in its uncertainty [5].

MUON g − 2 AND αðM2ZÞ: A NEW DATA-BASED ANALYSIS PHYS. REV. D 97, 114025 (2018)

114025-23

Anomaly in muon g-2

Stan

dard

Mod

el

Expe

rimen

ts

12

E821 2004

A. Keshavarzi, D. Nomura, T. Teubner, Phys. Rev. D 97, 114025 (2018)

Note that electron g-2 is consistent with the SM.

stat. 460 ppbsyst. 280 ppb

Phys. Rev. D 73072003 (2006)

Page 13: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

Why muon g-2 is important?

13

?

[x10-10]Numbers from A. Keshavarzi, D. Nomura, T. Teubner, Phys. Rev. D 97, 114025 (2018)

Anomaly effect as big as the weak contributions

Page 14: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

Examples of New Physics diagrams

FPCP,07-05-2019 L.Galli,INFNPisa

Manychannels

�4

γ

e

γ

τ µ,e

γ

µ µ

Ze

µ e

µ� e� � � µ�� � e�

(g � 2)µ µ�N � e�Nµ� eee

µ,τ

b

d l

l

e e

eNPNP NP NP

NP

NP

B � ��̄�

B � ��̄�Xs

NP

µ e

q q

µ

Awidefieldofresearch

LFVdecaysofleptons

Anomalousmagne5cmomentfortheµ

Muon-to-electronconversion

LFVinmesondecays

HFAG−TauSummer 2016

10−8

10−6

e− γ

µ− γ

e− π

0µ− π

0e− η

µ− η

e− ηʹ(9

58)

µ− ηʹ(9

58)

e− K S0

µ− K S0

e− f 0(

980)

µ− f 0(

980)

e− ρ

0µ− ρ

0e− K

∗ (892

)0µ− K

∗ (892

)0e− K

∗ (892

)0µ− K

∗ (892

)0 e− φ

µ− φ

e− ω

µ− ω

e− e+ e−

µ− e+ e−

e− µ

+ µ−

µ− µ

+ µ−

e− µ

+ e−

µ− e+ µ

−e− π+ π−

µ− π+ π−

e− π+ K

−µ− π+ K

−e− K

+ π−

µ− K

+ π−

e− K

+ K−

µ− K

+ K−

e− K S0 K S0

µ− K S0 K S0

e+ π− π−

µ+ π− π−

e+ π− K

−µ+ π− K

−e+ K

− K−

µ+ K

− K−

π− Λ

π− Λ

K− Λ

K− Λ

pµ− µ

−pµ

+ µ−

90%

CL

uppe

r lim

its

● ATLAS BaBar Belle CLEO LHCb

Belle II J-PARCFermilab

J-PARCFermilab

PSIPSI

Page 15: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

Three steps of g-2 measurement

1. Prepare a polarized muon beam.

2. Store in a magnetic field (muon’s spin precesses)

3. Measure decay positron

15

úúû

ù

êêë

é÷÷ø

öççè

æ+´+

´÷÷ø

öççè

æ-

---=cEB

cEaBa

me

!!!

!!!!

bhbg

w µµ 2112

π+ μ+νμ

spin 0

neutrino� left handed

helicity�−� helicity�−�

μ+

e+

spin

μ+

B

spin

Page 16: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

PrecessionSpinningaxis

Gravity

Precession

Dipolemoments

B or E field

Precession

Page 17: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

17

Fermilab E989 experiment

Photo courtesy of Fermilab E989

B= 1.45 T

14m

µ+ (3 GeV)

Page 18: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

Conventional muon beamproton π+ μ+

pionproduction

decay

emittance~1000π mm�mrad

Strong collimationStrong focusingMuon lossBG π contamination

18

Page 19: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

Muon beam at J-PARC

Reacceleratedthermal muon

proton π+ μ+

pionproduction

decay

cooling μ+

emittance~1000π mm�mrad

emittance1π mm�mrad

Strong collimationStrong focusingMuon lossBG π contamination

Free from any of these

19

Page 20: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

20

Thermal muoniumproduction,Ionization laser

Muon storagemagnet(3 T)

MLF muon experimentalfacility (H-line)

Positron trackingdetector

Proton beam (3 GeV)

Surface muon (4 MeV)

Ultra-slow muon (25 meV)

Reaccelerated muon(212 MeV)

3D spiral injectionMuon LINAC

Muon g-2/EDMexperimentat J-PARC

Features:• Low emittance muon beam (1/1000)• No strong focusing (1/1000) & good injection eff. (x10)• Compact storage ring (1/20) • Tracking detector with large acceptance• Completely different from BNL/FNAL method

Page 21: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

21

The J-PARC g-2/EDM collaboration

Collaboration meeting at J-PARC, May 2018

Seoul National University, June 24-27, 2019

116 members (Canada , China, Czech,France, Japan, Korea, Russia, USA)

Page 22: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

Bird’s eye photo in Feb. 2008 22

Page 23: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

H-line being constructed!

23

Photo by T. Yamazaki

To g-2/EDM

Page 24: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

RF acceleration of Mu- for the first time!

24

J-PARC MLF D2 area, October 2017 Slide by M. Otani

Page 25: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

25

J-PARC MLF D2 area, October 2017 Slide by M. Otani

S. Bae et al.,Phys. Rev. AB 21, 050101 (2018).

RF acceleration of Mu- for the first time!

Page 26: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

Muon storage magnet and detector

26

Cryogenics

e+ trackingdetector

2900 mm

Muon storage orbit

Iron yoke

Super conducting coils

666 mm

Drawn by Hitachi Co.

M. Abe et. al., Nuclear Inst. and Methods in Physics Research A 890, 51 (2018)

Page 27: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

Positron tracking detector

27

Si-stripsensors

Assembly (Kyushu + KEK)

Test module (Kyushu + KEK)

Great help from ATLAS and Belle II group at KEK

Page 28: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

Comparison of g-2 experimentsProg. Theor. Exp. Phys. 2019, 053C02 (2019)

Completed Running In preparationFull approval by the lab(March, 2019)

Page 29: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

Searches for muoncharged Lepton Flavor Violation

(cLFV)

Page 30: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

Examples of New Physics diagrams

FPCP,07-05-2019 L.Galli,INFNPisa

Manychannels

�4

γ

e

γ

τ µ,e

γ

µ µ

Ze

µ e

µ� e� � � µ�� � e�

(g � 2)µ µ�N � e�Nµ� eee

µ,τ

b

d l

l

e e

eNPNP NP NP

NP

NP

B � ��̄�

B � ��̄�Xs

NP

µ e

q q

µ

Awidefieldofresearch

LFVdecaysofleptons

Anomalousmagne5cmomentfortheµ

Muon-to-electronconversion

LFVinmesondecays

HFAG−TauSummer 2016

10−8

10−6

e− γ

µ− γ

e− π

0µ− π

0e− η

µ− η

e− ηʹ(9

58)

µ− ηʹ(9

58)

e− K S0

µ− K S0

e− f 0(

980)

µ− f 0(

980)

e− ρ

0µ− ρ

0e− K

∗ (892

)0µ− K

∗ (892

)0e− K

∗ (892

)0µ− K

∗ (892

)0 e− φ

µ− φ

e− ω

µ− ω

e− e+ e−

µ− e+ e−

e− µ

+ µ−

µ− µ

+ µ−

e− µ

+ e−

µ− e+ µ

−e− π+ π−

µ− π+ π−

e− π+ K

−µ− π+ K

−e− K

+ π−

µ− K

+ π−

e− K

+ K−

µ− K

+ K−

e− K S0 K S0

µ− K S0 K S0

e+ π− π−

µ+ π− π−

e+ π− K

−µ+ π− K

−e+ K

− K−

µ+ K

− K−

π− Λ

π− Λ

K− Λ

K− Λ

pµ− µ

−pµ

+ µ−

90%

CL

uppe

r lim

its

● ATLAS BaBar Belle CLEO LHCb

Belle II J-PARCFermilab

J-PARCFermilab

PSIPSI

Page 31: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

New physics couplings

FPCP,07-05-2019 L.Galli,INFNPisa

Newphysics*couplings

�8

µ e

γ

µ µ

µ

e

e

γ

e

e/qe/q

e/q e/q

dipoletransiMonµ→eγfavoured

fourparMcleinteracMonµN→eN,µ→eeefavoured

*Modelindependentapproach Calibbi and Signorelli, Riv. N. Cimento, 2017

Page 32: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

Effective parameterization

FPCP,07-05-2019 L.Galli,INFNPisa

Effec/veparametrisa/on

�10

current limit future limit

µ->eγ 4.2x10-13 6x10-14

µN->eN 10-12 - 10-13 3x10-17

µ->eee 10-12 10-15 - 10-16

de Gouvea and Vogel, Prog. Part. Nucl. Phys. 2013

effec/veLagrangian

func*onoftheNPscaleΛandNPnaturethroughκ

dipoletransi/on

BR(µ->eγ)/BR(µN->eN)≈10-2

fourfermioninteracMon

µN->eNfavoured

Fromcurrentandfutureexperiments103TeVnewphysicsscalesensi/vity

Page 33: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

Muon cLFV searches

FPCP,07-05-2019 L.Galli,INFNPisa

MuoncLFV:background

�14

Page 34: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

Muon cLFV searches

FPCP,07-05-2019 L.Galli,INFNPisa

MuoncLFV:background

�14

DC beam Pulsed beam DC beam

MEG II (PSI) COMET (J-PARC)mu2e (Fermilab)

mu3e (PSI)

Page 35: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

COMET Overview

muon to electron conversion in a muonic atom

µ� +N ! e� +N(charged lepton flavor violation)

Slide by Y. Kuno

Page 36: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

Bird’s eye photo in Feb. 2008 36

Page 37: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

COMET Phase-I

proton beam power=3.2 kW

detector

muon beamline

proton target

muon target

current limit:

< 6x10-13

aimed sensitivity: < 6x10-15

!(10−15)

x100 improvementSlide by Y. Kuno

Page 38: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

COMET Phase-II

Decisions andCOMET

Ewen Gillies

New Physics& CLFV

COMETDesignPrinciples

New TrackingTechniquesNeighbour-LevelGBDTHoughTransformTrack-LevelGBDT

Backup

Phase II Geometry

46

proton beam power=56 kW

electron spectrometer

detectormuon beamline

proton target

muon target

original sensitivity: 2.6x10-17

!(10−17)

x10,000 improvement 10 times ΛSlide by Y. Kuno

Page 39: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

Pion Capture Solenoid

Page 40: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

CyDet and StrECAL for COMET Phase-I

Y. Fujii @ CLFV2016

COMET Phase-I

10

StrECAL

Straw Tube Tracker

ECAL

• Construct the first 90 degree of the muon transport solenoid• Perform the μ-e conversion search with a sensitivity of 10

-15 using CyDet

• Measure the beam directly using StrECAL as a Phase-II prototype detector

CyDet

Cylindrical Drift Chamber

Trigger Hodoscope

Muon Stopping Target

CyDet

StrECALSlide by Y. Kuno

Page 41: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

41

Page 42: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

CDC under Cosmic-ray Tests1. Introduction!3

CDC Cosmic-Ray Test

MIDAS

DAQ Trigger

Slow Control Analysis

CDC

HV, Gas flow rate, Valve, Pressure, Temperature, Humidity

Performance evaluation,Detector response, Calibration framework

Good collaborative field among sub-groups !!

FC7, FCT, I/F

HV: 1850 V Gas mixture: He/i-C4H10=90/10 flow rate: 100 ccm

Cylindrical drift chamber (CDC) takes more data

at the Fuji experimental hall

2a.Cabling(HVside)

7

Slide by Y. Kuno

Page 43: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

The COMET collaboration

5

~200 members,41 institutes from 17 countries

Still growing!

Jan 2018, COMET collaboration at Osaka University

Slide by W. Chen

Page 44: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

Projection in next 10 yearsL. Galli, FPCP 2019

g-2Fermilab

g-2/EDMJ-PARC

Page 45: Particle physics with muon at J-PARC - KEK...2019/07/09  · strange charm bottom top electron electron neutrino muon muon neutrino tau tau neutrino Elementary particles particle data

Summary• Muon offers rich physics cases to study beyond the

standard model in quantum loops.

• Muon g-2/EDM– More than 3s deviation from the SM.– Fermilab muon g-2 experiment is taking physics run.– J-PARC muon g-2/EDM experiment is in preparation with

completely different method.

• Muon cLFV– J-PARC COMET and Fermilab mu2e experiments are in

preparation.– PSI MEG II experiment will start soon.

• Many new results will come in next 10 years. 45