part i: overview of fog computing and networking

33
Radio Access Network Design for 5G IoT: A Fog Computing Approach HungYu Wei National Taiwan University 2 Part I: Overview of Fog Computing and Networking

Upload: lephuc

Post on 02-Jan-2017

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Part I: Overview of Fog Computing and Networking

Radio Access Network Design for 5G IoT: A Fog Computing 

Approach

Hung‐Yu Wei

National Taiwan University

2

Part I: Overview of Fog Computing and Networking

Page 2: Part I: Overview of Fog Computing and Networking

Cloud V.S. Fog

3

Cloud

Fog

Why Cloud and Fog?

• Cloud• Centralized paradigm

• Pooling• Efficiency of resource utilization

• Scalability

• Fog• Closer to the edge

• Lower latency

4

Page 3: Part I: Overview of Fog Computing and Networking

Fog Networking

“ A network architecture that uses one or a collaborative multitude of end‐user clients or near‐user edge devices to carry out a substantial amount of storage (rather than stored primarily in cloud data centers), communication (rather than routed over backbone networks), and control, configuration, measurement, and management (rather than controlled primarily by network gateways such as those in LTE core) “

Mung Chiang, Princeton University

5

Two Paradigms

• Computing• Cloud Computing

• Fog Computing

• Networking• Cloud Networking

• Fog Networking

• RAN (Radio Access Network)• Cloud RAN

• Fog RAN

6

Page 4: Part I: Overview of Fog Computing and Networking

Part II: Serving Low‐Latency Applications with Fog RAN

Acknowledgement to Prof. Ai‐Chun Pang

7

“Fog Computing” and “Fog Network”• Fog Computing

• Cloud computing is extended to the edge of the network.• To create a highly virtualized platform that provides compute, storage, and networking services between end‐devices and traditional cloud data centers

• Fog Network• Use one or a collaborative multitude of end‐user clients or near‐user edge devices to carry out 

• storage, communications, control, configuration, measurement and management

• F‐RAN (Fog Radio Access Network)• NGMN Taiwan Team proposed this idea to the Advisory Session in the NGMN Forum in Bonn, Germany on June 3‐4, 2014.

January 15, 2016 8

Page 5: Part I: Overview of Fog Computing and Networking

Birth of “F‐RAN”• Follow the same direction with “computing is extended to the edge of the network” 

• Act as an aggregator connecting IoT end‐devices and cellular network

• Not only responsible for communication (protocol/signaling), but also application services (data processing)

• In 5G era, a new business model is rising. • Telecom. operator cooperates with application/service provider for better quality of IoT services.

January 15, 2016 9

F‐RAN 

• A customized design for IoT applications for • Heterogeneous communication

• Real‐time computation

• Local storage

• Application specific functionalities

• Benefits• Reduce latency

• Increase throughput

• Leverage locality

• Relieve backhaul load

January 15, 2016 10

IoT devices

Core Network

eNodeB

F‐RAN

IoT/cloud Servers

Page 6: Part I: Overview of Fog Computing and Networking

IoT Generation 

• Internet of Things (IoT) will grow fast from 2013 to 2018.

• Current cellular Infrastructureis hard to deal with incredibly increasing IoT traffics.                        

January 15, 2016 11

Categorization of IoT Applications

January 15, 2016 12

Massive                               Critical                                  (large scale)  (low latency) 

Page 7: Part I: Overview of Fog Computing and Networking

Future Low‐latency IoT Applications

January 15, 2016 13

• Tactile Internet• “The latency of communication systems becomes lowenough to enable a round‐trip delay from terminals throughthe network back to terminals of approximately 1ms”

• Applications• Health care, education and sport, traffic, roboticsmanufacturing, augmented reality.

‐ G.P. Fettweis, “The Tactile Internet: Applications and Challenges, ” IEEE Vehicular Technology Magazine, vol.9, no.1,  pp.64‐70, Mar. 2014

Ultra Low Latency Applications in Wireless 5G

January 15, 2016 14

• 5G vision for ultra low latency• “To support such latency‐critical applications, 5G should allowfor an application end‐to‐end latency of 1ms or less.” (Ericsson5G White Paper, 2015)

• “Zero latency gigabit experience” (Nokia 5G White Paper, 2014)

• “Provide consistent experience under diverse scenarios withultra high data rate, ultra low latency and massiveconnections” (ITU‐2020 5G Vision, 2014)

• F‐RAN in wireless 5G can achieve low latency via:• Do computing for latency‐critical IoT applications at the edgeof the network.

Page 8: Part I: Overview of Fog Computing and Networking

Augmented Reality (AR)

•Definition: • “A technology which allows virtual graphics imagery to exactly overlay physical object in real time”

• Mobile AR with Wireless 5G• Widespread availability, portability, and built‐in good quality cameras of smart phones

• Exciting AR applications (e.g., navigation, public security, real‐time translation) 

• 10ms end‐to‐end latency is required.

January 15, 2016 15

‐ F. Zhou, H.B.‐L. Duh, M. Billinghurst, “Trends in Augmented Reality Tracking, Interaction and Display: A Review of Ten Years of ISMAR,” IEEE/ACM ISMAR, pp.193‐202, 2008.

‐ H. J. Einsiedler (T‐Mobile Europe), “5G AND MOBILE CLOUD,” ITG Fachtagung Mobilkommunikation, 2014

Examples of AR Applications

January 15, 2016 16

‐Microsoft HoloLens, 2015‐ Google Translate, 2015‐ IBM Research, 2013

3D DesignVisualization

Remote Instruction

Shopping Aid

Real‐Time Text Translation

Page 9: Part I: Overview of Fog Computing and Networking

Flowchart for a Typical AR Service

January 15, 2016 17

‐ S. Siltanen,, “Theory and applications of marker‐based augmented reality,” VTT TECHNICAL RESEARCH CENTRE Science, No.3, pp.1‐250, 2012.‐ D. Forte, A. Srivastava, "Adaptable architectures for distributed visual target tracking," IEEE ICCD, pp.339‐345. 2011

Tracking module calculates the relative pose of the camera in real time for the correct location and orientation of the virtual components.

“Typical CPU hardware on mobile devices is not able to handle the computational/memory demands of tracking algorithm”

‐> The tracking needs to be done outside mobile devices with low latency. ‐> F‐RAN can be a good solution.

AR Service with F‐RAN

• The computing capability of an F‐RAN node (FN) is approximate to that of a small/femto AP.

• Single FN is not enough for the computing‐intensive tracking algorithm.

• Multiple FNs need to do the application‐layer computing collaboratively.

January 15, 2016 18

‐ Intel., “LTE / Dual‐Mode Femtocell SoC,” Solution Brief Intel Transcede T2K Dual‐Mode Soc Family, 2014.

‐ Qualcomm, “Qualcomm Atheros FSM90xx SoCs for LTE Neighborhood & SMB Small Cells,” Qualcomm Small Cells Brochure, 2014

Page 10: Part I: Overview of Fog Computing and Networking

January 15, 2016 19

Distributed Computing

F‐RAN

ARDevice

RenderingModule

CapturingModule 1

5

3

Master FN (mFN)

4

23

3

Cooperating FNs (cFNs)

1. Receive Captured Images2. Assign Tracking Tasks3. Do Pose Tracking4. Summarize Results5. Send back for Rendering 

Cost‐Performance Tradeoff

January 15, 2016 20

Communication(Cost)

Computing(Cost)

Accuracy(Performance)

• Computing resource of each FN is limited.

• Tracking data sent via wireless links among FNs• Distance among FNs affects transmission rate (i.e., 

latency)

• The result of pose tracking

• Low accuracy leads tovirtual‐object mis‐placement.

Page 11: Part I: Overview of Fog Computing and Networking

Factors Affecting the Tradeoff

• Number of cFN• More cFNs

• ► Highier comm. cost for mFN but lower computing cost for each cFN

• Amount of Assigned Tasks for each cFN

• More tasks for each cFN

• ► Higher accuracy with higher computing cost

• Attributes of cFNs

• Loading of cFNs ► Computing cost 

• Distances between mFN and cFNs ► Comm. cost

• Amount of Information Sharing• Information (pose tracking data for AR service) shared from mFN to each cFN

• Especially complex for AR service

January 15, 2016 21

Communication

Computing

Accuracy

Technical Challenges

• How to decide which FNs to be the cFNs• Number of cFN

• Attributes of cFNs

• How to split the task for distributed computing• Amount of Assigned Tasks for each cFN

• Amount of Information Sharing

January 15, 2016 22

Page 12: Part I: Overview of Fog Computing and Networking

Summary

• In wireless 5G, many emerging IoT services and applications (e.g., augmented reality) require ultra‐low latency.

• We have proposed F‐RAN and tried to push application‐layer computing from cloud data centers to mobile edge for ultra‐low latency IoT applications.  

• Properly handling performance‐cost tradeoff is the key.

• However, there will be diverse application requirements in wireless 5G.

• Low‐latency access co‐exists with non‐real‐time access

• Flexible operation + networking slicing

January 15, 2016 23

24

Part III: Radio Access Network Design for Low Latency 5G

Page 13: Part I: Overview of Fog Computing and Networking

Technical Opportunities in 5G 

• Growth Opportunities• IoT, M2M, Internet of Everything … 

• LTE have been adding MTC (Machine Type Communications) capability 

• MTC in 5G • Native support for MTC

25

Design 5G to provide native support in MTC

5G Machine Type Communications for Internet of Everything

• Cellular wireless infrastructure for MTC• Long transmission range• Low cost equipment• Improve quality of life 

• Trends in Wide‐Area IoT• Proprietary LPWA (Low‐Power, Wide‐Area) Networks

• LoRA, Sigfox, …

• 3GPP• Cellular IoT• Narrow‐band LTE

265G MTC could re-shape telecom economy

Narrow‐band IoT

Page 14: Part I: Overview of Fog Computing and Networking

Everyone Talks about MTC/IoT

• A diverse sets of applications and requirements

• Vertical markets• Growth opportunities• $

• Two major types• Mission critical MTC

• Low latency, high reliability

• Massive MTC• Low cost, power efficient

27

5G Usage Scenarios of IMT‐2020

28ITU‐R  M.2083‐0, "IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond," September 2015

Page 15: Part I: Overview of Fog Computing and Networking

5G RAN Design for Low‐Latency Services• Mission‐critical and low latency services

29ITU‐R  M.2370‐0 "IMT traffic estimates for the years 2020 to 2030“, July 2015

Design Principle #1 Embrace Fog Paradigm 

for Low‐Latency

Page 16: Part I: Overview of Fog Computing and Networking

Two Paradigms

•Cloud computing and networking• Centralized pooling• Efficient resource utilization

• Fog computing and networking• Closer to the edge• Lower latency

31

Push Everything to Edge for Low Latency

Challenge: end‐to‐end latency

• Everything needs to be handled with low latency• Air interface

• Baseband processing

• Higher protocol layers

• Computing

32

Handle Each Delay Component Carefully

Page 17: Part I: Overview of Fog Computing and Networking

Design for Low Latency

• End‐to‐end latency is composed of several segments

• Latency in RAN network entry depends on traffic load

• Cross‐layer protocol design is needed to reduce the overall latency across all protocol layers

• Fog computing and mobile edge computing reduce the latency in computing

33ETSI GS MEC‐IEG 004, "Mobile‐Edge Computing (MEC); Service Scenarios," November 2015ETSI, "Mobile‐Edge Computing – Introductory Technical White Paper," 2014

Challenge: Mixed of Traffic

• Diverse application requirements• Low‐latency access co‐exists with non‐real‐time access

• Differentiate different types of accesses 

• Flexible operation

34

Page 18: Part I: Overview of Fog Computing and Networking

Design Principle #2: Differentiate Low‐Latency Flow Early

Diverse IoT Traffic

• Low latency in every steps to achieve end‐to‐end low latency

• RACH procedures

• Initial access

• Computing

• Low latency service is costly

36

Differentiate Low Latency IoT Flows Early

Page 19: Part I: Overview of Fog Computing and Networking

Random Access Procedure in LTE

• In LTE systems, a device (UE) connect to the network by performing random access procedure

• Termed RACH procedure in LTE

• The first step:RACH preamble transmission

• To inform the eNB of UE’s connection request

• A UE randomly selects one preamble sequence from a sequence pool

• Preambles with different sequences can be successfully received simultaneously

37

RACH collision

• RACH collision• Two or more UEs selects the same sequence for preamble transmission

• The base station might be unable to decode the transmitted preamble

• It causes preamble transmission failure

• RACH contention resolution• Preambles from numerous IoT devices may cause severe RACH collision, and further affects normal H2H communications

• Some mechanisms should be applied to resolve RACH contention

38

Page 20: Part I: Overview of Fog Computing and Networking

M2M/H2H Co‐existence

39

M2M Shared H2HX

X

Flexible Configuration in Fog‐RAN

• Latency requirements• Ultra‐low latency• Low latency• Delay tolerant

• Two types of resources• Communications

• Fog processing• Cloud processing

• Computing• Fog computing• Cloud computing

40

Page 21: Part I: Overview of Fog Computing and Networking

41

Core Network

Network Packet Classifier

Radio Access Classifier

Ultra-low Latency

Cloud Computing

Fog Computing

Cloud BBU Pool

Fog BBU

42

Core Network

Network Packet Classifier

Radio Access Classifier

Low Latency

Page 22: Part I: Overview of Fog Computing and Networking

43

Core Network

Network Packet Classifier

Radio Access Classifier

Delay-tolerant

Design Principle #3 Be Cognitive, Be Flexible

Page 23: Part I: Overview of Fog Computing and Networking

Flexible RAN with Cognitive Operation• Cognitive design principles

• Observe

• Learn

• Decide

• Act

• Use context to support dynamic and diverse traffic

• Challenge to support massive M2M• Bursty load to control plane signaling

• Network entry 

45

Understand the Context

• Traffic load as context information• Estimation of network entry load• The number of devices under contention

• Obtain context information with low cost• RACH: success, collision, empty

• Estimation technique

• Adaptation for load control• Also helpful for latency reduction• Collision and retransmission are harmful for latency

46Guan‐Yu Lin, Shi‐Rong Chang, and Hung‐Yu Wei, “Estimation and Adaptation for Bursty LTE Random Access,” IEEE Transactions on Vehicular Technology, 2015

Page 24: Part I: Overview of Fog Computing and Networking

Adaptive M2M Access: Network‐Assisted Context Info

47

M2M Shared H2HX

X NM2M NShared NH2H

Broadcast System Context Information

XXX

X

X

XX

X

XXXX

light

medium

heavy

Adaptive device configuration accordingly

Adaptive M2M Access: Distributed Decision at M2M Devices 

48

M2M Shared H2H

(1) Use M2M‐only resource(2) Use shared resource

(3) Do not transmit

Utility (successful transmission) - Cost

(utility is application‐dependent)

Page 25: Part I: Overview of Fog Computing and Networking

0 1 2 3 4

x 104

0

5

10

15

20

25

time slots

succ

ess

rate

H2HM2Msum of both

Context‐Aware H2H/M2M Adaptation

49

0 1 2 3 4

x 104

0

5

10

15

20

25

30

35

40

45

time slots

arriv

al r

ate

H2HM2M

Traffic‐aware adaptation

H2H/M2M mixed traffic arrival

0 1 2 3 4

x 104

0

5

10

15

20

time slots

tran

smis

sion

rat

e

M2M resourcesHybrid resourcesH2H resources

Resource utilization

Ho‐Yuan Chen, Mei‐Ju Shih, and Hung‐Yu Wei, “Handover Mechanism for Device‐to‐Device Communication,” IEEE Conference on Standards for Communications and Networking (CSCN 2015), Oct. 2015

Flexible Fog RAN for Diverse Traffic• Low latency service is costly

• Great challenges and opportunities

• Not all services have low latency requirements• Flexibility in business and pricing models

• Joint design for computing and communications• Small cell v.s. C‐RAN• Mobile edge computing and Fog‐RAN

• RAN design issues• Integrated RAN architecture• Differentiate network access• Context‐aware adaptation

50

Page 26: Part I: Overview of Fog Computing and Networking

Summary: Flexible RAN for Low‐Latency and Diverse Applications• Hybrid architecture for C‐RAN and Fog RAN integration

• Heterogeneous evolution path for C‐RAN

• Push computing and communications processing to the edge

• Latency 

• Flexible Fog RAN architecture to support diverse applications

• Context‐aware adaption

51

Part IV: Standard Activities

52

Page 27: Part I: Overview of Fog Computing and Networking

ETSI Mobile Edge Computing

53Source: ETSI

IT Service at the Edge of Network

54Source: ETSI

Page 28: Part I: Overview of Fog Computing and Networking

Use Case: Active Device Location Tracking

55Source: ETSI

Use Case: Augmented Reality Content Delivery

56Source: ETSI

Page 29: Part I: Overview of Fog Computing and Networking

Use Case: Video Analytics

57Source: ETSI

Use Case: RAN‐aware Content Optimization

58Source: ETSI

Page 30: Part I: Overview of Fog Computing and Networking

Use Case: Distributed Content and DNS Caching

59Source: ETSI

Use Case: Application‐aware Performance Optimization

60Source: ETSI

Page 31: Part I: Overview of Fog Computing and Networking

Use Case: Connected Vehicles

61

Vehicle‐to‐infrastructure

Source: ETSI

MEC Deployment Scenarios

62Source: ETSI

Page 32: Part I: Overview of Fog Computing and Networking

MEC API

63Source: ETSI

NGMN’s View on Edge Computing

64

InternetC‐RAN, vRAN

Core Network

Edge Server with cloud infrastructure: Cloudlet or MEC server: compute, store, network

SaaS, PaaS, IaaS

Latency

Code offloadCode provisioning

Code provisioning

Operator

Radio access networkinformation exposure

to application

Source: NGMN

Page 33: Part I: Overview of Fog Computing and Networking

5GMF Architecture Vision

65Source: 5GMF

Thank You

[email protected]