parity violation in diatomic...

38
DeMille Group Jeff Ammon , E. Altuntas, S.B. Cahn, R. Paolino*, D. DeMille Physics Department, Yale University *Physics Department, US Coast Guard Academy Parity Violation in Diatomic Molecules Funding : NSF

Upload: others

Post on 14-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

DeMille

Group

Jeff Ammon, E. Altuntas, S.B. Cahn, R. Paolino*, D. DeMillePhysics Department, Yale University

*Physics Department, US Coast Guard Academy

Parity Violation in Diatomic Molecules

Funding: NSF

Page 2: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

Outline

1. Introduction: Parity violating effects, motivation

2. Why Diatomic Molecules?

3. The Experiment: Schematic, signal

4. Level Crossing Spectroscopy in 138BaF

5. First PV Data with 138BaF: Evidence of systematics

6. E & B Field Systematics: How to measure & eliminate

7. New Data

8. Future Work

Page 3: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

Nuclear Spin Independent (NSI)Every nucleon contributes

Nuclear Spin Dependent (NSD)Only unpaired nucleons contribute

NSI 1%NSD 14%

Using diatomic molecules enhances NSD

Parity Violation

( ) ( )rδpσH 3⋅∝NSI ( )rδpσIσH 3))(( ⋅⋅∝NSD

Best measurement: Wieman 133Cs

Uncertainties:

→ NSD PV smaller, more difficult to measure.

pos.electron:

spinnuclear:

mom.electron:

spinelectron:

rI

p

σ

Also: 133Cs is the onlynonzero measurement of NSD in atoms

Page 4: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

Anapole Moment

e

γ

N Z0, W

Z0

N

e

Z0 exchange

Ve + Ae

VN + AN

NSD PV Effects

( )rpIH aZNSD 3δ)σ)(σ)(κκ( ⋅⋅+∝

+=NSDH

Independent of nuclear mass A

Proportional to A2/3

Can differentiate effects by measuring multiple nuclear species

Page 5: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

spin tilted along momentumdue to weak interaction( σ⋅p helicity term)

orbitalmomentumaround core

= +

Current loop(dipole)

Current helix(anapole)

Simple model for nuclear anapole(valence nucleon + constant-density core):

Anapole Moment

Causes delta function vector potential at origin

Page 6: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

Motivation

Anapole Moment• Nucleon – nucleon coupling constants• Nuclear structure • “Anapole Moment Table” - unique signatures for each nuclear species

“Measurement of parity violation in electron-quark scattering”The Jefferson Lab PVDIS CollaborationNature 506, 67-70

Z0 Exchange• Electron – nucleon weak coupling constants (C2N, C2P)• Related to fundamental electron-quark weak coupling constants (C2u, C2d)• Complementary to PVDIS measurements(different linear combinations of C2

constants)

Page 7: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

Outline

1. Introduction: Parity violating effects, motivation

2. Why Diatomic Molecules?

3. The Experiment: Schematic, signal

4. Level Crossing Spectroscopy in 138BaF

5. First PV Data with 138BaF: Evidence of systematics

6. E & B Field Systematics: How to measure & eliminate

7. New Data

8. Future Work

Page 8: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

−−=−

+=+

P

ˆ

−++→+ δ

Even / Odd State Mixing

Atomic, molecular states are parity eigenstates

Weak interaction mixes even & odd states

1314 10~

Hz10Hz10~

Δδ −

−+

=−

−+=

iWEE

HW → δ is very small

1eV

Page 9: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

Diatomic Molecules

Δδ iW=

+

−Δ

Amplify mixing by making ∆ small:

Diatomic molecules:Large moment of inertia→ rotational levels have small ∆

IJE

MRI

rot 2

2

2

=

0+

1-

2+

~10-5 eV

Parity: (-1)J

Ener

gy

(vs. ~1eV for atoms)

Page 10: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

Zeeman Tuning

Closely spaced levels can be brought to crossing with B-field

• B-field required: ~ 1 Tesla→ easy with superconductingmagnet

• How close?• 1 part in 107 uniformity → ∆ ~ 103 Hz (vs 1014 Hz for atoms)

Energy

B Field

↓+

1 T

Page 11: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

Viable Nuclei For Anapole Measurement•Everything OK (one dot/isotope)•Only molecular spectral data needed•Only isotopically enriched

sample needed•Maybe possible with cryogenic beam source

Page 12: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

Chosen Molecule: 137BaF

Why 137BaF?• Odd neutron (133Cs had odd proton)• Heavy → larger anapole moment• Spectroscopy available• BaF molecular beams had been made before• Large enough natural abundance – don’t need enriched source• Transitions are diode laser accessible

Development & testing: 138BaF• W = 0 (no parity violation)• Larger natural abundance (~75% vs ~11% for 137Ba)• Can use same source as 137Ba

Page 13: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

Outline

1. Introduction: Parity violating effects, motivation

2. Why Diatomic Molecules?

3. The Experiment: Schematic, signal

4. Level Crossing Spectroscopy in 138BaF

5. First PV Data with 138BaF: Evidence of systematics

6. E & B Field Systematics: How to measure & eliminate

7. New Data

8. Future Work

Page 14: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

E0

B

(1) (2) (3) (4)

(1)

(2) (3) (4)

Superconducting solenoid

Lase

r E0La

ser

Experimental Schematic

+

z axis

Page 15: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

Signal

++

= 2

20

202

00 ΔωΔ2

ωωΔπsin4)( WdEWdE

NES

)ωsin()( 0 tEtE =Applied E field:N0: # of molecules in lower state∆: Detuningd: dipole matrix elementW: weak matrix element

Signal:population ofupper (detection)state at end

“Stark Interference” term:without this, dependenceon W would be second order

Second order.Very small.Ignore.

Page 16: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

Asymmetry

+

=

ωΔ2

ωωΔπsin4)( 0

202

00dEWdE

NES

000

00 ωΔ)()(

)()(dE

WESESESES

A ⋅=−++−−+

=

1) Measure Signal for +E0 and –E0

2) Form Asymmetry:

3) Solve for W in terms of known quantities.

Page 17: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

Example Signal & Asymmetry

• Calculated by numerically solving Schrodinger eqn.• Assumes W = 5Hz

Signal Asymmetry

Page 18: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

Outline

1. Introduction: Parity violating effects, motivation

2. Why Diatomic Molecules?

3. The Experiment: Schematic, signal

4. Level Crossing Spectroscopy in 138BaF

5. First PV Data with 138BaF: Evidence of systematics

6. E & B Field Systematics: How to measure & eliminate

7. New Data

8. Future Work

Page 19: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

Energy

B Field

↓+

1 T

Multiple crossings becauseof hyperfine structure

Matrix element W is different at each crossingUnderlying PV magnitudes (κZ & κa) are same at all crossings

→ Measure at different crossings as systematic check

Multiple Crossings

Page 20: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

Level Crossing Spectroscopy in 138BaF

NIS mmm ,,

S: Electron spinI: Nuclear spinN: Molecule rotational

ang. mom.

Want to measure PV at multiple crossings as systematic check→ Need to find B field values where levels cross

axisarinternucle

molecule:n̂

ISnW aZ

⋅×+∝ )ˆ)(κκ(

PV magnitudes.Same at all crossings

Angular factor.Different for each crossing.

Page 21: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

Increasing B Field

+

E-field applied

Δ

Finding Crossing Locations

Maximum signal occurs when B-field is set such that ∆=0

Page 22: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

Spectroscopy Results

“Zeeman-tuned rotational level-crossing spectroscopy in a diatomic free radical”S.B. Cahn et. al.arXiv: 1310.6450

Soon to be in PRLAlso measured:• Dipole matrix elements (d)• Polarizabilities (α)• Lineshapes

Page 23: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

Outline

1. Introduction: Parity violating effects, motivation

2. Why Diatomic Molecules?

3. The Experiment: Schematic, signal

4. Level Crossing Spectroscopy in 138BaF

5. First PV Data with 138BaF: Evidence of systematics

6. E & B Field Systematics: How to measure & eliminate

7. New Data

8. Future Work

Page 24: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

New Interaction Region

• Old interaction regions: 2 electrodes, 7 electrodes

• New interaction region: 32 electrodes→ better control over E field→ one cycle sine wave for PV measurement

• Prisms allow laser delivery for state preparation

Page 25: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

•138Ba Expected:W = 0

•Measured:W = -5.5 2.6 Hz (stat)

• ~2.5 hours of data

• Previous best sensitivity: 2.9 Hz in 30 hours with

atomic Dy*

• Measured W due to systematic effects

*Nguyen, Budker, DeMille, & Zolotorev, PRA 56, 3453 (1997)

First PV Data with 138BaF

Page 26: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

Evidence of Systematics

Data Numerical Calculation

• Non-reversing E field (ENR) → even part of Asymmetry(e.g. vertical offset)

• ENR + B gradients (Bgrad) → odd part of Asymmetry(looks like parity violation!)

• Need to measure & then eliminate ENR & Bgrad

Page 27: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

Outline

1. Introduction: Parity violating effects, motivation

2. Why Diatomic Molecules?

3. The Experiment: Schematic, signal

4. Level Crossing Spectroscopy in 138BaF

5. First PV Data with 138BaF: Evidence of systematics

6. E & B Field Systematics: How to measure & eliminate

7. New Data

8. Future Work

Page 28: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

B field Measurement w/ Molecule Signal

E(z)

z

z

B(z)

B field only matters where E is non-zero

→ Measure B(z) by translating E pulse across z and recording Signal

Want to “flatten” B field so that it is uniform→ Must measure B field first

Page 29: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

E(z)

zz2z1 z3

Apply E-field

B

Signal

B1 B2 B3

Find signal maximum( i.e. ∆ = 0 )

z1 z3z

z2

B1B2

B3

B(z)

Repeat across interaction region to get B(z)

B field Measurement w/ Molecule Signal

Page 30: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

B field Shimming

• B field measured (a)• Shim coils adjusted to flatten field• B field measured again (b)

Page 31: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

( )( )Δ

Δ

E

dtetEc ti

∝ ∫ −−

1st order perturbationtheory( F.T. of E(t) )

t

( ) )Δ(Δ τΔR

iNR EeEc +∝−

ENR(t)

( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( )[ ]τ∆∆−τ∆∆∆∝−−+ sinImcosRe NRNRRRR EEEESES 2

Interference term

ER(t)

( ) )Δ(Δ RNR EEc +∝−τ

ER(t+τ)

“Signal Difference”

( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( )[ ]τ∆∆−τ∆∆∆+∆+∆∝ sinImcosRe NRNRRRNR EEEEES 22

shifted ER

E Field Measurement w/ Molecule Signal

Page 32: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

• Set ∆ = constant• Take data over range of τ(applied E location)

•Repeat at a range of ∆ to construct ENR(∆)

•Fourier transform to get ENR(t)

( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( )[ ]τ∆∆−τ∆∆∆∝−−+ sinImcosRe NRNRRRR EEEESES 2

from datafit function:

2 fit parameters: ( a, b )

data

τ

Sig. Diff. fit function

E Field Measurement w/ Molecule Signal

a * cos(∆τ) + b * sin (∆τ)

Page 33: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

ENR(t) Measurement ExampleInterference Term Fit ENR(∆)

ENR(t)

Repeat over range of ∆

Fourier Transform

Page 34: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

ENR(t) Shimming Results

BeforeShimming

After 1 Shim Iteration

After 2 Shim Iterations

“Shimming” = Applying voltages to counteract ENR

Page 35: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

Outline

1. Introduction: Parity violating effects, motivation

2. Why Diatomic Molecules?

3. The Experiment: Schematic, signal

4. Level Crossing Spectroscopy in 138BaF

5. First PV Data with 138BaF: Evidence of systematics

6. E & B Field Systematics: How to measure & eliminate

7. New Data

8. Future Work

Page 36: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

Recent Data

Measured:W = -8.2 1.2 Hz (stat)

Why do systematics remain?

Part of ENR lies outsideinteraction region→ can’t be shimmed out

Numerical calculations:This ENR plus reasonable Bgrad

still gives large W

Page 37: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

Longer E-field Region

Plan: Lengthen electrodes → can shim E fields and measure B fields further out

Page 38: Parity Violation in Diatomic Moleculesatomicphysics.yale.edu/sites/default/files/files/20140415-Ammon.pdf · 15-04-2014  · The Jefferson Lab PVDIS Collaboration. Nature . 506, 67-70

Future Work

• Make new interaction region with longer electrodes

• Shim out ENR and Bgrad

• Measure PV in 138BaF (Should be zero)

• Improvements in signal (hexapole lens, cryogenic source)

• Measure PV in 137BaF (Expected W ~5Hz)