page 1 introduction to lagrange chapter 13 - seminar notes chapter 13 - rigids

13
Page 1 Introduction to Lagrange Chapter 13 - RIGIDS MSC.Dytran Seminar Notes CHAPTER 13 - RIGIDS CHAPTER 13 - RIGIDS

Upload: piers-henderson

Post on 19-Jan-2018

216 views

Category:

Documents


0 download

DESCRIPTION

Page 3 Introduction to Lagrange Chapter 13 - RIGIDSMSC.Dytran Seminar Notes In MSC.Dytran arbitrary rigid bodies can be defined by: Arbitrary shaped rigid surfaces Rigid material Rigid Body Element RIGID BODY DEFINITION

TRANSCRIPT

Page 1: Page 1 Introduction to Lagrange Chapter 13 -   Seminar Notes CHAPTER 13 - RIGIDS

Page 1

Introduction to Lagrange

Chapter 13 - RIGIDS MSC.Dytran Seminar Notes

CHAPTER 13 - RIGIDSCHAPTER 13 - RIGIDS

Page 2: Page 1 Introduction to Lagrange Chapter 13 -   Seminar Notes CHAPTER 13 - RIGIDS

Page 2

Introduction to Lagrange

Chapter 13 - RIGIDS MSC.Dytran Seminar Notes

CONTENTS

• Rigid Body Definition

• Rigid Surfaces

• Rigid Material

• Rigid Body Loading

• Rigid Bodies Constraints

Page 3: Page 1 Introduction to Lagrange Chapter 13 -   Seminar Notes CHAPTER 13 - RIGIDS

Page 3

Introduction to Lagrange

Chapter 13 - RIGIDS MSC.Dytran Seminar Notes

In MSC.Dytran arbitrary rigid bodies can be defined by:

• Arbitrary shaped rigid surfaces

• Rigid material

• Rigid Body Element

RIGID BODY DEFINITION

Page 4: Page 1 Introduction to Lagrange Chapter 13 -   Seminar Notes CHAPTER 13 - RIGIDS

Page 4

Introduction to Lagrange

Chapter 13 - RIGIDS MSC.Dytran Seminar Notes

RIGID SURFACE - RIGID

• Rigid surface geometry defined by a arbitrary shaped multi-faceted surface

• Rigid surface properties must be defined by the user

- center of gravity

- mass

- moments of inertia

• Rigid surface initial velocity can be defined

Example: Rigid 25 which geometry is defined by surface 333, has a

mass of 200 kg, center of gravity is at (1., 1., 1.) and has

moments of inertia of 1.e5Initially the rigid surface has a velocity of 100

m/s in z-direction.SURFACE, 333,, PROP, 111

SET1, 111, 222

RIGID, 25, 333, 200.,, 1., 1., 1.,, +

+,,,, 100.,,,,, +

+,,1E5,1.E5,1.E5,1.E5,1E5,1E5

Page 5: Page 1 Introduction to Lagrange Chapter 13 -   Seminar Notes CHAPTER 13 - RIGIDS

Page 5

Introduction to Lagrange

Chapter 13 - RIGIDS MSC.Dytran Seminar Notes

RIGID MATERIAL - MATRIG

• Material treated as one rigid element

No matter how many elements and properties are used to make up the rigid body, in the solution it is treated as a single element They are very cheap to use

Name will become: MR<material number>

• MATRIG properties can be defined by the user

Normally, the user would simply replace a material entry like DMATEP by MATRIG, after which MSC.Dytran calculates the geometric properties of the rigid body from the density or mass and geometry

The user can also supply center of gravity, mass, moments of inertia and initial velocities himself

Page 6: Page 1 Introduction to Lagrange Chapter 13 -   Seminar Notes CHAPTER 13 - RIGIDS

Page 6

Introduction to Lagrange

Chapter 13 - RIGIDS MSC.Dytran Seminar Notes

RIGID MATERIAL - MATRIG(Continued)

Example: Rigid material number 19 which properties like mass,

center of gravity and moments of inertia are calculated

by MSC.Dytran

MATRIG, 19, 7850.

Name will become: MR19

Example: Rigid material number 200 with initial velocity of 10

in x-direction and of which the mass is 1000., center of

gravity is at (0., 7., -3.1) and also the moments of inertia

are supplied by the user

MATRIG, 200, , 210.E9, 0.3, 1000., 0.0, 7.0, -3.1, +

+ , 17.0, 13.2, 14.3, 0., 0., 10., , , +

+ , 10., 0., 0., 0., 0., 0.

Name will become: MR200

Page 7: Page 1 Introduction to Lagrange Chapter 13 -   Seminar Notes CHAPTER 13 - RIGIDS

Page 7

Introduction to Lagrange

Chapter 13 - RIGIDS MSC.Dytran Seminar Notes

RIGID BODY ELEMENT - RBE2-FULLRIG

• Defines a set of grid points that form a rigid body

This entry allows particular degrees of freedom of a set of grid points to be tied together so that they always move the same amount

Properties of rigid body will be calculated by MSC.Dytran based upon the masses associated with the grid points that are part of the RBE2-FULLRIG

Name will become: FR<material number>

Example: Nodes 1 to 28 and 55 will behave like a rigid body

RBE,12,55,FULLRIG,1,THRU,28

The name will be FR12

Page 8: Page 1 Introduction to Lagrange Chapter 13 -   Seminar Notes CHAPTER 13 - RIGIDS

Page 8

Introduction to Lagrange

Chapter 13 - RIGIDS MSC.Dytran Seminar Notes

Prescribes transient dynamic loading

TYPE = 13 in TLOAD1 definition

Must be selected in Case Control

Any loading (TLOADn entry) not selected in Case Control is ignored

Loading acts on the center of gravity of the rigid body

RIGID BODY LOADING

Page 9: Page 1 Introduction to Lagrange Chapter 13 -   Seminar Notes CHAPTER 13 - RIGIDS

Page 9

Introduction to Lagrange

Chapter 13 - RIGIDS MSC.Dytran Seminar Notes

RIGID BODY LOADING(Continued)

Example: Force on rigid material 19 varying in time

TLOAD = 1

BEGIN BULK

...

MATRIG, 19, 7850.

TLOAD1, 1, 444, , 13, 12

FORCE, 444, MR19,, 100., 0., 0., 1.

TABLED1, 12, , , , , , , , +

+, 0.0, 0.0, 1.0, 1.0, ENDT

Example: Force on rigid surface 19

TLOAD = 1

BEGIN BULK

...

RIGID, 19, 333, 200.,, 1., 1., 1.,, +

+,,,, 100.,,,,, +

+,,1E5,1.E5,1.E5,1.E5,1E5,1E5

TLOAD1, 1, 444, , 13

FORCE, 444, 19,, 100., 0., 0., 1.

Page 10: Page 1 Introduction to Lagrange Chapter 13 -   Seminar Notes CHAPTER 13 - RIGIDS

Page 10

Introduction to Lagrange

Chapter 13 - RIGIDS MSC.Dytran Seminar Notes

Example: Force and moment on a FULLRIG-RBE2 19

TLOAD = 1

BEGIN BULK

...

RBE,19,55,FULLRIG,1,THRU,28

TLOAD1, 1, 444, , 13

FORCE, 444, FR19,, 100., 0., 0., 1.

MOMENT, 444, FR19,, 100., -1., 0., 0.

RIGID BODY LOADING(Continued)

Page 11: Page 1 Introduction to Lagrange Chapter 13 -   Seminar Notes CHAPTER 13 - RIGIDS

Page 11

Introduction to Lagrange

Chapter 13 - RIGIDS MSC.Dytran Seminar Notes

Prescribes transient dynamic velocity field

TYPE = 12 in TLOAD1 definition

Must be selected in Case Control

Any loading (TLOADn entry) not selected in Case Control is ignored

The center of gravity of the rigid body will be constraint

RIGID BODY CONSTRAINTS

Page 12: Page 1 Introduction to Lagrange Chapter 13 -   Seminar Notes CHAPTER 13 - RIGIDS

Page 12

Introduction to Lagrange

Chapter 13 - RIGIDS MSC.Dytran Seminar Notes

RIGID BODY CONSTRAINTS(Continued)

Example: Z-velocity of a rigid material 19 varying in time

Allow body to move freely in x and y-direction

TLOAD = 1

BEGIN BULK

...

MATRIG, 19, 7850.

TLOAD1, 1, 444, , 12, 13

FORCE, 444, MR19, ,100., , , 1.

TABLED1, 12, , , , , , , , +

+, 0.0, 0.0, 1.0, 1.0, ENDT

Blanks!!!

Page 13: Page 1 Introduction to Lagrange Chapter 13 -   Seminar Notes CHAPTER 13 - RIGIDS

Page 13

Introduction to Lagrange

Chapter 13 - RIGIDS MSC.Dytran Seminar Notes

RIGID BODY CONSTRAINTS(Continued)

Example: Constrain rigid body MR19 to move in any direction

TLOAD = 1

BEGIN BULK

...

MATRIG, 19, 7850.

TLOAD1, 1, 54, , 12

FORCE, 54, MR19, , 0., 1., 1., 1.

MOMENT, 54, MR19, , 0., 1., 1., 1.