p-ibc: combining perc and topcon · 2 o 3 perc part topcon part. p-ibc al ag gap advantages no...

39
P-IBC: COMBINING PERC AND TOPCON E.E. BENDE N. GUILLEVIN A.R. BURGERS Y. WU

Upload: others

Post on 05-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • P-IBC:

    COMBINING PERC AND TOPCON

    E.E. BENDE

    N. GUILLEVIN

    A.R. BURGERS

    Y. WU

  • PERC AND WHAT NEXT?

    Al

    SiNx

    Al2O3

    SiNx

    SE

    Industry : ~22.3% efficiency

    Ag

  • PERC AND WHAT IS NEXT?

    Al

    n-Poly

    Poly fingers

    AgDriver

    J0,Ag reduction

    Challenges

    Alignment

    Parasitic absorption

    Processing

  • P-IBC: COMBINING PERC AND TOPCON

    AlAg

    SiNx

    Al2O3

    SiNx

    Al2O3n-poly

    PERC

    partTOPcon

    part

  • P-IBC

    AlAg

    gap

    Advantages

    No front-side shadow

    No Boron-diffusion → gap “for free”

    Ag & Al metallization, like PERC

    n-poly on rear side

    Low parasitic absorption

    Huge market for “ultra blacks”

    Requirements

    Modified module interconnection

    Double-sided Al2O3

    Patterning n-poly with simple process

  • TWO ARCHITECTURES

    Al Ag AgAl

    A B

    n-Polyi-Polyn-Poly

    Local etching n-poly Diffusion barrier process

  • METALLIZATION OPTION 1

    Base region: line-shaped

    BSF: line-shaped

    LCObase

    AgAg

    Aln-polyFT Ag

  • METALLIZATION OPTION 2

    Base region: line-shaped

    BSF: dot-shaped

    base

    AgAg

    Aln-polyFT Ag

  • METALLIZATION OPTION 3

    Base region: dot-shaped

    BSF: dot-shaped

    base

    AgAg

    Aln-polyFT Ag

  • FREEDOM IN METALLIZATION

    AlAg

    No shunt

    Alignment requirement

    Al

    Ag

    Measures to prevent shunt required

    Relaxed alignment

    Better conduction

  • QUOKKA 3D

    J0 VALUES

    Al Ag

    n-Poly

    10 fA/cm2100 fA/cm2 10 fA/cm2

    5 fA/cm2

    500 or 1000 fA/cm2

    tB=200,300,500,1000 ms

  • REDUCING J0,AL

    1000

    M. Rauer et al, IEEE JPV, 2013

    500 fA/cm2

    • 7 um Al-BSF

    • 2.5 um B-Al BSF

  • QUOKA 3D

    RESISTANCES

    AlAg

    n-Poly

    1 / 1.5 / 2.0 Wcm3 mWcm2

    3 mWcm2

    80 W/sq

  • QUOKKA 3D

    METALLIZATION OPTION 2

    LCOBase Ag

    Half pitch

    Half

    LCO pitch

    Emitter

    Computational unit cell

  • ASSUMED AL COVERAGE

    LCO Ag

    Al print

    80 um

    30 um

    50 um

    130 um

  • VOC

    J0,Al=1000 fA/cm2 J0,Al=500 fA/cm

    2

    pitch [mm]

    0.60

    0.75

    1.00

    pitch [mm]

    0.60

    0.75

    1.00

    wt= 145 mm

    tb= 500 ms

    rSi=1.5 Wcm

  • AL CONDUCTION

    Assumptions

    Rsh [mW/sq]

    BSF: 25,000

    Al-Si alloy: 4

    Al-bulk: 16

    J. Krause et al., Sol. Mat. 95 (2011)

  • FF

    J0,Al=1000 fA/cm2 J0,Al=500 fA/cm

    2

    pitch [mm]

    0.60

    0.75

    1.00

    pitch [mm]

    0.60

    0.75

    1.00

    Internal, line, contact

    resistance

    wt= 145 mm

    tb= 500 ms

    rSi=1.5 Wcm

  • EFFICIENCY

    J0,Al=1000 fA/cm2 J0,Al=500 fA/cm

    2

    pitch [mm]

    0.60

    0.75

    1.00

    pitch [mm]

    0.60

    0.75

    1.00wt= 145 mm

    tb= 500 ms

    rSi=1.5 Wcm

  • EFFICIENCY

    wt = 145 mm

    finger pitch=750 mm

    dot pitch=60 mm

    rSi=

    1 Wcm

    2 Wcm

    rSi=

    1 Wcm

    2 Wcm

    J0,Al=1000 fA/cm2 J0,Al=500 fA/cm

    2

  • LAB PROCESS RESULTS

    A B

    n-Polyi-Polyn-Poly

  • PROCESS A1 (ETCH BARRIER PRINT)

    1 2 3 4

    5 6 7 8

    AlAg

    Oxide & n-poly Etch barrier dielectric Barrier printing Etch n-poly

    Etch barrier removal Double-sided

    Al2O3-SiNx

    PERC-like

    laser contact opening

    PERC- like

    Metallization & co-fire

  • PROCESS A2 (ALL LASER)

    1 2 3 4

    5 6 7 8

    AlAg

    Oxide & n-poly Etch barrier dielectric Etch barrier

    laser 1 opening

    Etch n-poly

    Etch barrier removal Double-sided

    Al2O3-SiNx

    PERC-like

    laser 2 opening

    PERC- like

    Metallization & co-fire

  • IMPLIED-VOC

    Al2O3-SiNx

    Al2O3-SiNx

    n-Poly

    Test structure Cell precursor

    npoly

    base

  • IMPLIED-VOC

    Al2O3-SiNx

    Al2O3-SiNx

    n-Poly

    Test structure Cell precursor

    npoly

    base

    J0=6 fA/cm2 J0=5 fA/cm

    2

  • IMPLIED-VOC

    Al2O3-SiNx

    Al2O3-SiNx

    n-Poly

    Al2O3-SiNx

    n-Poly

    Al2O3-SiNx

    i-Poly

    npoly

    base

    Test structure Cell precursor Test structure Cell precursor

  • P-IBC CELL PROCESS RESULTS

    Two runs

    Voc = 680 mV

    Shunt issues

    Challenges

    Pinholes

  • IQE

    Where does the loss come from?

    5%

  • LBIC MEASUREMENT

    Contacting LBIC area

  • LBIC

    FT Ag finger

    Toyo Al pasteAl finger

    Base

    NC Ag busbar

    Electrical shading

    Emitter BB has strong LBIC signal

    Base BB causes electrical shading

    Ag FT fingers not visible

    (passivatived contact)

    Al has lowest signal as expected

    Al and Ag show a reaction that

    adversely affect Al2O3/SiNx

    passivation

    Glass frit migration issue

    due to non-compatibility

    3rd party

    NC paste

    Al2O3(6nm)/SiNx(80nm)

  • PINHOLES

    pinhole case 1

    pinhole case 2pinhole case 3

    processing

    Prepare for patterning Cell before metallization

    LCO

    paste

    Dielectric

    Etch barrier

  • PL

  • Pinholes visible on n-Poly, not at base 33

    Al

    Ag

    Al

    Ag

    nPolyAg

    Ag

    nPoly

    Ag

    nPoly

    Al

    base

    Sharp transition from “dirty” to “clean” n-Poly

    base

    PL

    No pinholes visible

  • SHUNT OF AL FINGERS ON N-POLY

    Al

  • LASER PATTERNING

    processing

  • LASER OPENING BASE AREA (N-POLY PATTERNING)

    Speed (%)100 50 3565

    50%

    65%

    85%

    100%

    Power

    703 mV 719 mV 724 mV 719 mV

    710 mV 710 mV 720 mV715 mV

    680 mV668 mV 682 mV 707 mV

    Not measured

    Optical microscopeLaser affects bulk

  • R_SHEET MAP

    Speed (%)100 50 3565

    50%

    65%

    85%

    100%

    Power 60 65 70 75 80 85 90 95

    110.6110.8111.0111.2111.4

    0.000

    56.64

    113.3

    169.9

    226.6

    283.2

    339.8

    396.5

    453.1

    500.0

    Rsheet mapping by THz-technique

    n-poly fully removed

  • CONCLUSION

    p-IBC combines PERC & TOPcon

    Implied-Voc values from 690-720 mV (after firing)

    Laser patterning has high potential for solar-cell processing

    R&D focus on preventing shunt

    thicker SiNx

    no tail in base region

    no pinholes

    p-IBC is a high-potential candidate as follow-up for PERC in industry

    ECN.TNO seeks industrial collaboration to bring this or other concepts further

    [email protected]

    Acknowledgement to Toyo Aluminum

    mailto:[email protected]

  • THANK YOU

    FOR YOUR ATTENTION

    Thanks to:

    • Co-authors,

    • Project ABC4All partners, RVO TKI funding

    • Toyo Aluminium