ovp and emi protected, precision, low noise and …...ovp and emi protected, precision, low noise...

33
OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2014–2018 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com FEATURES Low offset voltage: 60 µV maximum at 25°C (8-lead and 14-lead SOIC) Low offset voltage drift: 1 µV/°C maximum (8-lead and 14-lead SOIC) Low input bias current: 1 nA maximum at 25°C Low voltage noise density: 8 nV/√Hz typical at 1 kHz Large signal voltage gain (AVO): 100 dB minimum over full supply voltage and operating temperature Input overvoltage protection to 32 V above and below the supply voltage rail Integrated EMI filter 70 dB typical rejection at 1000 MHz 90 dB typical rejection at 2400 MHz Rail-to-rail output swing Low supply current: 500 µA typical per amplifier Wide bandwidth Gain bandwidth product (AV = 100): 3.5 MHz typical Unity-gain crossover (AV = 1): 3.5 MHz typical −3 dB bandwidth (AV = 1): 6 MHz typical Dual-supply operation Specified at ±5 V to ±15 V, operates over ±2.5 V to ±18 V Unity-gain stable No phase reversal Long-term offset voltage drift (10,000 hours): 2 µV typical Temperature hysteresis: 2 µV typical APPLICATIONS Wireless base station control circuits Optical network control circuits Instrumentation Sensors and controls Thermocouples, RTDs, strain gages, shunt current measurements GENERAL DESCRIPTION The ADA4177-1 single-channel, ADA4177-2 dual-channel, and ADA4177-4 quad-channel amplifiers feature low offset voltage (2 µV typical) and drift (1 µV/°C maximum), low input bias current, low noise, and low current consumption (500 µA typical). Outputs are stable with capacitive loads of more than 1000 pF with no external compensation. The inputs of the ADA4177-1/ADA4177-2/ADA4177-4 feature outstanding precision amplifier robustness, providing input protection against signal excursions 32 V beyond either supply, as well as 70 dB of rejection for electromagnetic interference (EMI) at 1000 MHz. PIN CONNECTION DIAGRAM OUT A 1 –IN A 2 +IN A 3 V– 4 V+ 8 OUT B 7 –IN B 6 +IN B 5 ADA4177-2 TOP VIEW (Not to Scale) 12282-001 Figure 1. ADA4177-2, for Additional Packages and Models, See the Pin Configurations and Function Descriptions Section Applications for these amplifiers include sensor signal conditioning (such as thermocouples, resistor thermal detectors (RTDs), and strain gages), process control front-end amplifiers, and precision diode power measurement in optical and wireless transmission systems. The ADA4177-1/ADA4177-2/ADA4177-4 operate over the −40°C to +125°C industrial temperature range. The ADA4177-1/ ADA4177-2 are available in an 8-lead SOIC package and an 8-lead MSOP package. The ADA4177-4 is available in a 14-lead TSSOP and a 14-lead SOIC package. 12 –10 –8 –6 –4 –2 0 2 4 6 8 10 INPUT BIAS CURRENT (mA) V IN (V) –50 50 30 10 –10 –30 12282-446 V SY = ±15V Figure 2. Overvoltage Current Limiting, Voltage Follower Configuration Table 1. Evolution of Protected Input Op Amps by Generation 1 Gen. 1, OVP (10 V) Gen. 2, OVP (25 V) Gen. 3, OVP (32 V) Gen. 4 EMI Filters Gen. 5, OVP (32 V) + EMI OP191 ADA4091-2 ADA4096-2 AD8657 ADA4177-1 OP291 ADA4091-4 ADA4096-4 AD8659 ADA4177-2 OP491 ADA4092-4 AD8546 ADA4177-4 AD8548 ADA4661-2 ADA4666-2 1 Gen. means generation.

Upload: others

Post on 28-Jun-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps

Data Sheet ADA4177-1/ADA4177-2/ADA4177-4

Rev. E Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2014–2018 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

FEATURES Low offset voltage: 60 µV maximum at 25°C (8-lead and

14-lead SOIC) Low offset voltage drift: 1 µV/°C maximum (8-lead and

14-lead SOIC) Low input bias current: 1 nA maximum at 25°C Low voltage noise density: 8 nV/√Hz typical at 1 kHz Large signal voltage gain (AVO): 100 dB minimum over full

supply voltage and operating temperature Input overvoltage protection to 32 V above and below the

supply voltage rail Integrated EMI filter

70 dB typical rejection at 1000 MHz 90 dB typical rejection at 2400 MHz

Rail-to-rail output swing Low supply current: 500 µA typical per amplifier Wide bandwidth

Gain bandwidth product (AV = 100): 3.5 MHz typical Unity-gain crossover (AV = 1): 3.5 MHz typical −3 dB bandwidth (AV = 1): 6 MHz typical

Dual-supply operation Specified at ±5 V to ±15 V, operates over ±2.5 V to ±18 V

Unity-gain stable No phase reversal Long-term offset voltage drift (10,000 hours): 2 µV typical Temperature hysteresis: 2 µV typical

APPLICATIONS Wireless base station control circuits Optical network control circuits Instrumentation Sensors and controls

Thermocouples, RTDs, strain gages, shunt current measurements

GENERAL DESCRIPTION The ADA4177-1 single-channel, ADA4177-2 dual-channel, and ADA4177-4 quad-channel amplifiers feature low offset voltage (2 µV typical) and drift (1 µV/°C maximum), low input bias current, low noise, and low current consumption (500 µA typical). Outputs are stable with capacitive loads of more than 1000 pF with no external compensation.

The inputs of the ADA4177-1/ADA4177-2/ADA4177-4 feature outstanding precision amplifier robustness, providing input protection against signal excursions 32 V beyond either supply, as well as 70 dB of rejection for electromagnetic interference (EMI) at 1000 MHz.

PIN CONNECTION DIAGRAM OUT A 1

–IN A 2

+IN A 3

V– 4

V+8

OUT B7

–IN B6

+IN B5

ADA4177-2TOP VIEW

(Not to Scale)

1228

2-00

1

Figure 1. ADA4177-2, for Additional Packages and Models, See the Pin

Configurations and Function Descriptions Section

Applications for these amplifiers include sensor signal conditioning (such as thermocouples, resistor thermal detectors (RTDs), and strain gages), process control front-end amplifiers, and precision diode power measurement in optical and wireless transmission systems.

The ADA4177-1/ADA4177-2/ADA4177-4 operate over the −40°C to +125°C industrial temperature range. The ADA4177-1/ ADA4177-2 are available in an 8-lead SOIC package and an 8-lead MSOP package. The ADA4177-4 is available in a 14-lead TSSOP and a 14-lead SOIC package.

12

–10

–8

–6

–4

–2

0

2

4

6

8

10

INPU

T B

IAS

CU

RR

ENT

(mA

)

VIN (V)–50 503010–10–30

1228

2-44

6

VSY = ±15V

Figure 2. Overvoltage Current Limiting, Voltage Follower Configuration

Table 1. Evolution of Protected Input Op Amps by Generation1 Gen. 1, OVP (10 V)

Gen. 2, OVP (25 V)

Gen. 3, OVP (32 V)

Gen. 4 EMI Filters

Gen. 5, OVP (32 V) + EMI

OP191 ADA4091-2 ADA4096-2 AD8657 ADA4177-1 OP291 ADA4091-4 ADA4096-4 AD8659 ADA4177-2 OP491 ADA4092-4 AD8546 ADA4177-4 AD8548 ADA4661-2 ADA4666-2

1 Gen. means generation.

Page 2: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

ADA4177-1/ADA4177-2/ADA4177-4 Data Sheet

Rev. E | Page 2 of 33

TABLE OF CONTENTS Features .............................................................................................. 1 Applications ....................................................................................... 1 General Description ......................................................................... 1 Pin Connection Diagram ................................................................ 1 Revision History ............................................................................... 3 Specifications ..................................................................................... 4

Electrical Characteristics, ±5 V .................................................. 4 Electrical Characteristics, ±15 V ................................................ 6 Absolute Maximum Ratings ....................................................... 8 Maximum Power Dissipation ..................................................... 8 Thermal Resistance ...................................................................... 8 ESD Caution .................................................................................. 8

Pin Configurations and Function Descriptions ........................... 9 Typical Performance Characteristics ........................................... 12 Theory of Operation ...................................................................... 25

Applications Information .............................................................. 26 Active Overvoltage Protection ................................................. 26 Limiting Overvoltage Current Out of the Positive Supply Pin....................................................................................................... 27 EMI Protection ........................................................................... 28 Self Heating ................................................................................. 28 Using the ADA4177-1/ADA4177-2/ADA4177-4 as a Comparator ................................................................................. 28 Output Phase Reversal ............................................................... 29 Proper Printed Circuit Board (PCB) Layout .......................... 29 Long-Term Drift ......................................................................... 29 Temperature Hysteresis ............................................................. 30

Outline Dimensions ....................................................................... 31 Ordering Guide .......................................................................... 33

Page 3: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

Data Sheet ADA4177-1/ADA4177-2/ADA4177-4

Rev. E | Page 3 of 33

REVISION HISTORY 8/2018—Rev. D to Rev. E Change to Input Capacitance (CINCM) Parameter, Table 2............ 4 Change to Input Capacitance (CINCM) Parameter, Table 3............ 6 Changes to Ordering Guide ........................................................... 33 5/2017—Rev. C to Rev. D Changes to Features Section, Applications Section, and General Description Section ........................................................................... 1 Changes to Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, and Figure 14 ................................................................................... 12 Changes to Figure 15 and Figure 16 ............................................. 13 Changes to Add an External Series Input Resistor Section and Figure 85 ........................................................................................... 26 Changes to Self Heating Section ................................................... 28 Added Long-Term Drift Section ................................................... 29 Added Temperature Hysteresis Section, Figure 97, Figure 98, and Figure 99; Renumbered Sequentially ............................................... 30 4/2015—Rev. B to Rev. C Added ADA4177-1 ............................................................ Universal Deleted Figure 2; Renumbered Sequentially ................................. 1 Change to Table 1 .............................................................................. 1 Added Figure 5, Figure 6, and Table 7; Renumbered Sequentially ........................................................................................ 9 Changes to Figure 16, Figure 17, Figure 19, and Figure 20 ....... 12 Changes to Figure 26 ...................................................................... 14 Changes to Figure 34, Figure 35, Figure 37, and Figure 39 ....... 16 Changes to Figure 46, Figure 47, Figure 49, and Figure 50 ....... 17 Changes to Figure 59 and Figure 62 ............................................. 19 Changes to Figure 63, Figure 65, Figure 66, and Figure 68 ....... 20 Changes to Figure 69 and Figure 72 ............................................. 21 Changes to Figure 75 and Figure 78 ............................................. 22 Added Figure 77 and Figure 80 ..................................................... 22 Added Figure 81 to Figure 83 ........................................................ 23 Changes to Theory of Operation Section .................................... 24

Changes to Input Protection Circuit Section and Limiting Overvoltage Current Out of the Positive Supply Pin Section ... 26 Changes to Using the ADA4177-1/ADA4177-2/ADA4177-4 as a Comparator Section ..................................................................... 27 Changes to Ordering Guide ........................................................... 31 1/2015—Rev. A to Rev. B Added ADA4177-4 ............................................................ Universal Reorganized Layout ........................................................... Universal Added Figure 2; Renumbered Sequentially ................................... 1 Changes to Features and General Description Section ................ 1 Changes to Table 2 ............................................................................ 3 Changes to Table 3 ............................................................................ 5 Changes to Table 5 ............................................................................ 7 Added Figure 6, Figure 7, and Table 7; Renumbered Sequentially ........................................................................................ 9 Added Figure 10 and Figure 13 ..................................................... 10 Replaced Figure 15 and Figure 18 ................................................. 11 Added Figure 14, Figure 16, Figure 17, and Figure 19 ............... 11 Changes to Figure 20, Figure 21, Figure 23, and Figure 24 ....... 12 Changes to Figure 32 and Figure 33 ............................................. 14 Changes to Figure 38 and Figure 41 ............................................. 15 Changes to Figure 58 and Figure 61 ............................................. 18 Changes to Figure 62, Figure 65, and Figure 66 .......................... 19 Changes to Figure 69 and Figure 72 ............................................. 20 Change to Figure 87 Caption ......................................................... 25 Updated Outline Dimensions ........................................................ 27 Added Figure 93 and Figure 94 ..................................................... 28 Changes to Ordering Guide ........................................................... 29 10/2014—Rev. 0 to Rev. A Changes to Large Signal Voltage Gain Parameter, Test Conditions/Comments Column, Table 3 ....................................... 5 10/2014—Revision 0: Initial Version

Page 4: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

ADA4177-1/ADA4177-2/ADA4177-4 Data Sheet

Rev. E | Page 4 of 33

SPECIFICATIONS ELECTRICAL CHARACTERISTICS, ±5 V VSY = ±5.0 V, VCM = 0 V, TA = 25°C, unless otherwise noted.

Table 2. Parameter Symbol Test Conditions/Comments Min Typ Max Unit INPUT CHARACTERISTICS

Offset Voltage VOS 8-Lead SOIC and 14-Lead SOIC 2 60 µV −40°C < TA < +125°C 120 µV 8-Lead MSOP 3 120 µV −40°C < TA < +125°C 200 µV 14-Lead TSSOP 3 150 µV −40°C < TA < +125°C 300 µV

Offset Voltage Matching 8-Lead SOIC 40 µV 8-Lead MSOP 110 µV

Offset Voltage Drift ΔVOS/ΔT −40°C < TA < +125°C 8-Lead SOIC and 14-Lead SOIC 1 µV/°C 8-Lead MSOP and 14-Lead TSSOP 1.6 µV/°C

Input Bias Current IB −1 −0.4 +1 nA −40°C < TA < +125°C −2 +2 nA Input Offset Current IOS −0.75 +0.1 +0.75 nA −40°C < TA < +125°C −1.5 +1.5 nA Input Voltage Range IVR −3.5 +3.5 V Overvoltage Current Limit1 IOVP 5 V < VCM < 37 V 12 mA −37 V < VCM < −5 V 10 mA Common-Mode Rejection Ratio CMRR VCM = −3.5 V to +3.5 V 122 130 dB −40°C < TA < +125°C 120 dB Large Signal Voltage Gain AVO RL = 2 kΩ, VOUT = −4.5 V to +4.5 V 108 110 dB −40°C < TA < +125°C 100 dB RL = 10 kΩ, VOUT = −4.5 V to +4.5 V 115 120 dB −40°C < TA < +125°C 110 dB Input Capacitance CINDM Differential mode 1 pF CINCM Common mode 8 pF Input Resistance RDIFF Differential mode 4 MΩ RCM Common mode 100 GΩ

OUTPUT CHARACTERISTICS Output Voltage

High VOH ILOAD = 1 mA 4.95 V −40°C < TA < +125°C 4.90 V ILOAD = 7 mA 4.80 V −40°C < TA < +125°C 4.75 V Low VOL ILOAD = 1 mA −4.95 V −40°C < TA < +125°C −4.90 V ILOAD = 7 mA −4.80 V −40°C < TA < +125°C −4.75 V

Output Current IOUT VDROPOUT < 1 V 25 mA Short-Circuit Current ISC TA = 25°C

Sourcing 36 mA Sinking 48 mA

Closed-Loop Output Impedance ZOUT f = 1 kHz, AV = 1 0.11 Ω

Page 5: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

Data Sheet ADA4177-1/ADA4177-2/ADA4177-4

Rev. E | Page 5 of 33

Parameter Symbol Test Conditions/Comments Min Typ Max Unit POWER SUPPLY

Power Supply Rejection Ratio PSRR VS = ±2.5 V to ±18 V 125 145 dB −40°C < TA < +125°C 120 dB

Supply Current per Amplifier ISY VOUT = 0 V 500 560 µA −40°C < TA < +125°C 600 µA DYNAMIC PERFORMANCE

Slew Rate SR RL = 2 kΩ 1.5 V/µs Settling Time tS

To 0.1% VIN = 1 V step, RL = 2 kΩ, AV = −1 1.8 µs To 0.01% VIN = 1 V step, RL = 2 kΩ, AV = −1 3.5 µs

Gain Bandwidth Product GBP VIN = 10 mV p-p, RL = 2 kΩ, AV = 100 3.5 MHz Unity-Gain Crossover UGC VIN = 10 mV p-p, RL = 2 kΩ, AV = 1 3.5 MHz −3 dB Closed-Loop Bandwidth f−3 dB VIN = 10 mV p-p, RL = 2 kΩ, AV = 1 6 MHz Total Harmonic Distortion Plus Noise THD + N VIN = 1 V rms, RL = 2 kΩ, AV = +1, f = 1 kHz 0.003 % EMI Rejection of +INx EMIRR VIN = 200 mV p-p

f = 1000 MHz 70 dB f = 2400 MHz 90 dB

NOISE PERFORMANCE Voltage Noise en p-p 0.1 Hz to 10 Hz 175 nV p-p Voltage Noise Density en f = 10 Hz 10 nV/√Hz f = 1 kHz 8 nV/√Hz Current Noise Density in f = 1 kHz 0.2 pA/√Hz

1 All inputs are stressed to 32 V beyond supplies for 500 ms. See Figure 71 for the typical input bias current vs. the input voltage over the overvoltage protected input range.

Page 6: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

ADA4177-1/ADA4177-2/ADA4177-4 Data Sheet

Rev. E | Page 6 of 33

ELECTRICAL CHARACTERISTICS, ±15 V VSY = ±15 V, VCM = 0 V, TA = 25°C, unless otherwise noted.

Table 3. Parameter Symbol Test Conditions/Comments Min Typ Max Unit INPUT CHARACTERISTICS

Offset Voltage VOS 8-Lead SOIC and 14-Lead SOIC 2 60 µV

−40°C < TA < +125°C 120 µV 8-Lead MSOP 3 120 µV

−40°C < TA < +125°C 200 µV 14-Lead TSSOP 3 150 µV

−40°C < TA < +125°C 300 µV Offset Voltage Matching

8-Lead SOIC 40 µV 8-Lead MSOP 110 µV

Offset Voltage Drift ΔVOS/ΔT −40°C < TA < +125°C 8-Lead SOIC and 14-Lead SOIC 1 µV/°C 8-Lead MSOP and 14-Lead TSSOP 1.6 µV/°C

Input Bias Current IB −1 −0.3 +1 nA −40°C < TA < +125°C −2 +2 nA Input Offset Current IOS −0.75 +0.1 +0.75 nA −40°C < TA < +125°C −1.5 +1.5 nA Input Voltage Range IVR −13.5 +13.5 V Overvoltage Current Limit1 IOVP 15 V < VCM < 47 V 12 mA −47 V < VCM < −15 V 10 mA Common-Mode Rejection Ratio CMRR VCM = −13.5 V to +13.5 V 128 130 dB −40°C < TA < +125°C 125 dB Large Signal Voltage Gain AVO RL = 2 kΩ, VOUT = −14.2 V to +14.2 V 110 114 dB −40°C < TA < +125°C 103 dB RL = 10 kΩ, VOUT = −14.5 V to +14.5 V 118 120 dB −40°C < TA < +125°C 110 dB Input Capacitance CINDM Differential mode 1 pF CINCM Common mode 8 pF Input Resistance RDIFF Differential mode 4 MΩ

RCM Common mode 130 GΩ OUTPUT CHARACTERISTICS

Output Voltage High VOH ILOAD = 1 mA 14.95 V −40°C < TA < +125°C 14.90 V ILOAD = 7 mA 14.80 V −40°C < TA < +125°C 14.75 V Low VOL ILOAD = 1 mA −14.95 V −40°C < TA < +125°C −14.90 V ILOAD = 7 mA −14.80 V −40°C < TA < +125°C −14.75 V

Output Current IOUT VDROPOUT < 1 V 25 mA Short-Circuit Current ISC TA = 25°C

Sourcing 53 mA Sinking 65 mA

Closed-Loop Output Impedance ZOUT f = 1 kHz, AV = 1 0.08 Ω

Page 7: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

Data Sheet ADA4177-1/ADA4177-2/ADA4177-4

Rev. E | Page 7 of 33

Parameter Symbol Test Conditions/Comments Min Typ Max Unit POWER SUPPLY

Power Supply Rejection Ratio PSRR VS = ±2.5 V to ±18 V 125 145 dB −40°C < TA < +125°C 120 dB Supply Current per Amplifier ISY VOUT = 0 V 500 580 µA

−40°C < TA < +125°C 620 µA DYNAMIC PERFORMANCE

Slew Rate SR RL = 2 kΩ 1.5 V/µs Settling Time tS

To 0.1% VIN = 10 V p-p, RL = 2 kΩ, AV = −1 5.5 µs To 0.01% VIN = 10 V p-p, RL = 2 kΩ, AV = −1 7.5 µs

Gain Bandwidth Product GBP VIN = 10 mV p-p, RL = 2 kΩ, AV = 100 3.5 MHz Unity-Gain Crossover UGC VIN = 10 mV p-p, RL = 2 kΩ, AV = 1 3.5 MHz −3 dB Closed-Loop Bandwidth f−3 dB VIN = 10 mV p-p, RL = 2 kΩ, AV = 1 6 MHz Total Harmonic Distortion Plus Noise THD + N VIN = 1 V rms, AV = +1, RL = 2 kΩ, f = 1 kHz 0.002 % EMI Rejection of +INx EMIRR VIN = 200 mV p-p

f = 1000 MHz 70 dB f = 2400 MHz 90 dB

NOISE PERFORMANCE Voltage Noise en p-p 0.1 Hz to 10 Hz 175 nV p-p Voltage Noise Density en f = 10 Hz 10 nV/√Hz f = 1 kHz 8 nV/√Hz Current Noise Density in f = 1 kHz 0.2 pA/√Hz

MULTIPLE AMPLIFIERS CHANNEL SEPARATION CS f = 1 kHz 127 dB 1 All inputs are stressed to 32 V beyond supplies for 500 ms. See Figure 74 for the typical input bias current vs. the input voltage over the overvoltage protected input range.

Page 8: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

ADA4177-1/ADA4177-2/ADA4177-4 Data Sheet

Rev. E | Page 8 of 33

ABSOLUTE MAXIMUM RATINGS Table 4. Parameter Rating Supply Voltage 36 V Input Voltage VSY ± 32 V Differential Input Voltage ±VSY Output Short-Circuit Duration to GND See the Maximum Power

Dissipation section Storage Temperature Range −65°C to +150°C Operating Temperature Range −40°C to +125°C Junction Temperature Range −65°C to +150°C Lead Temperature, Soldering (10 sec)1 300°C Electrostatic Discharge (ESD)

Human Body Model (HBM)2 4 kV Field Induced Charged Device

Model (FICDM)3 1250 V

Machine Model (MM) 200 V 1 IPC/JEDEC J-STS-020D applicable standard. 2 ESDA/JEDEC JS-001-2011 applicable standard. 3 JESD22-C101 (ESD FICDM standard of JEDEC) applicable standard.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

MAXIMUM POWER DISSIPATION The ADA4177-1/ADA4177-2/ADA4177-4 can drive a short-circuit output current of up to 65 mA. However, the usable output load current drive is limited by the maximum power dissipation allowed by the device package. The absolute maximum junction temperature is 150°C (see Table 4). The junction temperature can be estimated as follows:

TJ = PD × θJA + TA

where: TJ is the die junction temperature. PD is the power dissipated in the package. θJA is the thermal resistance of the package. TA is the ambient temperature.

The power dissipated in the package (PD) is the sum of the quiescent power dissipation and the power dissipated by the output stage transistor. It is calculated as follows:

PD = (VSY × ISY) + (VSY − VOUT) × ILOAD

where: VSY is the power supply rail. ISY is the quiescent current. VOUT is the output of the amplifier. ILOAD is the output load.

Do not exceed the 150°C maximum junction temperature for the device. Exceeding the junction temperature limit can cause degradation in the parametric performance or even destroy the device. Refer to Technical Article MS-2251, Data Sheet Intricacies—Absolute Maximum Ratings and Thermal Resistances, for more information.

THERMAL RESISTANCE Thermal resistance between junction and ambient (θJA) is specified for the worst case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 5. Thermal Resistance Package Type θJA θJC Unit 8-Lead MSOP 190 44 °C/W 8-Lead SOIC 158 43 °C/W 14-Lead TSSOP 240 43 °C/W 14-Lead SOIC 115 36 °C/W

ESD CAUTION

Page 9: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

Data Sheet ADA4177-1/ADA4177-2/ADA4177-4

Rev. E | Page 9 of 33

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

NOTES1. NIC = NOT INTERNALLY CONNECTED.

NIC–IN+INV–

NICV+OUTNIC

ADA4177-1TOP VIEW

(Not to Scale)

1228

2-20

5

1

2

3

4

8

7

6

5

Figure 3. ADA4177-1 8-Lead MSOP Pin Configuration

NOTES1. NIC = NOT INTERNALLY CONNECTED.

NIC 1

–IN 2

+IN 3

V– 4

NIC8

V+7

OUT6

NIC5

ADA4177-1TOP VIEW

(Not to Scale)

1228

2-10

5

Figure 4. ADA4177-1 8-Lead SOIC Pin Configuration

Table 6. ADA4177-1 Pin Function Descriptions Pin No. Mnemonic Description 1, 5, 8 NIC Not Internally Connected. 2 −IN Inverting Input Channel. 3 +IN Noninverting Input Channel. 4 V− Negative Supply Voltage. 6 OUT Output Channel. 7 V+ Positive Supply Voltage.

Page 10: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

ADA4177-1/ADA4177-2/ADA4177-4 Data Sheet

Rev. E | Page 10 of 33

OUT A 1

–IN A 2

+IN A 3

V– 4

V+8

OUT B7

–IN B6

+IN B5

ADA4177-2TOP VIEW

(Not to Scale)

1228

2-00

4

Figure 5. ADA4177-2 8-Lead MSOP Pin Configuration

OUT A 1

–IN A 2

+IN A 3

V– 4

V+8

OUT B7

–IN B6

+IN B5

ADA4177-2TOP VIEW

(Not to Scale)

1228

2-00

5

Figure 6. ADA4177-2 8-Lead SOIC Pin Configuration

Table 7. ADA4177-2 Pin Function Descriptions Pin No. Mnemonic Description 1 OUT A Output Channel A. 2 −IN A Inverting Input Channel A. 3 +IN A Noninverting Input Channel A. 4 V− Negative Supply Voltage. 5 +IN B Noninverting Input Channel B. 6 −IN B Inverting Input Channel B. 7 OUT B Output Channel B. 8 V+ Positive Supply Voltage.

Page 11: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

Data Sheet ADA4177-1/ADA4177-2/ADA4177-4

Rev. E | Page 11 of 33

ADA4177-4

1

2

3

4

5

6

7

–IN A

+IN A

V+

OUT B

–IN B

+IN B

OUT A 14

13

12

11

10

9

8

–IN D

+IN D

V–

OUT C

–IN C

+IN C

OUT D

TOP VIEW(Not to Scale)

1228

2-20

6

Figure 7. ADA4177-4 14-Lead TSSOP Pin Configuration

OUT A 1

–IN A 2

+IN A 3

V+ 4

OUT D14

–IN D13

+IN D12

V–11

+IN B 5 +IN C10

–IN B 6 –IN C9

OUT B 7 OUT C8

ADA4177-4TOP VIEW

(Not to Scale)

1228

2-20

7

Figure 8. ADA4177-4 14-Lead SOIC Pin Configuration

Table 8. ADA4177-4 Pin Function Descriptions Pin No. Mnemonic Description 1 OUT A Output Channel A. 2 −IN A Inverting Input Channel A. 3 +IN A Noninverting Input Channel A. 4 V+ Positive Supply Voltage. 5 +IN B Noninverting Input Channel B. 6 −IN B Inverting Input Channel B. 7 OUT B Output Channel B. 8 OUT C Output Channel C. 9 −IN C Inverting Input Channel C. 10 +IN C Noninverting Input Channel C. 11 V− Negative Supply Voltage. 12 +IN D Noninverting Input Channel D. 13 −IN D Inverting Input Channel D. 14 OUT D Output Channel D.

Page 12: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

ADA4177-1/ADA4177-2/ADA4177-4 Data Sheet

Rev. E | Page 12 of 33

TYPICAL PERFORMANCE CHARACTERISTICS Ambient temperature (TA) = 25°C unless otherwise noted.

80

70

60

0

10

20

30

40

50

NU

MB

ER O

F A

MPL

IFIE

RS

VOS (µV)

VSY = ±5V8-LEAD SOIC

–50

–45

–40

–35

–30

–25

–20

–15

–10 –5 0 5 10 15 20 25 30 35 40 45 50

1228

2-40

2

Figure 9. Input Offset Voltage (VOS) Distribution, VSY = ±5 V, 8-Lead SOIC

60

0

10

20

30

40

50

NU

MB

ER O

F A

MPL

IFIE

RS

VOS (µV)

–100 –90

–80

–70

–60

–50

–40

–30

–20

–10 0 10 20 30 40 50 60 70 80 90 100

VSY = ±5V8-LEAD MSOP

1228

2-40

0

Figure 10. Input Offset Voltage (VOS) Distribution, VSY = ±5 V, 8-Lead MSOP

300

0

50

100

150

200

250

NU

MB

ER O

F A

MPL

IFIE

RS

VOS (µV)

VSY = ±5V14-LEAD SOIC

–50

–45

–40

–35

–30

–25

–20

–15

–10 –5 0 5 10 15 20 25 30 35 40 45 50

1228

2-50

3

Figure 11. Input Offset Voltage (VOS) Distribution, VSY = ±5 V,

14-Lead SOIC

90

80

70

60

0

10

20

30

40

50

NU

MB

ER O

F A

MPL

IFIE

RS

VOS (µV)

VSY = ±15V8-LEAD SOIC

–50

–45

–40

–35

–30

–25

–20

–15

–10 –5 0 5 10 15 20 25 30 35 40 45 50

1228

2-40

3

Figure 12. Input Offset Voltage (VOS) Distribution, VSY = ±15 V,

8-Lead SOIC

60

0

10

20

30

40

50

NU

MB

ER O

F A

MPL

IFIE

RS

VOS (µV)

–100 –90

–80

–70

–60

–50

–40

–30

–20

–10 0 10 20 30 40 50 60 70 80 90 100

VSY = ±15V8-LEAD MSOP

1228

2-40

1

Figure 13. Input Offset Voltage (VOS) Distribution, VSY = ±15 V,

8-Lead MSOP

300

0

50

100

150

200

250

NU

MB

ER O

F A

MPL

IFIE

RS

VOS (µV)

VSY = ±15V14-LEAD SOIC

–50

–45

–40

–35

–30

–25

–20

–15

–10 –5 0 5 10 15 20 25 30 35 40 45 50

1228

2-50

4

Figure 14. Input Offset Voltage (VOS) Distribution, VSY = ±15 V,

14-Lead SOIC

Page 13: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

Data Sheet ADA4177-1/ADA4177-2/ADA4177-4

Rev. E | Page 13 of 33

90

80

70

60

0

10

20

30

40

50

NU

MB

ER O

F A

MPL

IFIE

RS

VOS (µV)

–100 –90

–80

–70

–60

–50

–40

–30

–20

–10 0 10 20 30 40 50 60 70 80 90 100

VSY = ±5V14-LEAD TSSOP

1228

2-50

1

Figure 15. Input Offset Voltage (VOS) Distribution, VSY = ±5 V,

14-Lead TSSOP

160

–40

V OS

(µV)

TEMPERATURE (°C)

–160

–120

–80

–40

0

40

80

120

–25 –10 5 20 35 50 65 80 95 110 125

VSY = ±5V8-LEAD SOIC, 14-LEAD SOIC

1228

2-50

8

Figure 16. Input Offset Voltage (VOS) vs. Temperature, VSY = ±5 V,

8-Lead SOIC and 14-Lead SOIC

300

–40

V OS

(µV)

TEMPERATURE (°C)

–300

–200

–100

0

100

200

–25 –10 5 20 35 50 65 80 95 110 125

VSY = ±5V8-LEAD MSOP, 14-LEAD TSSOP

1228

2-51

2

Figure 17. Input Offset Voltage (VOS) vs. Temperature, VSY = ±5 V,

8-Lead MSOP and 14-Lead TSSOP

90

80

70

60

0

10

20

30

40

50

NU

MB

ER O

F A

MPL

IFIE

RS

VOS (µV)

–100 –90

–80

–70

–60

–50

–40

–30

–20

–10 0 10 20 30 40 50 60 70 80 90 100

VSY = ±15V14-LEAD TSSOP

1228

2-50

2

Figure 18. Input Offset Voltage (VOS) Distribution, VSY = ±15 V,

14-Lead TSSOP

160

–40

V OS

(µV)

TEMPERATURE (°C)

–160

–120

–80

–40

0

40

80

120

–25 –10 5 20 35 50 65 80 95 110 125

VSY = ±15V8-LEAD SOIC, 14-LEAD SOIC

1228

2-51

1

Figure 19. Input Offset Voltage (VOS) vs. Temperature, VSY = ±15 V,

8-Lead SOIC and 14-Lead SOIC

300

–40

V OS

(µV)

TEMPERATURE (°C)

–300

–200

–100

0

100

200

–25 –10 5 20 35 50 65 80 95 110 125

VSY = ±15V8-LEAD MSOP, 14-LEAD TSSOP

1228

2-51

5

Figure 20. Input Offset Voltage (VOS) vs. Temperature, VSY = ±15 V,

8-Lead MSOP and 14-Lead TSSOP

Page 14: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

ADA4177-1/ADA4177-2/ADA4177-4 Data Sheet

Rev. E | Page 14 of 33

80

70

60

50

40

30

20

10

NU

MB

ER O

F A

MPL

IFIE

RS

TCVOS (µV/°C)

0

VSY = ±5V8-LEAD SOIC, 14-LEAD SOIC

–0.55 –0.30 –0.05 0.20 0.45 0.70 0.95

1228

2-51

3

Figure 21. Temperature Coefficient of Offset Voltage (TCVOS), VSY = ±5 V,

8-Lead SOIC and 14-Lead SOIC

40

35

30

25

20

15

10

5

NU

MB

ER O

F A

MPL

IFIE

RS

TCVOS (µV/°C)

0

VSY = ±5V8-LEAD MSOP, 14-LEAD TSSOP

–0.55 –0.30 –0.05 0.20 0.45 0.70 0.95

1228

2-51

4

Figure 22. Temperature Coefficient of Offset Voltage (TCVOS), VSY = ±5 V,

8-Lead MSOP and 14-Lead TSSOP

100

–100

–80

–60

–40

–20

0

20

40

60

80

V OS

(µV)

VCM (V)–5 –4 –3 –2 –1 0 1 2 3 4 5

AVERAGE – 3σ

AVERAGE

AVERAGE + 3σ

VSY = ±5V

1228

2-40

7

Figure 23. Input Offset Voltage (VOS) vs. Common-Mode Voltage (VCM),

VSY = ±5 V

80

70

60

50

40

30

20

10

NU

MB

ER O

F A

MPL

IFIE

RS

TCVOS (µV/°C)

0

VSY = ±15V8-LEAD SOIC, 14-LEAD SOIC

–0.55 –0.30 –0.05 0.20 0.45 0.70 0.95

1228

2-51

6

Figure 24. Temperature Coefficient of Offset Voltage (TCVOS), VSY = ±15 V,

8-Lead SOIC and 14-Lead SOIC

35

30

25

20

15

10

5

NU

MB

ER O

F A

MPL

IFIE

RS

TCVOS (µV/°C)

0

VSY = ±15V8-LEAD MSOP, 14-LEAD TSSOP

–0.55 –0.30 –0.05 0.20 0.45 0.70 0.95

1228

2-51

7

Figure 25. Temperature Coefficient of Offset Voltage (TCVOS), VSY = ±15 V,

8-Lead MSOP and 14-Lead TSSOP

100

–100

–80

–60

–40

–20

0

20

40

60

80

V OS

(µV)

VCM (V)–15 –10 –5 50 10 15

AVERAGE – 3σ

AVERAGE

AVERAGE + 3σ

VSY = ±15V

1228

2-40

8

Figure 26. Input Offset Voltage (VOS) vs. Common-Mode Voltage (VCM),

VS = ±15 V

Page 15: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

Data Sheet ADA4177-1/ADA4177-2/ADA4177-4

Rev. E | Page 15 of 33

5.00

4.80

4.82

4.84

4.86

4.88

4.90

4.92

4.94

4.96

4.98

OU

TPU

T VO

LTA

GE

SWIN

G (V

)

TEMPERATURE (°C)–50 –25 7550250 100 125

VSY = ±5V

VOH AT ILOAD = 7mA

VOH AT ILOAD = 1mA

VOL AT ILOAD = 7mA

VOL AT ILOAD = 1mA

1228

2-40

9

Figure 27. Output Voltage Swing vs. Temperature, VSY = ±5 V

300

0

50

100

150

200

250

NU

MB

ER O

F A

MPL

IFIE

RS

INPUT BIAS CURRENT (nA)

–1.0

–0.8

–0.6

–0.4

–0.2 0

0.2

0.4

0.6

0.8

1.0

VSY = ±5V12

282-

411

Figure 28. Input Bias Current Distribution, VSY = ±5 V

0.2

–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

INPU

T B

IAS

CU

RR

ENT

(nA

)

TEMPERATURE (°C)

–50 –25 0 25 50 75 100 125

VSY = ±5VVCM = 0V

IB–IB+

1228

2-41

3

Figure 29. Input Bias Current (IB) vs. Temperature, VSY = ±5 V

15.00

14.80

14.82

14.84

14.86

14.88

14.90

14.92

14.94

14.96

14.98

OU

TPU

T VO

LTA

GE

SWIN

G (V

)

TEMPERATURE (°C)–50 –25 7550250 100 125

VSY = ±15V

VOH AT ILOAD = 7mA

VOH AT ILOAD = 1mA

VOL AT ILOAD = 7mA

VOL AT ILOAD = 1mA

1228

2-41

0

Figure 30. Output Voltage Swing vs. Temperature, VSY = ±15 V

450

400

0

50

100

150

200

300

350

250N

UM

BER

OF

AM

PLIF

IER

S

INPUT BIAS CURRENT (nA)

–1.0

–0.8

–0.6

–0.4

–0.2 0

0.2

0.4

0.6

0.8

1.0

VSY = ±15V

1228

2-41

2

Figure 31. Input Bias Current Distribution, VSY = ±15 V

0.2

–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

INPU

T B

IAS

CU

RR

ENT

(nA

)

TEMPERATURE (°C)

–50 –25 0 25 50 75 100 125

VSY = ±15VVCM = 0V

IB–

IB+

1228

2-41

4

Figure 32. Input Bias Current (IB) vs. Temperature, VSY = ±15 V

Page 16: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

ADA4177-1/ADA4177-2/ADA4177-4 Data Sheet

Rev. E | Page 16 of 33

0.6

0.5

0.4

0.3

0.2

0.1

0

I SY

(mA

)

VSY (V)0 403430252015105

1228

2-40

6

–40°C+25°C+85°C+125°C

Figure 33. Supply Current per Amplifier (ISY) vs. Power Supply Voltage (VSY)

10k

1k

1

10

100

OU

TPU

T D

RO

POU

T VO

LTA

GE

(mV)

SINK CURRENT (mA)0.001 0.01 1001010.1

VSY = ±5V

–40°C+25°C+85°C+125°C

1228

2-42

1

Figure 34. Output Dropout Voltage vs. Sink Current, VSY = ±5 V

OU

TPU

T D

RO

POU

T VO

LTA

GE

(mV)

SOURCE CURRENT (mA) 1228

2-42

3

10k

1k

1

10

100

0.001 0.01 1001010.1

VSY = ±5V

–40°C+25°C+85°C+125°C

Figure 35. Output Dropout Voltage vs. Source Current, VSY = ±5 V

10

–10

–5

0

5

OFF

SET

VOLT

AG

E (µ

V)

VSY (V)0 2015105 25 30 35

1228

2-41

9

Figure 36. Offset Voltage (VOS) vs. Power Supply Voltage (VSY)

10k

1k

1

10

100

OU

TPU

T D

RO

POU

T VO

LTA

GE

(mV)

SINK CURRENT (mA)0.001 0.01 1001010.1

VSY = ±15V

–40°C+25°C+85°C+125°C

1228

2-42

2

Figure 37. Output Dropout Voltage vs. Sink Current, VSY = ±15 V

OU

TPU

T D

RO

POU

T VO

LTA

GE

(mV)

SOURCE CURRENT (mA) 1228

2-42

4

10k

1k

10

1

100

0.001 0.01 1001010.1

VSY = ±15V

–40°C+25°C+85°C+125°C

Figure 38. Output Dropout Voltage vs. Source Current, VSY = ±15 V

Page 17: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

Data Sheet ADA4177-1/ADA4177-2/ADA4177-4

Rev. E | Page 17 of 33

120

–80

–60

–40

–20

0

20

40

60

80

100

120

–80

–60

–40

–20

0

20

40

60

80

100

OPE

N-L

OO

P G

AIN

(dB

)

PHA

SE (D

egre

es)

FREQUENCY (Hz)1k 10k 100k 1M 10M 100M

VSY = ±5VAV = –10RL = 2kΩTA = 25°C

PHASE WITH CL = 0pFPHASE WITH CL = 100pFPHASE WITH CL = 200pF

GAIN WITH CL = 0pFGAIN WITH CL = 100pFGAIN WITH CL = 200pF

1228

2-42

5

Figure 39. Open-Loop Gain and Phase vs. Frequency, VSY = ±5 V

60

–40

–20

0

20

40

CLO

SED

-LO

OP

GA

IN (d

B)

FREQUENCY (Hz)1k 10M1M100k10k

VSY = ±5V

G = +1

G = +10

G = +100

1228

2-42

7

Figure 40. Closed-Loop Gain vs. Frequency, VSY = ±5 V

146

130

134

138

142

132

136

140

144

CM

RR

(dB

)

TEMPERATURE (°C)–50 50250–25 75 100 125

VSY = ±5V

1228

2-42

9

Figure 41. Common-Mode Rejection Ratio (CMRR) vs. Temperature, VSY = ±5 V

120

–80

–60

–40

–20

0

20

40

60

80

100

120

–80

–60

–40

–20

0

20

40

60

80

100

OPE

N-L

OO

P G

AIN

(dB

)

PHA

SE (D

egre

es)

FREQUENCY (Hz)1k 10k 100k 1M 10M 100M

VSY = ±15VAV = –10RL = 2kΩTA = 25°C

PHASE WITH CL = 0pFPHASE WITH CL = 100pFPHASE WITH CL = 200pF

GAIN WITH CL = 0pFGAIN WITH CL = 100pFGAIN WITH CL = 200pF

1228

2-42

6

Figure 42. Open-Loop Gain and Phase vs. Frequency, VSY = ±15 V

60

–40

–20

0

20

40

CLO

SED

-LO

OP

GA

IN (d

B)

FREQUENCY (Hz)1k 10M1M100k10k

VSY = ±15V

G = +1

G = +10

G = +100

1228

2-42

8

Figure 43. Closed-Loop Gain vs. Frequency, VSY = ±15 V

146

130

134

138

142

132

136

140

144

CM

RR

(dB

)

TEMPERATURE (°C)–50 50250–25 75 100 125

VSY = ±15V

1228

2-43

0

Figure 44. Common-Mode Rejection Ratio (CMRR) vs. Temperature, VSY = ±15 V

Page 18: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

ADA4177-1/ADA4177-2/ADA4177-4 Data Sheet

Rev. E | Page 18 of 33

1000

0.001

100

10

1

0.1

0.01

Z OU

T (Ω

)

FREQUENCY (MHz)0.0001 10.10.010.001 10

VSY = ±5V

AV = +100

AV = +10AV = +1

1228

2-43

1

Figure 45. Output Impedance (ZOUT) vs. Frequency, VSY = ±5 V

3

–3

2

1

0

–1

–2

V OU

T (1

V/D

IV)

TIME (100µs/DIV)

VSY = ±5VVIN = 4V p-pAV = +1RL = 2kΩCL = 300pF

1228

2-43

3

Figure 46. Large Signal Transient Response, VSY = ±5 V

0.10

–0.10

0.05

0

–0.05

V OU

T (V

)

TIME (100µs/DIV)

VSY = ±5VVIN = 100mV p-pAV = +1RL = 2kΩCL = 1000pF

1228

2-43

5

Figure 47. Small Signal Transient Response, VSY = ±5 V

1000

0.001

100

10

1

0.1

0.01

Z OU

T (Ω

)

FREQUENCY (MHz)0.0001 10.10.010.001 10

VSY = ±15V

AV = +100

AV = +10AV = +1

1228

2-43

2

Figure 48. Output Impedance (ZOUT) vs. Frequency, VSY = ±15 V

12.5

–12.5

–10.0

–7.5

–5.0

–2.5

0

2.5

5.0

7.5

10.0

V OU

T (2

.5V/

DIV

)

TIME (100µs/DIV)

VSY = ±15VVIN = 20V p-pAV = +1RL = 2kΩCL = 300pF

1228

2-43

4

Figure 49. Large Signal Transient Response, VSY = ±15 V

0.10

–0.10

0.05

0

–0.05

V OU

T (V

)

TIME (100µs/DIV)

VSY = ±15VVIN = 100mV p-pAV = +1RL = 2kΩCL = 1000pF

1228

2-43

6

Figure 50. Small Signal Transient Response, VSY = ±15 V

Page 19: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

Data Sheet ADA4177-1/ADA4177-2/ADA4177-4

Rev. E | Page 19 of 33

0.25

0.20

0.15

–0.10

0.10

0.05

0

–0.05

6

5

4

–1

3

2

1

0

INPU

T VO

LTA

GE

(V)

OU

TPU

T VO

LTA

GE

(V)

TIME (10µs/DIV)

VSY = ±5VVIN = 75mVAV = –100RL = 10kΩCL = 35pF

1228

2-43

7

INPUT

OUTPUT

Figure 51. Positive Overload Recovery, VSY = ±5 V

–6

–5

–4

–3

–2

–1

0

1

–0.10

–0.05

0

0.05

0.10

0.15

0.20

0.25

–5 0 5 10 15 20 25

OU

TPU

T VO

LTA

GE

(V)

INPU

T VO

LTA

GE

(V)

TIME (5µs/DIV)

VSY = ±5VVIN = 75mVAV = –100RL = 10kΩCL = 35pF

1228

2-43

9

INPUT

OUTPUT

Figure 52. Negative Overload Recovery, VSY = ±5 V

145

125

130

135

140

PSR

R (d

B)

TEMPERATURE (°C)–50 50250–25 75 100 125

VSY = ±5V TO ±15V

1228

2-42

0

Figure 53. Power Supply Rejection Ratio (PSRR) vs. Temperature, VSY = ±5 V to ±15 V

1.0

–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

16

14

12

10

–2

8

6

2

4

0

INPU

T VO

LTA

GE

(V)

OU

TPU

T VO

LTA

GE

(V)

TIME (10µs/DIV)

VSY = ±15VVIN = 225mVAV = –100RL = 10kΩCL = 35pF

1228

2-43

8

INPUT

OUTPUT

Figure 54. Positive Overload Recovery, VSY = ±15 V

1228

2-44

0O

UTP

UT

VOLT

AG

E (V

)

TIME (5µs/DIV)

–16

–14

–12

–10

–8

–6

–4

–2

0

2

–0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

–5 0 5 10 15 20 25

INPU

T VO

LTA

GE

(V)

VSY = ±15VVIN = 225mVAV = –100RL = 10kΩCL = 35pF

INPUT

OUTPUT

Figure 55. Negative Overload Recovery, VSY = ±15 V

140

120

100

80

60

40

20

0

CM

RR

(dB

)

FREQUENCY (kHz)0.1 10k1k100101

VSY = ±5VVSY = ±15V

1228

2-45

5

Figure 56. Common-Mode Rejection Ratio (CMRR) vs. Frequency,

VSY = ±5 V and VSY = ±15 V

Page 20: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

ADA4177-1/ADA4177-2/ADA4177-4 Data Sheet

Rev. E | Page 20 of 33

120

100

80

60

40

20

–20

0

PSR

R (d

B)

FREQUENCY (kHz)0.1 10k1k100101

VSY = ±5V

PSRR+

PSRR–

1228

2-45

6

Figure 57. Power Supply Rejection Ratio (PSRR) vs. Frequency, VSY = ±5 V

50

40

30

20

10

0

OVE

RSH

OO

T (%

)

LOAD CAPACITANCE (nF)0.01 0.1 101

VSY = ±5VAV = +1RL = 2kΩVIN = 100mV p-p

OS–

OS+

1228

2-45

8

Figure 58. Small Signal Overshoot vs. Load Capacitance, VSY = ±5 V

–0.003

–0.002

–0.001

0

0.001

0.002

0.003

0.004

0.005

–3.0

–2.5

–2.0

–1.5

–1.0

–0.5

0

0.5

1.0

–0.8 –0.4 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

OU

TPU

T (V

)

INPU

T (V

)

TIME (µs)

VSY = ±5VVIN = 1V p-pRL = 2kΩ

INPUT

OUTPUT

1228

2-54

8

Figure 59. Positive Settling Time to 0.1%, VSY = ±5 V

120

100

80

60

40

20

–20

0

PSR

R (d

B)

FREQUENCY (kHz)0.1 10k1k100101

VSY = ±15V

PSRR+

PSRR–

1228

2-45

7

Figure 60. Power Supply Rejection Ratio (PSRR) vs. Frequency, VSY = ±15 V

50

40

30

20

10

0

OVE

RSH

OO

T (%

)

LOAD CAPACITANCE (nF)0.01 0.1 101

VSY = ±15VAV = +1RL = 2kΩVIN = 100mV p-p

OS–

OS+

1228

2-45

9

Figure 61. Small Signal Overshoot vs. Load Capacitance, VSY = ±15 V

–0.020

–0.015

–0.010

–0.005

0

0.005

0.010

0.015

0.020

–30

–25

–20

–15

–10

–5

0

5

10

–2 –1 0 1 2 3 4 5 6 7 8

OU

TPU

T (V

)

INPU

T (V

)

TIME (µs)

VSY = ±15VVIN = 10V p-pRL = 2kΩ

INPUT

OUTPUT12

282-

551

Figure 62. Positive Settling Time to 0.1%, VSY = ±15 V

Page 21: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

Data Sheet ADA4177-1/ADA4177-2/ADA4177-4

Rev. E | Page 21 of 33

–0.003

–0.002

–0.001

0

0.001

0.002

0.003

0.004

0.005

–3.0

–2.5

–2.0

–1.5

–1.0

–0.5

0

0.5

1.0

–0.8 –0.4 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

OU

TPU

T (V

)

INPU

T (V

)

TIME (µs)

VSY = ±5VVIN = 1V p-pRL = 2kΩ

INPUT

OUTPUT

1228

2-55

2

Figure 63. Negative Settling Time to 0.1%, VSY = ±5 V

FREQUENCY (Hz)100 10M1M100k10k1k

1k

100

1

10

VOLT

AG

E N

OIS

E D

ENSI

TY (n

V/√H

z)

AV = +1 VSY = ±15VVSY = ±5V

1228

2-46

8

Figure 64. Voltage Noise Density vs. Frequency, VSY = ±5 V and VSY = ±15 V

FREQUENCY (kHz)0.01 1001 100.1

1

0.1

0.00001

0.001

0.0001

0.01

THD

+ N

(%)

80kHz>500kHz

VSY = ±5VRL = 2kΩVIN = 1V rms

1228

2-47

0

Figure 65. THD + N vs. Frequency, VSY = ±5 V

1228

2-55

5–0.020

–0.015

–0.010

–0.005

0

0.005

0.010

0.015

0.020

–30

–25

–20

–15

–10

–5

0

5

10

–2 –1 0 1 2 3 4 5 6 7 8

OU

TPU

T (V

)

INPU

T (V

)

TIME (µs)

VSY = ±15VVIN = 10V p-pRL = 2kΩ

INPUT

OUTPUT

Figure 66. Negative Settling Time 0.1%, VSY = ±15 V

0

20

16

12

8

4

0 1.0 2.0 3.00.5 1.5 2.5

VOLT

AG

E N

OIS

E C

OR

NER

(nV/

√Hz)

FREQUENCY (Hz)

VSY = ±5VVSY = ±15V

1228

2-48

3

Figure 67. Voltage Noise Corner vs. Frequency, VSY = ±5 V and VSY = ±15 V

1228

2-47

1

FREQUENCY (kHz)0.01 1001 100.1

1

0.1

0.00001

0.001

0.0001

0.01

THD

+ N

(%)

80kHz>500kHz

VSY = ±15VRL = 2kΩVIN = 1V rms

Figure 68. THD + N vs. Frequency, VSY = ±15 V

Page 22: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

ADA4177-1/ADA4177-2/ADA4177-4 Data Sheet

Rev. E | Page 22 of 33

AMPLITUDE (V rms)0.001 0.01 1010.1

1

0.1

0.0001

0.001

0.01

THD

+ N

(%)

VSY = ±5VRL = 2kΩfIN = 1kHz

1228

2-47

2

Figure 69. THD + N vs. Amplitude, VSY = ±5 V

TIME (1s/DIV)

INPU

T VO

LTA

GE

(50n

V/D

IV)

VSY = ±5V

1228

2-46

4

Figure 70. 0.1 Hz to 10 Hz Noise, VSY = ±5 V

VIN (V)–40 40205–10–25–35 2510–5–20–30 30 35150–15

15.0

–15.0

–12.5

–10.0

–7.5

–5.0

–2.5

0

2.5

5.0

7.5

10.0

12.5

INPU

T B

IAS

CU

RR

ENT

(mA

)

VSY = ±5V

1228

2-46

6

Figure 71. Input Bias Current vs. Input Voltage (VIN) Including

Input Overvoltage Range (Beyond VSY = ±5 V )

1228

2-47

3

AMPLITUDE (V rms)0.001 0.01 1010.1

1

0.1

0.0001

0.001

0.01

THD

+ N

(%)

VSY = ±15VRL = 2kΩfIN = 1kHz

Figure 72. THD + N vs. Amplitude, VSY = ±15 V

TIME (1s/DIV)

INPU

T VO

LTA

GE

(50n

V/D

IV)

VSY = ±15V

1228

2-46

5

Figure 73. 0.1 Hz to 10 Hz Noise, VSY = ±15 V

VIN (V)–50 500–40 10–30 20–20 30–10 40

12.5

–15.0

–12.5

–10.0

–7.5

–5.0

–2.5

0

2.5

5.0

7.5

10.0

INPU

T B

IAS

CU

RR

ENT

(mA

)

VSY = ±15V

1228

2-46

7

Figure 74. Input Bias Current vs. Input Voltage (VIN) Including

Input Overvoltage Range (Beyond VSY = ±15 V)

Page 23: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

Data Sheet ADA4177-1/ADA4177-2/ADA4177-4

Rev. E | Page 23 of 33

COMMON-MODE VOLTAGE (V)–5 –4 –3 –2 –1 0 1 2 3 4 5

1000

–1000

–800

–600

–400

–200

0

200

400

600

800

INPU

T B

IAS

CU

RR

ENT

(pA

)

VSY = ±5V

1228

2-48

0

+85°C+125°C

+25°C–40°C

Figure 75. Input Bias Current vs. Common-Mode Voltage (VCM) and

Temperature, VSY = ±5 V

FREQUENCY (kHz)0.001 0.01 1001010.1

10

0.1

1

CU

RR

ENT

NO

ISE

DEN

SITY

(pA

/√H

z)

VSY = ±15VVSY = ±5V

1228

2-47

5

Figure 76. Current Noise Density vs. Frequency, VSY = ±5 V and VSY = ±15 V

45

20

25

30

35

40

–50 –25 0 25 50 75 100 125

SOU

RC

ING

CU

RR

ENT

(mA

)

TEMPERATURE (°C) 1228

2-60

0

VSY = ±5V

Figure 77. Output Short-Circuit Sourcing Current vs. Temperature, VSY = ±5 V

COMMON-MODE VOLTAGE (V)–15 –10 –5 0 5 10 15

3000

–2000

–1000

–1000

0

1000

2000

INPU

T B

IAS

CU

RR

ENT

(pA

)

VSY = ±15V

1228

2-48

1

+85°C+125°C

+25°C–40°C

Figure 78. Input Bias Current vs. Common-Mode Voltage (VCM) and

Temperature, VSY = ±15 V

FREQUENCY (kHz)0.01 1001010.1

–90

–150

–140

–130

–120

–110

–100

CH

AN

NEL

SEP

AR

ATI

ON

(dB

)

VSY = ±15VVIN = 10V p-pAV = +1000RL = 2kΩ

1228

2-47

4

Figure 79. Channel Separation vs. Frequency, VSY = ±15 V

60

30

35

40

45

50

55

–50 –25 0 25 50 75 100 125

SOU

RC

ING

CU

RR

ENT

(mA

)

TEMPERATURE (°C) 1228

2-60

1

VSY = ±15V

Figure 80. Output Short-Circuit Sourcing Current vs. Temperature, VSY = ±15 V

Page 24: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

ADA4177-1/ADA4177-2/ADA4177-4 Data Sheet

Rev. E | Page 24 of 33

–20

–50

–45

–40

–35

–30

–25

–50 –25 0 25 50 75 100 125

SIN

KIN

G C

UR

REN

T (m

A)

TEMPERATURE (°C) 1228

2-60

2

VSY = ±5V

Figure 81. Output Short-Circuit Sinking Current vs. Temperature, VSY = ±5 V

3

–3

–2

–1

0

1

2

0 50 100 150 200 250 300 350

CH

AN

GE

IN V

OS

(µV)

TIME (Seconds) 1228

2-60

4

Figure 82. Offset Voltage Short-Term Drift

–30

–80

–70

–60

–50

–40

–50 –25 0 25 50 75 100 125

SIN

KIN

G C

UR

REN

T (m

A)

TEMPERATURE (°C) 1228

2-60

3

VSY = ±15V

Figure 83. Output Short-Circuit Sinking Current vs. Temperature, VSY = ±15 V

Page 25: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

Data Sheet ADA4177-1/ADA4177-2/ADA4177-4

Rev. E | Page 25 of 33

THEORY OF OPERATION The ADA4177-1/ADA4177-2/ADA4177-4 are precision, bipolar op amps that integrate both input overvoltage protection (OVP) and input EMI filtering while maintaining a low 2 nA maximum bias current and a rail-to-rail output operation. Figure 84 shows a conceptual schematic of the main amplifier that uses super beta, bipolar input transistors and bias current cancellation to minimize the input bias current. The inputs are cascoded to protect the super beta input devices from damage during overvoltage conditions. The cascoded inputs feed into an active load that makes up the primary gain stage. A buffered transconductance (gm) stage converts a differential voltage to a differential current to drive the output stage. The rail-to-rail output can swing to 50 mV maximum (for example, the guaranteed room temperature limit for VOH is 14.95 V when the positive supply is 15 V) with a 1 mA load at 25°C.

1228

2-44

9

gm

P B

IAS

N B

IAS

OVP

OVP

Figure 84. Conceptual Schematic

Page 26: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

ADA4177-1/ADA4177-2/ADA4177-4 Data Sheet

Rev. E | Page 26 of 33

APPLICATIONS INFORMATION ACTIVE OVERVOLTAGE PROTECTION The ADA4177-1/ADA4177-2/ADA4177-4 use active overvoltage protection to protect the devices from damage when the inputs are driven to a voltage up to 32 V above the positive supply voltage or 32 V below the negative supply voltage. The ADA4177-1/ADA4177-2/ADA4177-4 not only protect the input from damage, but they also reduce the input noise.

Common Protection Methods

Add an External Series Input Resistor

When an op amp does not have input overvoltage protection, moving the input voltage above or below the supply voltage can cause excessive input current, which can damage the op amp. To avoid this, add a series resistor at the input. To protect the op amp from a 30 V transient beyond either rail, limit the input current to 5 mA, and add a 6 kΩ series resistor to the input. However, a trade-off of adding the series resister is its added thermal noise. The 6 kΩ series resistor exhibits 10 nV/√Hz of thermal noise, which adds quadrature thermal noise from the resistor with the op amp noise.

22RESISTORAMPOPTOTAL NNN +=

where: NTOTAL is the total noise. NOP AMP is the op amp noise. NRESISTOR is the thermal noise generated by the resistor.

When the additional thermal noise from the series resistor is added to the thermal noise (8 nV/√Hz) of the ADA4177-1/ADA4177-2/ ADA4177-4, the 6 kΩ series resistor brings the total thermal noise to 12 nV/√Hz, which is a 70% increase in thermal noise. Figure 85 shows how noise from the additional source resistance adds to the total noise at the amplifier input; the higher the source resistance, the higher the total noise. Because the ADA4177-1/ ADA4177-2/ADA4177-4 have integrated input protection for overvoltage conditions, the noise trade-off is avoided.

20

0

2

4

6

8

10

12

14

16

18

EQU

IVA

LEN

T TH

ERM

AL

NO

ISE

(nV/

√Hz)

TOTAL SOURCE RESISTANCE0 30000250002000015000100005000

TOTAL NOISE

RESISTOR NOISE

1228

2-44

5

ADA4177-1/ADA4177-2/ADA4177-4 NOISE

Figure 85. Equivalent Thermal Noise vs. Total Source Resistance

Add External Clamping Diodes

Precision op amps have a low VOS and a high common-mode rejection ratio (CMRR). Both of these characteristics simplify system calibration and minimize dynamic error. To maintain these specifications in the presence of ESD events, bipolar op amps often have internal clamp diodes and small limiting resistors in series with their inputs; however, these do not address fault conditions where the inputs exceed the rails. In these cases, the system designer commonly adds clamping diodes (D1 and D2) along with a series resistor (ROVP), shown in Figure 86.

1228

2-44

1

ROVP

RF

VINVOUTD2

D1

V–

V+

Figure 86. Common Scheme for Protecting Precision Amplifier Inputs from

Overvoltage Conditions

If the signal source at VIN is driven to one diode voltage beyond the op amp supplies, the fault current is limited by ROVP. Schottky diodes have a low forward knee voltage of 200 mV less than a typical small signal diode. Therefore, all overvoltage currents are shunted through the external diodes (D1 and D2). The reverse leakage current for a typical Schottky diode is extremely variable with the reverse voltage level. Therefore, as the noninverting input of the op amp swings, the D1 and D2 leakage currents do not match, and the differences pass through ROVP, creating a voltage drop. The voltage drop on ROVP appears as a variation in VOS, which can drastically reduce the CMRR performance. Because the ADA4177-1/ADA4177-2/ADA4177-4 have integrated input protection during overvoltage conditions, the degradation in performance is avoided.

Input Protection Circuit

The ADA4177-1/ADA4177-2/ADA4177-4 inputs provide overvoltage protection without the trade-offs encountered in the common design methods. The conceptual schematic of the input is shown in Figure 87.

1228

2-44

2

J1B

J1AVIN1

J2B

J2AVIN2

V+

V– Figure 87. Conceptual Schematic of the Inputs of the

ADA4177-1/ADA4177-2/ADA4177-4

Page 27: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

Data Sheet ADA4177-1/ADA4177-2/ADA4177-4

Rev. E | Page 27 of 33

J1A, J1B, J2A, and J2B are depletion mode junction field effect transistors (JFETs) that replace the series resistance in the conventional protection scheme. Under normal operation, the input bias current of the ADA4177-1/ADA4177-2/ADA4177-4 flows through the J1A and J2A transistors without pinching off the channel. To achieve excellent noise performance, J1A and J2A must have a low on resistance (RDSON) of approximately 300 Ω.

When either input exceeds the rail by more than a diode, large currents flow through either J1A or J2A, which causes the channels to pinch off and effectively raises their resistance. Figure 88 shows the positive overvoltage and negative overvoltage characteristics as the FET channel pinches.

12

–10

–8

–6

–4

–2

0

2

4

6

8

10

INPU

T B

IAS

CU

RR

ENT

(mA

)

VIN (V)–50 503010–10–30

1228

2-50

0

VSY = ±15V

Figure 88. Input Bias Current During Positive and Negative Overvoltage,

VSY = ±15 V, Voltage Follower Configuration

Figure 89 shows how the JFET effective resistance increases exponentially as shown by the measurements at 2 V, 20 V, and 40 V overvoltage. As the overvoltage increases from 2 V to 40 V, the resistance increases from 300 Ω to 3.5 kΩ (a factor of 11).

10

–2

0

2

4

6

8

OVE

RVO

LTA

GE

(mV)

VIN (V)2.5 42.532.5 37.527.522.517.512.57.5

1228

2-45

4

300Ω AT 2V

2.2kΩAT 20V 3.5kΩ AT 40V

Figure 89. Overvoltage vs. Input Voltage (VIN), Voltage Follower

Configuration

LIMITING OVERVOLTAGE CURRENT OUT OF THE POSITIVE SUPPLY PIN Because the positive power supply of the system can be incapable of sinking the large overvoltage current of 8 mA (see Figure 88), care was taken to divide down this current into the positive rail during an overvoltage event. As shown in Figure 90, Q1L is a lateral PNP transistor that serves two purposes. First, the emitter base acts as a clamping diode to route the overvoltage current away from the V+ pin and to the V− pin. Second, it divides down this current via the beta of Q1L. At an emitter current of 8 mA, the beta of Q1L is approximately 8, which reduces the current injected into the positive supply by a factor of 8.

1228

2-44

3

J1B

J1A+IN

V+

Q1L

V–

Figure 90. Overvoltage Protection Circuitry

Figure 91 shows the positive and negative supply currents when the input voltage exceeds the supply voltages (and overvoltage condition). The current at the V+ terminal does not reverse direction during an overvoltage event because the current is directed to V− via the collector of Q1L.

8

–12

–10

–8

–6

–4

–2

0

4

6

2

SUPP

LY C

UR

REN

T (m

A)

INPUT DIFFERENTIAL (V)–40 403020100–10–20–30

1228

2-45

2

POSITIVE SUPPLY CURRENT

NEGATIVE SUPPLY CURRENT

Figure 91. Supply Current vs. Input Differential, Circuit Configured at

Unity Gain with V+ = +15 V and V− = −15 V

If negative overvoltage transients are expected, ensure that the negative voltage source driving V− can handle sourcing current without forcing current into the device and causing the supply voltage to change.

Page 28: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

ADA4177-1/ADA4177-2/ADA4177-4 Data Sheet

Rev. E | Page 28 of 33

EMI PROTECTION The ADA4177-1/ADA4177-2/ADA4177-4 inputs are also protected from high frequency EMI. In an op amp with no EMI protection, signals not within the bandwidth of the op amp couple into sensitive amplifier inputs and become rectified as they travel through the amplifier, eventually appearing as ac feedthrough on top of a dc offset. When an input filter is not provided, these offsets can be quite large. These offsets are referred to as the electromagnetic interference rejection ratio (EMIRR). The amplifier EMIRR is defined as

×=

OSΔVEMIRR

mV100log20

where: 100 mV is generally the peak-to-peak input used for the test. ΔVOS is the change in the op amp offset as a result of the input signal.

Figure 92 shows the input EMI protection of the ADA4177-1/ ADA4177-2/ADA4177-4.

120

100

80

60

40

20

0

EMI R

EJEC

TIO

N R

ATI

O P

EAK

VO

LTA

GE

(dB

)

FREQUENCY (MHz)10 1000100

1228

2-45

3

INPUT +INVSY = ±15VRF POWER = –16dBm (50mV p-p)

Figure 92. EMI Rejection Ratio Peak Voltage vs. Frequency

SELF HEATING During an overvoltage condition, the ADA4177-1/ADA4177-2/ ADA4177-4 dissipate heat according to the thermal resistance (θJA) of the package it is in, which, in turn, heats up the die. Ensure that the specified operating junction temperature does not exceed 150°C for device protection. Extended overtemperature exposure can cause some operating specifications to shift outside of their guaranteed limits.

As shown in Figure 88, the ADA4177-1/ADA4177-2/ADA4177-4 inputs sink by approximately 8 mA at 15 V overvoltage. In that condition, the ADA4177-1/ADA4177-2/ADA4177-4 dissipate 120 mW of power. If the package has a θJA of 100°C/W, the junction temperature rises by approximately 12°C over the ambient temperature of the package and junction. In such a case, derate the ambient operating temperature by 12°C (125°C minus 12°C) for an absolute maximum operating temperature of 113°C.

When the junction temperature exceeds the absolute maximum junction temperature of 150°C, add an additional series resistance to the inputs to further decrease the overvoltage current. Figure 93 shows the maximum operating temperature vs. the continuous overvoltage at θJA = 150°C/W.

140

120

100

80

60

40

20

0

MA

XIM

UM

OPE

RA

TIN

G T

EMPE

RA

TUR

E (°

C)

CONTINUOUS OVERVOLTAGE (V)0 403510 15 20 25 305

1228

2-44

7

WITH TWO INPUTS IN OVERVOLTAGE

WITH ONE INPUT IN OVERVOLTAGE

Figure 93. Maximum Operating Temperature vs. Continuous Overvoltage for

One Input and Two Inputs (θJA = 150°C/W)

USING THE ADA4177-1/ADA4177-2/ADA4177-4 AS A COMPARATOR The ADA4177-1/ADA4177-2/ADA4177-4 can be used as a comparator as long as relatively small input impedance can be tolerated. That is, the input differential pair is diode clamped but the overvoltage protection circuitry limits the differential. Figure 94 shows the input current vs. the input differential voltage with ±15 V supplies.

8

–8

–6

–4

–2

0

2

4

6

INPU

T C

UR

REN

T (m

A)

INPUT DIFFERENTIAL (V)–20 20151050–5–10–15

1228

2-45

1

Figure 94. Input Current vs. Input Differential with ±15 V Supplies

Page 29: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

Data Sheet ADA4177-1/ADA4177-2/ADA4177-4

Rev. E | Page 29 of 33

Figure 95 shows the input and output of a comparator circuit referenced to ground using the ADA4177-1/ADA4177-2/ ADA4177-4. The supply voltages are ±5 V. The −INx input is grounded and a positive input is stepped to ±1 V. Both the positive and negative recovery is approximately 4 µs.

1228

2-44

8

VIN

VOUT

Figure 95. ADA4177-1/ADA4177-2/ADA4177-4 Used as a Comparator with

±5 V Supplies and a ±1 V Input Step, Voltage Follower Configuration

OUTPUT PHASE REVERSAL Phase reversal is defined as a change in polarity in the amplifier transfer function. Many op amps exhibit phase reversal when the voltage applied to the input is greater than the maximum common-mode voltage. In some instances, this phase reversal can cause permanent damage to the amplifier. In feedback loops, it can result in system lockups or equipment damage. The ADA4177-1/ADA4177-2/ADA4177-4 are immune to phase reversal problems even at input voltages beyond the power supply settings.

1228

2-48

2

Figure 96. Output Showing No Phase Reversal in Overvoltage Condition

PROPER PRINTED CIRCUIT BOARD (PCB) LAYOUT The ADA4177-1/ADA4177-2/ADA4177-4 are high precision devices. To ensure optimum performance at the PCB level, take care in the design of the board layout.

To avoid leakage currents, maintain a clean and moisture free board surface. Coating the surface creates a barrier to moisture accumulation and reduces parasitic resistance on the board.

Keeping supply traces short and properly bypassing the power supplies minimizes the power supply disturbances caused by the output current variation, such as when driving an ac signal into a heavy load. Connect bypass capacitors as closely as possible to the device supply pins. Stray capacitances are a concern at the outputs and the inputs of the amplifier. Keep the signal traces at least 5 mm from supply lines to minimize coupling.

A variation in temperature across the PCB can cause a mismatch in the Seebeck voltages at solder joints and other points where dissimilar metals are in contact, resulting in thermal voltage errors. To minimize these thermocouple effects, orient resistors so that heat sources warm both ends equally. Ensure, where possible, that input signal paths contain matching numbers and types of components, to match the number and type of thermocouple junctions. For example, dummy components such as zero value resistors can be used to match real resistors in the opposite input path. Place matching components in close proximity to each other, and orient them in the same manner. Ensure that leads are of equal length so that thermal conduction is in equilibrium. Keep heat sources on the PCB as far away from amplifier input circuitry as is practical.

The use of a ground plane is highly recommended. A ground plane reduces EMI noise and maintains a constant temperature across the circuit board.

LONG-TERM DRIFT The stability of a precision signal path over its lifetime or between calibration procedures is dependent on the long-term stability of the analog components in the path, such as op amps, references, and data converters. To help system designers predict the long-term drift of circuits that use the ADA4177-1/ ADA4177-2/ADA4177-4, Analog Devices measured the offset voltage of multiple units for 10,000 hours (more than 13 months) using a high precision measurement system, including an ultrastable oil bath. To replicate real-world system performance, the devices under test (DUTs) were soldered onto an FR4 PCB using a standard reflow profile (as defined in the JEDEC J-STD-020D standard), as opposed to testing them in sockets. This manner of testing is important because expansion and contraction of the PCB can apply stress to the integrated circuit (IC) package and contribute to shifts in the offset voltage.

Page 30: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

ADA4177-1/ADA4177-2/ADA4177-4 Data Sheet

Rev. E | Page 30 of 33

The ADA4177-1/ADA4177-2/ADA4177-4 have extremely low long-term drift, as shown in Figure 97. The red, blue, and green traces show sample units. Note that the ADA4177-1/ADA4177-2/ ADA4177-4 have a mean drift over 10,000 hours of less than 2 µV, or 2% of their maximum specified offset voltage of 60 µV at room temperature.

TIME (Hours)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10,0

00

CH

AN

GE

IN O

FFSE

T VO

LTA

GE

(µV)

–8

–6

–4

–2

0

2

4

6

8

1228

2-19

7

MEANMEAN PLUS ONE STANDARD DEVIATIONMEAN MINUS ONE STANDARD DEVIATION

VSY = 10V27 UNITSTA = 25°C

SAMPLE 1SAMPLE 2SAMPLE 3

Figure 97. Measured Long-Term Drift of the ADA4177-1/ADA4177-2/ ADA4177-4 Offset Voltage over 10,000 Hours

TEMPERATURE HYSTERESIS In addition to stability over time as described in the Long-Term Drift section, it is useful to know the temperature hysteresis, that is, the stability vs. cycling of temperature. Hysteresis is an important parameter because it tells the system designer how closely the signal returns to its starting amplitude after the ambient temperature changes and subsequent return to room temperature. Figure 98 shows the change in input offset voltage as the temperature cycles three times from room temperature to +125°C to −40°C and back to room temperature. The dotted line is an initial preconditioning cycle to eliminate the original temperature induced offset shift from exposure to production solder reflow temperatures.

In the three full cycles, the offset hysteresis is typically only 2 µV, or less than 2% of its 120 µV maximum offset voltage over the full operating temperature range. The histogram in Figure 99 shows that the hysteresis is larger when the device is cycled through only a half cycle, from room temperature to hot 125°C and back to room temperature.

TEMPERATURE (°C)–40 –20 0 20 40 60 80 100 120

CH

AN

GE

IN O

FFSE

T VO

LTA

GE

(µV)

–80

–60

–20

–40

0

20

40

60

80VSY = 10V

1228

2-19

8

PRECONDITIONCYCLE 1CYCLE 2CYCLE 3

Figure 98. Change in Offset Voltage over Three Full Temperature Cycles

OFFSET VOLTAGE HYSTERESIS (µV)

NU

MB

ER O

F D

EVIC

ES

1228

2-19

9

0

40

30

50

35

45

252015105

0

40

30

50

35

45

252015105

–18 –15 –12 –9 –6 –3 0 3 6 9 12 15 18

VSY = 10V27 UNITS × 3 CYCLESHALF CYCLE = +26°C, +125°C, +26°CFULL CYCLE = +26°C, +125°C, +26°C, –40°C, +26°C

HALF CYCLEFULL CYCLE

Figure 99. Histogram Showing the Temperature Hysteresis of the Offset Voltage over Three Full Cycles and over Three Half Cycles

Page 31: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

Data Sheet ADA4177-1/ADA4177-2/ADA4177-4

Rev. E | Page 31 of 33

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187-AA

6°0°

0.800.550.40

4

8

1

5

0.65 BSC

0.400.25

1.10 MAX

3.203.002.80

COPLANARITY0.10

0.230.09

3.203.002.80

5.154.904.65

PIN 1IDENTIFIER

15° MAX0.950.850.75

0.150.05

10-0

7-20

09-B

Figure 100. 8-Lead Mini Small Outline Package [MSOP]

(RM-8) Dimensions shown in millimeters

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FORREFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

COMPLIANT TO JEDEC STANDARDS MS-012-AA

0124

07-A

0.25 (0.0098)0.17 (0.0067)

1.27 (0.0500)0.40 (0.0157)

0.50 (0.0196)0.25 (0.0099) 45°

8°0°

1.75 (0.0688)1.35 (0.0532)

SEATINGPLANE

0.25 (0.0098)0.10 (0.0040)

41

8 5

5.00 (0.1968)4.80 (0.1890)

4.00 (0.1574)3.80 (0.1497)

1.27 (0.0500)BSC

6.20 (0.2441)5.80 (0.2284)

0.51 (0.0201)0.31 (0.0122)

COPLANARITY0.10

Figure 101. 8-Lead Standard Small Outline Package [SOIC_N]

Narrow Body (R-8)

Dimensions shown in millimeters and (inches)

Page 32: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

ADA4177-1/ADA4177-2/ADA4177-4 Data Sheet

Rev. E | Page 32 of 33

COMPLIANT TO JEDEC STANDARDS MO-153-AB-1 0619

08-A

8°0°

4.504.404.30

14 8

71

6.40BSC

PIN 1

5.105.004.90

0.65 BSC

0.150.05 0.30

0.19

1.20MAX

1.051.000.80

0.200.09 0.75

0.600.45

COPLANARITY0.10

SEATINGPLANE

Figure 102. 14-Lead Thin Shrink Small Outline Package [TSSOP]

(RU-14) Dimensions shown in millimeters

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FORREFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

COMPLIANT TO JEDEC STANDARDS MS-012-AB

0606

06-A

14 8

71

6.20 (0.2441)5.80 (0.2283)

4.00 (0.1575)3.80 (0.1496)

8.75 (0.3445)8.55 (0.3366)

1.27 (0.0500)BSC

SEATINGPLANE

0.25 (0.0098)0.10 (0.0039)

0.51 (0.0201)0.31 (0.0122)

1.75 (0.0689)1.35 (0.0531)

0.50 (0.0197)0.25 (0.0098)

1.27 (0.0500)0.40 (0.0157)

0.25 (0.0098)0.17 (0.0067)

COPLANARITY0.10

8°0°

45°

Figure 103. 14-Lead Standard Small Outline Package [SOIC_N]

Narrow Body (R-14)

Dimensions shown in millimeters and (inches)

Page 33: OVP and EMI Protected, Precision, Low Noise and …...OVP and EMI Protected, Precision, Low Noise and Bias Current Op Amps Data Sheet ADA4177-1/ADA4177-2/ADA4177-4 Rev. E Document

Data Sheet ADA4177-1/ADA4177-2/ADA4177-4

Rev. E | Page 33 of 33

ORDERING GUIDE Model1 Temperature Range Package Description Package Option Marking Code ADA4177-1ARMZ −40°C to +125°C 8-Lead Mini Small Outline Package [MSOP] RM-8 A3E ADA4177-1ARMZ-R7 −40°C to +125°C 8-Lead Mini Small Outline Package [MSOP] RM-8 A3E ADA4177-1ARMZ-RL −40°C to +125°C 8-Lead Mini Small Outline Package [MSOP] RM-8 A3E ADA4177-1ARZ −40°C to +125°C 8-Lead Standard Small Outline Package [SOIC_N] R-8 ADA4177-1ARZ-R7 −40°C to +125°C 8-Lead Standard Small Outline Package [SOIC_N] R-8 ADA4177-1ARZ-RL −40°C to +125°C 8-Lead Standard Small Outline Package [SOIC_N] R-8 ADA4177-2ARMZ −40°C to +125°C 8-Lead Mini Small Outline Package [MSOP] RM-8 A36 ADA4177-2ARMZ-R7 −40°C to +125°C 8-Lead Mini Small Outline Package [MSOP] RM-8 A36 ADA4177-2ARMZ-RL −40°C to +125°C 8-Lead Mini Small Outline Package [MSOP] RM-8 A36 ADA4177-2ARZ −40°C to +125°C 8-Lead Standard Small Outline Package [SOIC_N] R-8 ADA4177-2ARZ-R7 −40°C to +125°C 8-Lead Standard Small Outline Package [SOIC_N] R-8 ADA4177-2ARZ-RL −40°C to +125°C 8-Lead Standard Small Outline Package [SOIC_N] R-8 ADA4177-4ARUZ −40°C to +125°C 14-Lead Thin Shrink Small Outline Package [TSSOP] RU-14 ADA4177-4ARUZ-R7 −40°C to +125°C 14-Lead Thin Shrink Small Outline Package [TSSOP] RU-14 ADA4177-4ARUZ-RL −40°C to +125°C 14-Lead Thin Shrink Small Outline Package [TSSOP] RU-14 ADA4177-4ARZ −40°C to +125°C 14-Lead Standard Small Outline Package [SOIC_N] R-14 ADA4177-4ARZ-R7 −40°C to +125°C 14-Lead Standard Small Outline Package [SOIC_N] R-14 ADA4177-4ARZ-RL −40°C to +125°C 14-Lead Standard Small Outline Package [SOIC_N] R-14 1 Z = RoHS Compliant Part.

©2014–2018 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D12282-0-8/18(E)