ornl-2548 - connecting repositories · 2020. 1. 22. · ornl-2548 chemistry — general tid-4500...

215
4;^^ ^^^ ORNL-2548 Chemistry General TID-4500 (15th ed.) PHASE DIAGRAMS OF NUCLEAR REACTOR MATERIALS R. E. Thoma, Editor OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION for the U.S. ATOMIC ENERGY COMMISSION

Upload: others

Post on 05-Feb-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

  • 4;̂ ^ ^ ^ ^

    ORNL-2548 Chemistry — General TID-4500 (15th ed.)

    PHASE DIAGRAMS OF NUCLEAR REACTOR MATERIALS

    R. E. Thoma, Editor

    OAK RIDGE NATIONAL LABORATORY operated by

    U N I O N CARBIDE CORPORATION

    for the

    U.S. A T O M I C ENERGY C O M M I S S I O N

  • Printed in USA. Price j O . J U . Available from the

    Office of Technical Services

    Department of Commerce

    Washington 25, D. C.

    LEGAL NOTICE

    This report was prepared os an account of Government sponsored work. Neither the United States,

    nor the Commission, nor any person acting on behalf of the Commission

    A. Makes any worranty or representation, expressed or implied, with respect to the accuracy,

    completeness, or usefulness of the information contained in this report, or that the use of

    any information, apporotus, method, or process disclosed in this report moy not infringe

    privately owned rights, or

    B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of

    any information, apparatus, method, or process disclosed in this report.

    As used in the above, "person acting on behalf of the Commission" includes any employee or

    contractor of the Commission, or employee of such contractor, to the extent thot such employee

    or contractor of the Commission, or employee of such contractor prepares, disseminates, or

    provides access to, any information pursuant to his employment or contract with the Commission,

    or his employment with such contractor.

  • DISCLAIMER

    This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

  • DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

  • ORNL-2548 Chemistry — General TID-4500 (15th ed.)

    Contract N o . W-7405-eng-26

    R E A C T O R C H E M I S T R Y D I V I S I O N

    PHASE DIAGRAMS OF NUCLEAR REACTOR MATERIALS

    R. E. Thoma, Editor

    D A T E ISSUED

    OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee

    operated by UNION CARBIDE CORPORATION

    for the U.S. ATOMIC ENERGY COMMISSION

  • CONTENTS

    INTRODUCTION 1

    1. METAL SYSTEMS 2

    1.1. The System Silver-Zirconium 2 1.2. The System Indium—Zirconium 4 1.3. The System Antimony—Zirconium 6 1.4. The System Lead—Zirconium 8

    2. METAL-FUSED-SALT SYSTEMS 9

    2.1. The Sodium Metal-Sodium Halide Systems 9 2.2. The Potassium Metal—Potassium Halide Systems 10 2.3. The Rubidium Metal-Rubidium Halide Systems 11 2.4. The Cesium Metal—Cesium Halide Systems 12 2.5. The Alkal i Metal-Alkali Metal Fluoride Systems 13

    3. FUSED-SALT SYSTEMS 14

    3.1. The System L iF-NaF 14 3.2. The System L i F - K F 15 3.3. The System L iF -RbF 16 3.4. The System L iF -CsF 17 3.5. The System NaF-KF 18 3.6. The System NaF-RbF 19 3.7. The System KF-RbF 20 3.8. The System L i F - N a F - K F 21 3.9. The System L iF -NaF-RbF 22 3.10. The System L i F - K F - R b F 23 3.11. The System NaF-KF-RbF 24 3.12. The System NaBF^-KBF^ 25 3.13. The System NaF-FeF j 26 3.14. The System NaF-N iF j 27 3.15. The System RbF-CaFj 28 3.16. The System L i F - N a F - C a F j 29 3.17. The System NaF-MgF j -CaF j 30 3.18. The System NaF-KF-AIFg 32 3.19. The System L i F - B e F j 33 3.20. The System NaF-BeF^ 34 3.21. The System K F - B e F j 36 3.22. The System RbF-BeFj 38 3.23. The System CsF-BeF j 40 3.24. The System L i F - N a F - B e F j 42 3.25. The System L i F - R b F - B e F j 44 3.26. The System N a F - K F - B e F j 46 3.27. The System NaF-RbF-BeF j 47 3.28. The System NaF-ZnF j 48 3.29. The System K F - Z n F j 49 3.30. The System RbF-ZnF j 50 3.31. The System L i F - Y F j 51 3.32. The System L i F - Z r F ^ 52 3.33. The System NaF-ZrF^ 54

  • 3.34. The System K F - Z r F ^ 56

    3.35. The System R b F - Z r F ^ 57

    3.36. The System C s F - Z r F ^ 58

    3.37. The System L i F - N a F - Z r F ^ 60

    3.38. The System N a F - K F - Z r F ^ 62

    3.39. The System N a F - R b F - Z r F ^ 64

    3.40. The System N a F - C r F j - Z r F ^ : The Section N a F - C r F j - Z r F ^ 66

    3 .41 . The System N a F - C e F 3 - Z r F 4 67

    3.42. The System L i F - C e F j 68

    3.43. The System N a F - H f F ^ 70

    3.44. The System L i F - T h F ^ 72

    3.45. The System N a F - T h F ^ 73

    3.46. The System K F - T h F ^ 74

    3.47. The System R b F - T h F ^ 76

    3.48. The System B e F j - T h F ^ 77

    3.49. The System B e F j - U F ^ 78

    3.50. The System M g F ^ - T h F ^ 79

    3 .51 . The System L i F - B e F j - T h F ^ 80

    3.52. The System N a F - Z r F ^ - T h F ^ 82

    3.53. The System L i F - U F g 84

    3.54. The System L i F - U F ^ 85

    3.55. The System N a F - U F j 86

    3.56. The System N a F - U F ^ 88

    3.57. The System K F - U F ^ 90

    3.58. The System R b F - U F ^ 91

    3.59. The System C s F - U F ^ 92

    3.60. The System Z r F ^ - U F ^ 93

    3 .61 . The System S n F j - U F ^ 94

    3.62. The System P b F j - U F ^ 95

    3.63. The System ThF - U F ^ 96

    3.64. The System L i F l N a F - U F ^ 98

    3.65. The System L i F - K F - U F ^ 101

    3.66. The System L i F - R b F - U F ^ 102

    3.67. The System N a F - K F - U F ^ 103

    3.68. The System N a F - R b F - U F ^ 104

    3.69. The System L i F - B e F j - U F ^ 108

    3.70. The System N a F - B e F 2 - U F 4 110

    3 .71 . The System N a F - P b F j - U F ^ 113

    3.72. The System K F - P b F j - U F ^ 114

    3.73. The System N a F - Z r F ^ - U F ^ 116

    3.74. The System L i F - T h F ^ - U F ^ 119

    3.75. The System N a F - T h F ^ - U F ^ : The Section 2 N a F . T h F 4 - 2 N a F . U F 4 124

    3.76. The System L i F - P u F j 125

    3.77. The System L i C I - F e C l j 126

    3.78. The System K C I - F e C l j 127

    3.79. The System N a C I - Z r C I ^ 128

    3.80. The System K C I - Z r C I ^ 130

    3 .81 . The System L i C I - U C l 3 131

    3.82. The System L i C I - U C I ^ 132

    3.83. The System NaCI -UCIg 133

    3.84. The System N a C i - U C I ^ 134

    http://2NaF.ThF4-2NaF.UF4

  • 3.85. The System K C I - U C I ^ 135

    3.86. The System RbCI -UCIg 136

    3.87. The System C s C I - U C I ^ 137

    3.88. The System K 3 C r F g - N a 3 C r F ^ - L i 3 C r F g 138

    4 . OXIDE AND HYDROXIDE SYSTEMS 139

    4 . 1 . The System S i O j - T h O j 139

    4 .2 . The System L i O H - N a O H 140

    4.3 . The System L i O H - K O H 141

    4 .4 . The System N a O H - K O H 142

    4.5. The System NaOH-RbOH 143

    4.6. The System Ba(OH)2-Sr(OH)2 144

    5. AQUEOUS SYSTEMS 145

    5 . 1 . The System U O j - P j O ^ - H j O , 25°C Isotherm 145

    5.2. The System U O j - H j P O ^ - H j O , 25°C Isotherm 146

    5.3. The System U ( H P 0 4 ) 2 - C l 2 0 7 - H 2 0 , 25°C Isotherm 147

    5.4. The System U 0 3 - N a 2 0 - C 0 2 - H 2 0 , 26°C Isotherm 148

    5.5. Port ions of the System T h 0 2 - N a 2 0 - C 0 2 - H 2 0 , 25°C Isotherm 150

    5.6. The System N a 2 0 - C 0 2 - H 2 0 , 25°C Isotherm 153

    5.7. So lub i l i t y of Uranyl Sulfate in Water 156

    5.8. Two-L iqu id -Phase Region of UO jSO, in Ordinary and Heavy Water 158

    5.9. The System UO3-SO3-H2O 160

    5.10. Coexistence Curves for Two L i q u i d Phases in the System

    UO2SO4-H2SO4-H2O 164

    5 .11 . Two-L iqu id -Phase Region of the System UO2SO4-H2SO4-H2O 166

    5.12. Two-L iqu id -Phase Coexis tence Curves for UO,—Rich Solut ions in

    the System U O 3 - S O 3 - H 2 O With and Without HNO3 167

    5.13. So lub i l i ty of UO3 in H2SO4-H2O Mixtures 168

    5.14. Ef fect of Excess H.SO. on the Phase Equ i l ib r ia in Very D i lu te

    UO2SO4 Solut ions 169

    5.15. Second-Liquid-Phase Temperatures of U O j S O . - L i j S O . Solut ions 170

    5.16. Second-Liquid-Phase Temperatures for UO.SO. Solut ions Conta in ing

    L i . ,SO, or BeSO, 171

    5.17. Second-Liquid-Phase Temperatures for BeSO^ Solut ions Conta in ing UO3 172

    5.18. The System N i S 0 4 - U 0 2 S 0 4 - H 2 0 at 25°C 173

    5.19. Phase-Trans i t ion Temperatures in Solut ions Conta in ing CuSO. ,

    UO2SO4, a n d H j S O ^ 174

    5.20. The Ef fect of CuSO, and NiSO, on Phase-Trans i t ion Temperatures:

    0.04 m UOjSO^; 0.01 m H jSO^ 175

    5 .21 . The System U 0 3 ^ C u O - N i O - S 0 3 - D 2 0 at 300°C; 0.06 m SO3 176

    5.22. So lub i l i ty of Nd2(S04)3 in 0.02 m UO2SO4 Solut ion Conta in ing 0.005 m

    H2SO4 (180-300°C) 177

    5.23. So lub i l i ty of La2(S04)3 in UOjSO^ Solut ions 178

    5.24. So lub i l i ty of CdSO^ in UO2SO4 Solut ions 179

    5.25. Solub i l i ty of C s S O ^ in UOjSO^ Solutions 180

    5.26. So lub i l i ty of Y2(S04)3 in UO2SO4 Solut ions 181

    5.27. So lub i l i ty of Ag2S04 in UOjSO^ Solut ions 182

    5.28. So lub i l i ty at 250°C of BaSO^ in UO2SO4-H2O Solut ions 183

    5.29. Solub i l i ty of H2WO4 in 0.126 and 1.26 M UOjSO^ 184

    5.30. Phase Stab i l i t y of H2WO4 in 1.26 M UO2F2 186

    v

  • 5 .31 . The System U 0 2 ( N 0 3 ) 2 - H 2 0 188

    5.32. Phase Equ i l i b r ia of UO and HF in Stoichiometr ic Concentrat ions

    (Aqueous System) 190

    5.33. So lub i l i t y of Uranium Tr iox ide in Orthophosphoric A c i d Solut ions 191

    5.34. So lub i l i t y of Uranium Tr iox ide in Phosphoric A c i d at 250°C 192

    5.35. So lub i l i t y of UO3 in H3PO4 Solution 193

    5.36. The System U 0 2 C r 0 4 - H 2 0 194

    5.37. Var ia t ion of L i 2 C 0 3 Solub i l i ty wi th UO2CO3 Concentrat ion at Constant

    CO Pressure (250°C) 195

    5.38. The System L i O - U O 3 - C O 2 - H 2 O at 250°C and 1500 psi 196

    5.39. The System T h ( N 0 3 ) 4 - H 2 0 197

    5.40. Hydro ly t ic Stab i l i ty of Thorium N i t r a t e - N i t r i c A c i d and Uranyl

    N i t ra te Solut ions 198

    5 .41 . The System T h 0 2 - C r 0 3 - H 2 0 at 25°C 199

    5.42. Phase Stab i l i t y of T h 0 2 - H 3 P 0 4 - H 2 0 Solut ions at High Concentrat ions

    of T h O j 200

    vi

  • PHASE DIAGRAMS OF NUCLEAR REACTOR MATERIALS

    INTRODUCTION

    This compilation presents the phase diagrams for possible materials for nuclear reactors

    developed at the Oak Ridge National Laboratory over the period 1950—59. It represents the

    efforts of certain personnel in what are now the Chemical Technology, Metallurgy, Chemistry, and

    Reactor Chemistry Divisions of ORNL. This document also contains diagrams originated by

    other installations under contract to ORNL during that interval. In addition, a few diagrams from

    the unclassified literature have been included when they form part of completed systems

    sequences.

    No general discussion of the principles of heterogeneous phase equilibrium has been

    included since excellent discussions are available in many well-known publications. Equilibria

    in several of the fused-salt systems presented below have been described in some detail in a

    recent publication by Ricci. Nor has any attempt been made to assemble the phase equilibrium

    data on reactor materials available from many other sources. For such information the reader is

    referred to other recently published compilations of phase diagrams and to the several new

    works dealing specifically with nuclear reactor materials.

    While some of the diagrams presented below are the result of fundamental researches, most

    were obtained in support of the ORNL programs in development of fluid-fueled reactors. Others

    have been developed as a consequence of ORNL interests in reprocessing of nuclear fuels,

    reactor metallurgy, production of uranium and thorium from raw materials, and studies of

    mechanisms of corrosion.

    Much of the research effort was devoted to searches for systems of direct use as fluid fuels

    or blanket materials; unpromising systems were often given only casual attention. The diagrams

    in this collection, accordingly, vary widely in the degree of completeness of examination. A

    brief description of the status of the work is presented in each case; in a few cases, where no

    detailed description of the system has been published, the available data have been included

    with the diagram.

    J. E. Ricci , Guide to the Phase Diagrams of the Fluoride Systems, ORNL-2396 (Nov. 19, 1958).

    ^J . F . Hogerton and R. C. Grass (eds . ) . The Reactor Handbook, vol 2, AECD.3646 (May 1955).

    T . Lyman (ed.), Metals Handbook, American Society for Metals, Cleveland, Ohio, 1948.

    F . A. Rough and A. A. Bauer (eds . ) . Constitution of Uranium and Thorium Alloys, BMI-1300 (June 2,

    1958).

    E. M. Levin, H. F . McMurdie, and F . P . Hall , Phase Diagrams for Ceramists, The American Ceramic

    Society, Columbus, Ohio, 1956.

    E. M. Levin, H. F . McMurdie, and F . P . Hall , Supplement to Phase Diagrams for Ceramists, The

    American Ceramic Society, Columbus, Ohio, 1959.

    B. Yates , Materials for Use m Nuclear Reactors, Information Bibliography, IGRL-IB/R-15 (2nd ed . ) ,

    1958. o

    H. H. Hausner and S. B. Roboff, Materials for Nuclear Power Reactors, Reinhold Publishing Corp.,

    New York, 1955. O

    B, Kopelman (ed.)# Materials for Nuclear Reactors, McGraw-Hill Book Co. , New York, 1959.

    1

  • 1. METAL SYSTEMS

    1.1. The System Silver—Zirconium

    J . 0 . Betterton, Jr., and D. S. Easton, "The Silver-Zirconium System," Trans, Met. Soc,

    A/ME 212, 470-75(1958).

    A detailed investigation was made of the phase diagram of silver—zirconium, particularly in

    the region 0 to 36 at. % Ag. The system was found to be characterized by two intermediate

    phases, Zr2Ag and ZrAg, and a eutectoid reaction in which the /S-zirconium solid solution de-

    composes into a-zirconium and Zr jAg. It was found that impurities in the range 0.05% from the

    iodide-type zirconium were sufficient to introduce deviations from binary behavior; with partial

    removal of these impurities an increase in the a-phase solid solubility limit from 0.1 to 1.1 at. %

    Ag was observed.

    2

  • UNCLASSIFIED

    ORNL-LR-DWG 18989

    u S huLE PHASE a- S NGLE PHASE WITH A TRACE OF SECOND PHASE

    DAV TWO PHASE THREE PHASE FILLED SYMBOLS NDICATE METALLOGRAPHIC SAMPLES

    WHICH WERE CHEMICALLY ANALYZED FOR SILVER CONTENT

    -O-O • ' V V

    SILVER (at %)

    at.

    F ig . 1.1a. The System Si lver-Zirconium in the Eutectoid Region ( 0 - 6

    % Ag).

    1400

    1300 -

    1200

    o 1100

    a:, 1000

    900

    8 0 0

    7 0 0

    / a + >

    /3 + LIQ

    / 8 + y

    UNCLASSIFIED

    ORNL-LR-DWG 18988A

    ""^ \ M, • \ LIQ

    _v \

    \ \

    ' + LIQ,

    o SINGLE PHASE

    DAV TWO PHASE

    FILLED SYMBOLS INDICATE METALLOGRAPHIC SAMPLES

    WHICH WERE CHEMICALLY ANALYZED FOR SILVER CONTENT

    y+S

    10 15 20

    SILVER (at %)

    25 3 0 35

    F ig . l . lfe. The System Silver—Zirconium in the Region 0—36 at. % Ag .

  • 1.2. The System Indium—Zirconium

    J . 0 . Bet ter ton, Jr . , and W. K. Noyce, " T h e Equi l ib r ium Diagram of Indium—Zirconium in the

    Region 0 - 2 6 at. pet I n , " Trans. Met. Soc. AlME 212, 3 4 0 - 4 2 (1958).

    The z i rconium-r ich port ion of the ind ium-z i rcon ium phase diagram was determined as a

    study of the ef fect of a l l oy ing a t r i va len t B-subgroup element, indium, wi th zirconium in group

    IVA. The temperature of the a l lo t rop ic t ransi t ion was found to r ise w i th indium, terminat ing in a

    per i tec to id react ion, |S(9.3% In) + y{22.4% In) ; ^ : : ^ - a ( 1 0 . 1 % In) at 1003°C. In th is respect the

    ef fect of indium is analogous to that of aluminum in z i rconium and t i tanium a l l oys .

    1300

    1200

    1100

    1000

    UNCLASSIFIED ORNL-LR-DWG 18987

    LiJ Q.

    9 0 0

    8 0 0

    700

    6 0 0

    5 0 0 6 8

    INDIUM (at 7o)

    F ig . 1.2a. The System Indium—Zirconium in the Peritectoid Region (0—13

    at . % In) .

    4

  • millercText BoxBLANK

  • millercText BoxBLANK

  • 1400

    1300

    1200

    u UJ

    ID

    cr u Q.

    1100

    1000

    900

    800

    700

    UNCLASSIFIED ORNL-LR-DWG 18983

    Fig. 1.3fe. The System Antimony-Zirconium in the Peritectoid Region (0-6 at. % Sb).

    7

  • 1.4. The System Lead—Zirconium

    G. D. Kneip, Jr., and J . 0 . Betterton, Jr., cited by E. T . Hayes and W. L. O'Brien,

    "Zirconium Equilibrium Diagrams," p 443—83 in The Metallurgy of Zirconium, ed. by B. Lustman

    and F. Kerze, Jr., McGraw-Hill Book Co. , New York, 1955.

    UNCLASSIFIED

    ORNL-LR-DWG 1375

    LU

  • 2. M E T A L - F U S E D - S A L T SYSTEMS

    2 . 1 . The Sodium Metal—Sodium Halide Systems

    M. A . Bredig and J . E. Sutherland, "H igh-Tempera ture Region of the Sodium—Sodium Hal ide

    Sys tems , " Chem. Ann, Prog, Rep. June 20, 1957, ORNL-2386, p 119. Subsequent report on these

    systems to be publ ished.

    UNCLASSIFIED ORNL-LR-DWG. 21894A

    1200

    1100

    l O O O i i

    < - MOLE FRACTION MX .9 .8 .7 .6 .5 .4 .3 .2 .1

    ^ MOLE FRACTION MX .9 .8 .7 .6 .5 .4 .3 .2 .1

    °C

    9 0 0

    8 0 0

    7 0 0

    6 0 0

    1100

    7 0 0

    6 0 0

    iTson \ \ I \ r

    ®

    ® ONE LIQUID

    TWO LIQUIDS

    NaBr - Na

    740°

    \

    SOLID SALT+ LIQUID METAL \

    I I I I I I I I I

    "1 \ o COOLING CURVESJHIS WORK X EQUILIBRATION, MAB,JWJ,WTS A EQUILIBRATION, HRB, MB

    1080°

    SOLID SALT + LIQUID METAL

    ® ONE LIQUID

    1033°

    SOLID SALT + LIQUID METAL J L J \ \ \ L J L

    1200

    1100

    1000

    °C

    9 0 0

    8 0 0

    7 0 0

    6 0 0

    - 1 1 0 0

    1000

    °C

    9 0 0

    8 0 0

    700

    .1 .2 .3 .4 .5 .6 7 .8 .9 MOLE FRACTION OF METALS

    .1 .2 .3 .4 .5 .6 7 ,8 .9 MOLE FRACTION OF METALH

    >600

    Fig. 2 ,1 . The Sodium Metal—Sodium Halide Systems.

  • 2.2. The Potassium Metal—Potassium Halide Systems

    J. W. Johnson and M. A. Bredig, "Miscib i l i ty of Metals with Salts in the Molten State. I I I . The

    Potassium-Potassium Halide Systems," / . Phys. Chem. 62, 604 (1958).

    Complete miscibil i ty of metal and salt exists in the KX—K systems, X = F, CI, Br, and I, at

    and above 904, 790, 727, and 717°C, that is, as close as +47, +18, - 7 , and +22° respectively,

    to the melting points of the salts. The asymmetry of the liquid-liquid coexistence areas,

    especially of the fluoride and chloride systems, as indicated by the consolute compositions

    (20, 39, 44, and 50 mole % metal, respectively), is largely explained by the difference in molar

    volumes of salt and metal. At the monotectic temperature, the solubility of the solid salts in the

    liquid metal, as well as of the metal in the liquid salt phase, is much larger than in the case of

    the sodium systems.

    UNCLASSIFIED ORNL-LR-DWG 2(481B

    I I I I I I I I \ I W t

    10 20 30 40 50 60 70 80 90 mole % K

    Fig . 2 .2 . The Potassium Metal—Potassium Halide Systems.

    10

  • 2.3. The Rubidium Metal—Rubidium Halide Systems

    M. A. Bredig and J. W. Johnson, "Rubidium—Rubidium Halide Systems," Chem. Ann. Prog.

    Rep. June 20, 1957, ORNL-2386, p 122; M. A. Bredig, J . E. Sutherland, and A, S. Dworkin,

    "Molten Salt-Metal Solutions. Phase Equi l ibr ia," Chem. Ann, Prog, Rep, June 20, 1958,

    ORNL-2584, p 73. Subsequent report on these systems to be published.

    UNCLASSIFIED ORNL-LR-DWG. 32909A

    800

    750

    700 °c

    650

    600

    550

    790°

    \ / RbF-Rb \ . — ^ X — X - ^ .

    773° \ \

    scr^xRb-qizRb 696°

    R b B r - R b

    \

    \

    25 50 75

    MOLE % Rb METAL

    Fig. 2.3. The Rubidium Metal—Rubidium Halide Systems.

    n

  • 2.4. The Cesium Metal—Cesium Halide Systems

    M. A . Bredig, H. R. Bronste in , and W. T . Smith, J r . , " M i s c i b i l i t y of L iqu id Metals w i th

    Sal ts . I I . The Potassium—Potassium Fluor ide and Cesium—Cesium Hal ide Sys tems , " / . Am,

    Chem, Soc. 77, 1454 (1955).

    M i s c i b i l i t y in a l l proport ions of cesium metal w i th cesium hal ides at and above the mel t ing

    points of the pure sa l t s , and of potassium metal w i th potassium f luor ide 50° above the mel t ing

    point of the sa l t , occurs. The temperature-concentrat ion range of coexistence of two l iqu id

    phases decreases in going from sodium to potassium systems and disappears al together for the

    cesium systems. The so lub i l i t y of the sol id ha l ides in the corresponding l iqu id a l ka l i metals,

    at a given temperature, increases great ly wi th increase of atomic number of the metal .

    UNCLASSIFIED ORNL-LR-DWG. 37011

    0 25 50 75 ^00

    MOLE % METAL

    Fig. 2.4. The Cesium Metal—Cesium Halide Systems.

    12

  • 2.5. The Alkal i Metal—Alkali Metal Fluoride Systems

    M. A . Bredig, J . E. Sutherland, and A . S. Dwork in , " M o l t e n Salt—Metal Solu

    E q u i l i b r i a , " Chem, Ann. Prog. Rep, June 20, 1958, ORNL-2584, p 73,

    1300 —

    1200

    1100

    1000

    9 0 0

    800.—

    UNCLASSIFIED ORNL-LR-DWG. 31067A

    700

    600 25 50 75

    MOLE % METAL 100

    Fig. Z5 . The Alkal i Metal -Alkal i Metal Fluoride Systems.

  • 3. FUSED-SALT SYSTEMS

    3.1. The System LiF-NaF

    A. G. Bergman and E. P. Dergunov, "Fusion Diagram of L iF -KF—NaF, " Compt. rend. acad.

    sci. U.R.S.S. 31, 753-54 (1941).

    The system L iF -NaF contains a single eutectic at 60 L iF -40 NaF (mole %), m.p. 652°C.

    1000

    900

    800

    700

    600

    500 LiF 10 20 30 40 50 60

    NaF (mole%)

    70

    UNCLASSIFIED ORNL-LR-DWG 20457

    ^ ^

    " ^

    ^ ^ - ^

    /

    / 6 5 2 ° C

    ^

    9 0 NaF

    Fig. 3.1. The System LiF—NoF.

    14

  • 3.2. The System L i F - K F

    A. G. Bergman and E. P. Dergunov, "Fusion Diagram of L i F - K F - N a F , " Compt. rend. acad.

    sci. U.R.S.S. 31, 753-54 (1941).

    The system L i F - K F contains a single eutectic at 50 LiF—50 KF (mole %), m.p. 492°C.

    UNCLASSIFIED ORNL-LR-DWG 35483

    40 50 60

    KF(mole%)

    Fig. 3,2. The System L i F - K F .

    15

  • 3.3. The System LiF-RbF

    C. J. Barton, T. N. McVay, L. M. Bratcher, and W. R. Grimes, unpublished work performed at

    the Oak Ridge National Laboratory, 1951-54.

    Preliminary diagram.

    Invariant Equilibria

    Mole % L iF

    in Liquid

    Invariant

    Temperature

    (°C) Type of Equilibrlun Phase Reaction

    at Invariant Temperature

    44

    47

    470

    475

    Eutectic

    Perltectic

    L ^ ^ ^ R b F -I- LIF-RbF

    L + L I F ; ^ ^LIF-RbF

    General characteristics of the system have been reported by E. P. Dergunov, "Fusion Dia-

    grams of the Ternary Systems of the Fluorides of Lithium, Sodium, Potassium, and Rubidium,"

    Doklady Akad. Nauk S.S.S.R. 58, 1369-72 (1947).

    UNCLASSIFIED ORNL-LR-DWG 16145

    9 0 0

    6 0 0

    5 0 0

    ~-.^ I ' '

    , , J II a \ ^ ' Ji • • — < »

    1 u_ -Q

    cr

    u.

    4 0 50 60 LiF (mole %)

    Fig. 3.3, The System L iF -RbF.

    16

  • 3.4. The System LiF-CsF

    C. J. Barton, L. M. Bratcher, T. N. McVay, and W. R. Grimes, unpublished work performed

    at the Oak Ridge National Laboratory, 1952-54.

    Preliminary diagram.

    Invariant Equilibria

    Mole % CsF

    In Liquid

    Invariant

    Temperature

    (°C) Type of Equilibrium Phase Reaction

    at Invariant Temperature

    55

    63

    495 ± 5

    475 ± 5

    Perltectic

    Eutectic

    LIF +L ^=^LIF-CsF

    L V 'LIF-CsF + CsF

    900

    800

    700

    600

    500

    400

    UNCLASSIFIED ORNL-LR-DWG 14632

    3 0 0

    \

    x̂ \

    V)

    O l i -_ l

    \ .^ ^^

    X ^ ^

    LiF 10 2 0 3 0 40 50 60 CsF (mole %)

    70 80 90 CsF

    Fig, 3,4. The System LiF—CsF.

    17

  • 3.5. The System NaF-KF

    A. G. Bergman and E. P. Dergunov, "Fusion Diagram of L i F - K F - N a F , " Compt. rend. acad.

    sci. U.R.S.S. 31, 753-54 (1941).

    The system NaF-KF contains a single eutectic at 40 NaF-60 KF (mole %), m.p. 710°C.

    UNCLASSIFIED ORNL-LR-DWG 35484

    5 0 6 0

    KF(mole7o)

    Fig, 3,5. The System NaF-KF.

    18

  • 3.6. The System NaF.RbF

    C. J. Barton, J. P. Blakely, L. M. Bratcher, and W. R. Grimes, unpublished work performed

    at the Oak Ridge National Laboratory, 1951.

    Preliminary diagram. The system NaF-RbF contains a single eutectic at 27 NaF-73 RbF

    (mole %), m.p. 675 + 10°C.

    General characteristics of the system have been reported by E. P. Dergunov, "Fusion Dia-

    grams of the Ternary Systems of the Fluorides of Lithium, Sodium, Potassium, and Rubidium,"

    Doklady Akad. Nauk S.S.S.R. 58, 1369-72 (1947).

    1000 1

    9 5 0

    9 0 0

    o - 850 LJ a:

    a: 0-5 800 u

    750

    700

    • \ \

    \ • S .

    "^ \

    \ c N,

    X X

    i 1

    L ^

    \ \

    \ ^ \

    /•:

    \A» • •'

    /

    UNCLASSIFIED ORNL-LR-DWG 35711

  • 3.7. The System KF-RbF

    C. J. Barton, J. P. Blakely, L. M. Bratcher, and W. R. Grimes, unpublished work performed

    at the Oak Ridge National Laboratory, 1951.

    Preliminary diagram. The system KF-RbF contains a solid solution minimum at 28 K F -

    72 RbF (mole %), m.p. 770 + 10°C.

    — — IT^^^ ^_^__^ . *•

    (0 20 40 50 60 RbF (mole %)

    Fig, 3.7. The System KF-RbF.

    20

  • 3.8. The System L i F - N a F - K F

    A. G. Bergman and E. P. Dergunov, "Fusion Diagram of L i F - K F - N a F , " Compt. rend. acad.

    sci. U.R.S.S. 31, 753-54 (1941).

    The system L i F - N a F - K F contains a single eutectic at 46.5 L iF -11 .5 NaF-42.0 KF

    (mole %), m.p. 454°C.

    UNCLASSIFIED ORNL-LR-DWG 1!99A

    NaF 990

    Fig. 3,8, The System L i F - N a F - K F .

    21

  • 3.9. The System LiF-NoF-RbF

    C. J. Barton, L. M. Bratcher, J. P. Blakely, and W. R. Grimes, unpublished work performed

    at the Oak Ridge National Laboratory, 1951.

    Preliminary diagram. The system L iF -NaF-RbF contains a single eutectic at 42 L i F - 6

    NaF-52 RbF (mole %), m.p. 430 ± 10°C. The composition and temperature of the ternary peri-

    tectic point have not yet been determined.

    General characteristics of the system have been reported by E. P. Dergunov, "Fusion Dia-

    grams of the Ternary systems of the Fluorides of Lithium, Sodium, Potassium, and Rubidium,"

    Doklady Akad. Nauk S.S.S.R. 58, 1369-72 (1947). Dergunov lists the composition and tempera-

    ture of the ternary eutectic as 46.5 L iF -6 .5 NaF-47 RbF (mole %), m.p. 426°C.

    Fig. 3.9. The System L iF -NaF -RbF .

    22

  • 3.10. The System L i F - K F - R b F

    C. J. Barton, J. P. Blakely, L. M. Bratcher, and W. R. Grimes, unpublished work performed

    at the Oak Ridge National Laboratory, 1951.

    Preliminary diagram. The system L i F - K F - R b F contains a single eutectic at 40 L iF -32 .5

    KF-27.5 RbF (mole %), m.p. 440 ± 10°C.

    General characteristics of the system have been reported by E. P. Dergunov, "Fusion Dia-

    grams of the Ternary Systems of the Fluorides of Lithium, Sodium, Potassium, and Rubidium,"

    Doklady Akad. Nauk S.S.S.R. 58, 1369-72 (1947).

    856 f 4 8 5 845

    Fig. 3.10. The System L i F - K F - R b F .

    23

  • 3.11. The System NaF-KF-RbF

    C. J. Barton, L. M. Bratcher, J . P. Blakely, and W. R. Grimes, unpublished work performed

    at the Oak Ridge National Laboratory, 1951.

    Preliminary diagram. The system NaF—KF—RbF contains a single eutectic at 21 NaF-5

    KF-74 RbF (mole %), m.p. 621 + 10°C.

    990 £ 710 856

    Fig. 3.11. The System NaF-KF-RbF.

    24

  • 3.12. The System NoBF^-KBF^

    R. E. Moore, J. G. Surak, and W. R. Grimes, unpublished work performed at the Oak Ridge

    National Laboratory, 1957.

    Preliminary diagram. The system NoBF . -KBF^ contains a single eutectic at 88 NaBF^ -

    12 KBF . (mole %), m.p. 355°C. The dotted line was obtained from thermal effects representing

    incompletely understood solid-phase transformations of KBF . and NaBF^.

    700

    600

    500

    5 400

    300

    200

    100

    UNCLASSIFIED ORNL-LR-DWG35487

    10 20 30 40 50 60 NoBF. (mole7o)

    70 80 90

    Fig. 3.1Z The System NoBF^-KBF^.

    25

  • 3.13. The System N a F - F e F j

    R. E. Thoma, H. A. Fr iedman, B. S. Landau, and W. R. Gr imes, unpubl ished work performed

    at the Oak Ridge Nat ional Laboratory, 1957.

    Pre l iminary diagram.

    Invariant Equilibria

    Mole % FeF,

    in Liquid

    Invariant

    Temperature

    (°C) Type of Equilibriun Phase Reaction

    at Invariant Temperature

    30

    50

    63

    680

    783

    745

    Eutectic

    Congruent melting point

    Eutectic

    L ^ = ^ N a F + NaF-FeF2

    L ^ = ? NaF-FeFj

    L ; = ^ NaF-FeF, + FeF,

    UNCLASSIFIED ORNL-LR-DWG 2 2 3 4 5

    900

    HJ 8 0 0

    5 0 0 30 40 50 60

    FeFj (mole %) 70

    1

    \

    \

    1

    I

    '

    \ ! > - ^

    \ \

    y^ v ^

    U-o •z.

    ~~-^

    /

    y

    /

    y

    /

    X' /

    i

    80

    Fig. 3.13. The System NaF-FeF_.

    26

  • 3.14. The System N o F - N i F j

    R. E. Thoma, H. A . Fr iedman, B. S. Landau, and W. R. Grimes, unpubl ished work performed

    at the Oak Ridge Nat iona l Laboratory, 1957.

    Pre l im inary diagram.

    invariant Equilibria

    Mole % N i F ,

    in Liquid

    Invariant

    Temperature

    {°C)

    Type of Equilibrium Phase Reaction

    at Invariant Temperature

    23

    50

    57

    795

    1045

    1040

    Eutectic

    Congruent melting point

    Eutectic

    L

    L

    - N a F H-NaF-NiF,

    ::̂ NaF-NiF,

    L ^ ^ ^ N o F - N i F j + N i F j

    (300

    noo

    900

    6 0 0

    NoF to 30 40 50 60 NiF2(mole %)

    70

    UNCLASSIFIED ORNL-LR-DWG 22344

    u.

    li-o 2

    80 9 0

    Fig. 3.14. The System NaF-N iF - .

    27

  • 3.15. The System RbF-CoFj

    C. J. Barton, L. M. Bratcher, R. J. Sheil, and W. R. Grimes, unpublished work performed at

    the Oak Ridge National Laboratory, 1956.

    Preliminary diagram.

    Invariant Equil ibria

    Mole % C a F ,

    in Liquid

    Invariant

    Temperature

    (°C) Type of Equilibrium Phase Reaction

    at Invariant Temperature

    9

    50

    57

    760

    1110

    1090

    Eutectic

    Congruent melting point

    Eutectic

    L ^ = i R b F -I- R b F - C a F ,

    L ^ ^ R b F - C a F ,

    L ^ ^ ^ R b F - C a F j + C a F j

    UNCLASSIFIED O R N L - L R - D W G 17668R

    1500

    (300

    (200

    700

    o THERMAL ANALYSIS DATA

    • VISUAL OBSERVATION DATA

    20 40 50 60 CaFj (mole7o)

    90 CaF,

    Fig. 3.15. The System R b F - C a F j .

    28

  • 3.16. The System L lF -NaF-CaF2

    C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak

    Ridge National Laboratory, 1955-56.

    Preliminary diagram. The system L i F - N a F - C a F j contains a single eutectic at 53 L i F -

    36 NaF-11 CaFj (mole %), m.p. 616°C.

    - 1350 -

    UNCLASSIFIED ORNL-LR-DWG (2779R

    TEMPERATURES ARE IN °C COMPOSITION IN mole7o

    ' 730^ 6(2

    "625

    5 A DV T T ^ >»\ 6 6 0 . * ^ >, 663,620

    —^zpr

  • 3.17. The System NaF-MgF2-CaF2

    C. J. Barton, L. M. Bratcher, J . P. Blakely, and W. R. Grimes, unpublished work performed

    at the Oak Ridge National Laboratory, 1955-56.

    Preliminary diagram.

    Invariant Equilibria

    Com

    NaF

    65

    35

    position of L

    (mole %)

    C a F j

    23

    28

    quid

    M g F j

    12

    37

    Te mperature

    (°C)

    745

    905

    Type of

    Equilibrium

    Eutectic

    Eutectic

    Solids Present

    at Invariant Temperature

    NaF , N a F - M g F j , and C a F j

    C a F j , M g F j , and N o F - M g F j

    UNCLASSIFIED ORNL-LR-DWG 17575R

    COIVIPOSITION IN mole 7o

    TEMPERATURE IN °C

    Fig. 3.17a. The System N a F — M g F , — C a F ~

    30

  • The minimum temperature along the quasi-binary section N a F - M g F 2 - C a F 2 occurs at the

    composition 36 N a F - 3 6 M g F 2 - 2 8 C a F j (mole %) , at 910°C.

    The existence of the compound N a r - M g F j was previously reported by A. G. Bergman and

    E. P. Dergunov, Compt. rend. acad. sci. U.R.S.S. 3 1 , 755 (1941).

    Ternary systems of alkali fluorides with MgF2 have been reported by Bergman et al. as

    follows: the system L i F - N a F - M g F j by A. G. Bergman and E. P. Dergunov, Compt. rend. acad.

    sci. U.R.S.S. 3 1 , 755 (1941); the system L i F - K F - M g F 2 by A. G. Bergman and S. P. Parlenko,

    Compt. rend.acad. sci. U.R.S.S. 3 1 , 818 -19 (1941); the system N a F - K F - M g F 2 by A. G. Bergman

    and E. P. Dergunov, Compt. rend. acad. sci. U.R.S.S. 48, 330 (1945).

    UNCLASSIFIED ORNL-LR-DWG 12780

    O

    1500

    1400

    1300

    LU Q: 1200

    < u 1100 Q.

    •- 1000

    9 0 0

    "^•--

    • ^ T . .

    1

    1 1

    y y' •

    y

    y y

    y y

    y y

    y

    y

    ^^ y

    y y

    1 y y

    y

    X y

    800 NaMgFj 10 20 30 4 0 5 0 60 70 80 90 CoFg

    CoFg (mole 7o)

    Fig. 3.17fc. The Subsystem N a F ' M g F j - C a F j .

    31

  • 3.18. The System NaF-KF-AIF3

    C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak

    Ridge National Laboratory, 1951-52.

    Preliminary diagram. No study has been made at the Oak Ridge National Laboratory of the

    phase relationships occurring within the system NaF—KF—AlF,. Phase diagrams have been

    reported for the AIF^ binary systems, N a F - A I F j [P. P. Fediotieff and W. P. I l j insky, Z. anorg.

    Chem. 80, 121 (1913); also N. A. Pushin and A. V. Baskow, ibid. 81, 350 (1913)] and KF-AIF3

    [P. P. Fediotieff and K. Timofeef, Z. anorg. u. allgem. Chem. 206, 265 (1932)].

    71000

    Fig. 3.18. The System N a F - K F - A I F j .

    32

  • 3.19. The System L i F - B e F j

    This phase diagram is a composite from several published sources and from unpublished

    data derived at the Oak Ridge National Laboratory (R. E. Moore, C. J. Barton, R. E. Thoma,

    and T. N. McVay) and at the Mound Laboratory (J. F. Eichelberger, C. R. Hudgens, L. V. Jones,

    and T. B. Rhinehammer). Thermal gradient quenching data (ORNL) and differential thermal

    analysis data (Mound Laboratory) have served to corroborate this composite diagram.

    Invar ian t E q u i l i b r i a

    Mole % B e F j

    in L i q u i d

    33 .5 *

    52

    -

    T

    Invar iant

    emperature

    (°C)

    454

    355

    280

    Type of Equ i l i b r i um

    P e r i t e c t i c

    Eu tec t i c

    Upper temperature of

    s t a b i l i t y for L i F ' B e F j

    Phase React ion

    at Invar iant Temperoture

    L - l - L i F ^ = ^ 2 L i F ' B e F ,

    L ^ ^ 2 L i F . B e F 2 + B e F j

    2 L i F . B e F 2 + BeF2 L i F - B e F ,

    * R e f 3.

    Roy, Roy, and Osborn have reported the presence of the compound LiF-2BeF2 in the system

    L i F - B e F j although neither the Mound Laboratory nor the ORNL data have indicated the exist-

    ence of this compound.

    ' D . M . Roy, R. Roy, and E. F. Osborn, ; . Am. Ceram. Soc. 37, 300 (1954).

    ^ A . V . Novose lova , Y u . P. Simanov, and E. I. Yarembash, / . Phys. Chem. (U.S.S.R.) 26, 1244 (1952).

    John L. Speirs, The Binary and Ternary Systems Formed by Calcium Fluoride, Lithium Fluoride, and Beryllium Fluoride: Phase Diagrams and Electrolytic Studies, Ph.D. t h e s i s . University of Michigan, May 29, 1952.

    ^

    —— L\¥ +

    L

    \

    F + 2L iF-BeF

    \

    ^

    2

    \ \

    - I

    _ 2 L i F - 3 e F o \ _

    LIQUID

    2L iF-BeF2 i ^

    + f be^g -

    ^ y ^

    2 L i F - B e F

    ^

    2 + BeFg(HI

    E

    GH QUARTZ

    eFg -t- L IQU

    TYPE)

    1 U F ' B e F 2 - l - BeFg (HIGH QUARTZ

    . . 1 1

    D

    YPE)

    L (F -BeF2+BeF2 (LOW QUARTZ TYPE;

    10 20 30 40 50 60 70 80 90 BeFj

    BeFj (mole 7o)

    F i g . 3.19. The System L i F - B e F ,

    33

  • 3.20. The System N a F - B e F 2

    D. M. Roy, R. Roy, and E. F. Osborn, " F l u o r i d e Model Systems: I I I . The System NaF-

    B e F j and the Polymorphism of Na2BeF4 and B e F j , " / . Am. Ceram. Soc. 36, 185 (1953).

    Invariant Equilibria*

    Mole % BeF j

    in Liquid

    31

    33.3

    -

    -

    43

    50

    55

    T

    Invariant

    emperature

    (°C)

    570

    600

    320

    225

    340

    376 + 5

    365

    Type of Equilibrium

    Eutectic

    Congruent melting point

    Inversion

    Inversion

    Eutectic

    Congruent melting point

    Eutectic

    Phase Reaction

    at Invariant Temperature

    L ^=i NaF + a-2NaF-BeF2

    L ^==^ a-2NaF-BeF2

    a-2NaF-BeF2 ^ a '2NaF-BeF2

    a'-2NaF-BeF2 ^ = ^ 7-2NaF-BeF2

    L I ' a-2NaF-BeF2 + /S-NaF-BeFj

    L ; ' ^'•-NaF-BeF2

    L ^ = i ^ ' -NaF-BeF j + BeF2

    *Roy, Roy, and Osborn did not list invariant equil ibria; those shown are estimates made from the reportec work and from experiments performed at the Oak Ridge National Laboratory.

    34

  • ^

    N

    1-

    = ORNL DAT

    = HIGH QUA

    = LOW QUAF

    S ?

    o U-o •z.

    3

    O

    +

    CD

    U

    . O

    1

    ^

    ' 1

    : \ \

    »

    » »

    Q (HQ) + LIQU

    CD

    O

    U-

    -»-

    \ "̂

    \ 5 =1 J

    li \

    ^

    Li_ O

    + •s U

    -o

    z. O

    J 1

    V.

    u ^ 1 jj c C

    L C

    L C

    / / Q

    OJ

    z + L D

    L L 3 0 3

    5 2 J I 0." u. LL m

    u_ o

    Z

    1

    +

    X

    OJ

    CO

    °

    + o

    -1

    m

    u_ D

    OJ

    "7 / u5^ CD Li_ D U

    . O

    J O

    1

    OJ

    ^

    •b i.

    . LJ_ o Z + C

    D

    Li_ D

    Z

    O

    J

    OJ

    3yniva3dW3i

    to 00

    UL

    0)

    m

    u. o Z

    E 0)

    CM

  • 3.21. The System K F - B e F j

    R. E. Moore, C. J. Barton, L. M. Bratcher, T. N. McVay, G. D. White, R. J. Sheil, W. R.

    Grimes, R. E. Meadows, and L. A. Harris, unpublished work performed at the Oak Ridge National

    Laboratory, 1955-56.

    Preliminary diagram.

    Invariant Equilibria

    Mole % BeF2

    In Liquid

    19

    25

    27

    33.3

    -

    52

    59

    66.7

    -

    72.5

    Invariant

    Temperature

    (°C)

    720

    740

    730

    787

    685

    390

    330

    358

    334

    323

    Type of Equilibrium

    Eutectic

    Congruent melting point

    Eutectic

    Congruent melting point

    Inversion

    Peritectic

    Eutectic

    Congruent melting point

    Inversion

    Eutectic

    L

    L

    L

    L

    a-

    A L

    L

    a -

    L

    Phase Reaction

    at Invariant Temperature

    F = ^ K F + 3KF-BeF2

    F=^3KF-BeF2

    F = ^ 3KF-BeF2 + a-2KF-BeF2

    ^ = ^ a - 2 K F - B e F 2

    2KF-BeF2 ^ ^ / S - 2 K F - B e F 2

    2KF-BeF2 + L ^ = ^ K F - B e F 2

    ^ ^ KF-BeF2 + /3.KF-2BeF2

    ^ = ^ a-KF-2BeF2

    KF-2BeF2 ?=^^ -KF-2BeF2

    ^ ^ - K F - 2 B e F 2 + BeF2

    This system has been reported by M. P. Borzenkova, A. V. Novoselova, Yu. P. Simanov,

    V. I. Chernikh, and E. I. Yarembash, "Thermal and X-Ray Analysis of the K F - B e F j System,"

    Zhur. Neorg. Khim. 1, 2071-82 (1956).

    36

  • UNCLASSIFIED ORNL-LR-DWG (7574R

    800

    700

    600

    500

    400

    300

    ^ s

    \

    OJ

    CD Lu

    ro

    y y^

    \^°

    C\J Q .

    OJ

    03,

    - 2 K F BeFj

    \

    \ CM

    L_

    GO

    ^

    ,a-KF -•2B

    u^ CD (M

    ^

    i

    /

    ^

    ^^ >̂ ^^

    20 40 50 60 BeFj (mole %)

    9 0 BeF,

    Fig. 3.21. The System KF-BeF2.

    37

  • 3.22. The System RbF-BeFj

    R. E. Moore, C. J. Barton, L. M. Bratcher, T. N. McVay, G. D. White, R. J. Sheil, W. R.

    Grimes, and R. E. Meadows, unpublished work performed at the Oak Ridge National Laboratory,

    1955-56.

    Preliminary diagram.

    Invariant Equilibria

    Phase Reaction

    at Invariant Temperature

    L ̂ ^ RbF-I- 3RbF-BeF2

    L ^=^3RbF-BeF2

    L ̂ =i3RbF-BeF2 + 2RbF.BeF2

    L ^^2RbF-BeF2

    L + 2RbF-BeF2 ̂ =^RbF.BeF2

    L ^ ^ RbF-BeF2 + RbF.2BeF2

    L ^=^RbF-2BeF2

    L ^ = ^ RbF-2BeF + BeF

    This system has also been reported by R. G. Grebenshchikov, "Investigation of the Phase

    Diagram of the RbF-BeF2 System and of Its Relationship to the BaO-Si02 System," Do^/aJy

    Akad. Nauk S.S.S.R. 114,316(1957).

    Mole % BeF j

    in Liquid

    16

    25

    27

    33.3

    50.5

    61

    66.7

    81

    Ti

    Invariant

    emperature

    (°C)

    675

    725

    720

    800

    442

    383

    464

    397

    Type of Equilibrium

    Eutectic

    Congruent melting point

    Eutectic

    Congruent melting point

    Peritectic

    Eutectic

    Congruent melting point

    Eutectic

  • 90 BeF,

    Fig. 3.22. The System RbF-BeF2.

    39

  • 3.23. The System CsF-BeFj

    0. N. Breusov, A. V. Novoselova, and Yu. P. Simanov, "Thermal and X-Ray Phase Analysis

    of the System CsF—BeF2 and its Interrelationships with MeF and BeF2 Systems," Doklady

    Akad. Nauk S.S.S.R. 118,935-37(1958).

    Invariant Equilibria

    Mole % BeFj

    in Liquid

    14

    23.5

    -

    33.3

    -

    48

    50

    -

    -

    58.4

    66.7

    -

    77.5

    Invariant

    Temperature

    (°C)

    598

    659

    617

    793

    404

    449

    475

    360

    140

    393

    480

    450

    367

    Type of Eqi

    Eutectic

    Peritectic

    Inversion

    Congruent

    Inversion

    Eutectic

    Congruent

    Inversion

    Inversion

    Eutectic

    Congruent

    Inversion

    Eutectic

    me

    me

    me

    j i l ibrium

    Iting

    Iting

    Iting

    point

    point

    point

    Phase Reaction

    at Invariant Temperature

    L F = ^ CsF -F/e.3CsF-BeF2

    a-2CsF-BeF + L ; = ^ a-3CsF-BeF2

    a-3CsF-BeF2 F = ^ /3-3CsF-BeF2

    L F = ^ a-2CsF-BeF2

    a-2CsF-BeF2 F=^/3-2CsF-BeF2

    L F = ^ a-2CsF-BeF2 - i -a-CsF-BeFj

    L f = ^ a-CsF-BeF2

    a-CsF-BeF2 F ^ /S-CsF-BeF2

    /3-CsF-BeF2 F = ^ y -CsF-BeF j

    L F = ^ a-CsF-BeF2-t-/3-CsF-2BeF2

    L ; ' a-CsF-2BeF2

    a-CsF-2BeF2 F=^/3-CsF-2BeF2

    L f = i /3-CsF-2BeF2 + BeF2

    40

  • 900

    800

    700

    600

    500

    400

    300

    200

    UNCLASSIFIED ORNL-LR-DWG 3 5 4 8 1

  • 3.24. The System L i F - N a F - B e F j

    R. E. Moore, C. J. Barton, W. R. Grimes, R. E. Meadows, L. M. Bratcher, G. D. White, T. N.

    McVay, and L. A. Harris, unpublished work performed at the Oak Ridge National Laboratory,

    1951-58.

    Preliminary diagram.

    Invariant Equilibria*

    Composition of Liquid

    (mole %)

    L i F NaF BeF,

    Invariant

    Temperature

    ;°c)

    480

    328

    355

    318

    Type of Equilibrium

    Eutectic

    Eutectic

    Congruent melting point

    Eutectic

    Solids Present

    at Invariant Point

    15

    23

    20

    5

    58

    41

    40

    53

    27

    36

    40

    42

    NaF, L iF , and 2NaF-BeF2

    L i F , 2NaF-BeF2, and

    2NaF-LiF-2BeF2

    2NaF-LiF-2BeF^

    NaF-BeF2, 2NaF-BeF2, and 2NaF-LiF-2BeF^

    31.5 31 37.5 315 Eutectic 2LiF-BeF2, L i F , and 2NaF-LiF-2BeF^

    *lnvariant equilibria shown in the phase diagram by the intersections of dotted-line boundary curves hove not been determined with sufficient precision to be listed in the table.

    Minimum Temperature on Alkemade Lines

    Composition of Liquid (mole %)

    L i F NaF BeF,

    Temperature

    (°C) Alkemade Line

    16

    26

    11

    16

    30.5

    56 28

    37 37

    44 45

    45 39

    31 38.5

    485

    340

    332

    343

    316

    2NaF-BeF2-LiF

    2NaF-L iF-2BeF2-L iF

    NaF-BeF2-2NaF-LiF-2BeF2

    2NaF-BeF2-2NaF-LiF-2BeF2

    2LiF-BeF2-2KaF-LiF-2BeF2

    Phase relationships of two of the ternary compounds in this system have been reported by

    W. John ["Si l icate Models. V. NaLi(BeF4), a Model Substance for Monticellite, CaMg(Si04),"

    Z. anorg. u. allgem. Chem. 276, 113-27 (1954); "Si l icate Models. V I . Na3Li(BeF4)2, a New

    Compound in the Ternary System N a F - L i F - B e F 2 , and Its Relation to Merwinite, Ca3Mg(SiO^)2,"

    Z. anorg. u. allgem. Chem. Ill, 274-86 (1954)].

    42

  • CO

    (r Q

    tr

    . ^ C/) U

    J R

    < ^ X

    J

    : D

    . <

    U. »

    CO 1

    u. D z I iil

  • 3.25. The System LiF-RbF-BeF2

    T. B. Rhinehammer, D. E. Etter, C. R. Hudgens, N. E. Rogers, and P. A. Tucker, unpublished

    work performed at the Mound Laboratory.

    Preliminary diagram.

    Invariant Equil ibria and Singular Points

    Solid Phases Present

    2 L i F . R b F - 2 B e F 2

    2 L i F - B e F 2 , 2 L i F - R b F - 2 B e F 2 , and BeF2

    2 L i F - R b F . 2 B e F 2 , R b F . 2 B e F 2 , and BeF2

    2 L i F - R b F . 2 B e F 2 and RbF-2BeF2

    2 L i F - R b F . 2 B e F 2 , R b F . B e F 2 , and RbF.2BeF 2

    2 L i F - R b F - 2 B e F 2 , L i F - R b F - B e F 2 , and RbF .BeF2

    L 1 F . R b F . B e F 2 , 2 R b F . B e F 2 , a n d R b F . B e F j

    L i F , 2 L i F - R b F . 2 B e F 2 , and 2 L i F . B e F 2

    L.F and 2 L i F . R b F . 2 B e F 2

    L r F , 2 L i F . R b F . 2 B e F 2 , and L i F - R b F - B e F j

    L i F , 2 R b F . B e F 2 , and L1F .RbF .BeF2

    L i F and L i F . R b F - B e F . ,

    L i F and 2RbF-BeF2

    Corr iposition of

    Liquid (mol

    L i F RbF

    40.0

    33.3

    33.0

    26.0

    12.0

    11.0

    11.5

    9.0

    50.0

    41.5

    35.0

    23.0

    30.0

    41.0

    43.0

    43.0

    43.0

    20.0

    33.3

    8.0

    12.0

    29.0

    34.0

    35.5

    40.0

    8.0

    19.5

    25.5

    40.0

    35.0

    39.5

    50.0

    54.0

    55.0

    le %)

    BeF2

    40.0

    33.3

    59.0

    62.0

    59.0

    55.0

    53.0

    51.0

    42.0

    39.0

    39.5

    37.0

    35.0

    19.5

    7.0

    3.0

    2.0

    Temperature

    (°C)

    485

    544

    295

    305-

    334

    +

    ±

    ±

    5

    5

    5

    - 3 2 0

    ± 5

    300 ± 5

    335

    380

    426

    473

    470

    530

    544

    640

    527

    470

    462

    + + + ±

    ± + +

    +

    +

    ± ±

    5

    5

    5

    5

    5

    5

    5

    5

    5

    5

    5

    Type of

    Equilibrium

    Congruent melting point

    Incongruent melting point of L1F .RbF.BeF2

    Eutectic

    Peritectic

    Quasi-binary eutectic

    Eutectic

    Peritectic

    Peritectic

    Peritectic

    Quasi-fainary eutectic

    Peritectic

    Peritectic

    Maximum on the boundary

    Quasi-binary eutectic

    Peritectic

    Peritectic

    Eutectic

    L i F , 3RbF .BeF2 , and 2RbF .BeF2

    L i F , L i F - R b F , and 3RbF-BeF2

    L i F - R b F , RbF, and 3RbF-BeF2

    44

    http://L1F.RbF.BeF2http://L1F.RbF.BeF2http://L1F.RbF.BeF2

  • UNCLASSIFIED ORNL-LR-DWG 38H3

    BeF2

    TEMPERATURE °C COMPOSITION mole 7o

    LigBeF^

    RbjBeFg

    LiRbFj P E RbF

    Fig. 3.25. The System Li F -RbF-BeF,

    45

  • 3.26. The System NaF-KF-BeF2

    R. E. Moore, C. J. Barton, L. M. Bratcher, T. N. McVay, and W. R. Grimes, unpublished work

    performed at the Oak Ridge National Laboratory, 1952-55.

    Preliminary diagram. Phase relationships within the system NaF-KF—BeF2 have not yet

    become so well defined at the Oak Ridge National Laboratory that the compositions and tem-

    peratures of the invariant points may be l isted.

    2 \548

    ^ Q O -

    a^2-

    UNCLASSIFIED O R N L - L R - D W G 3S114

    TEMPERATURE IN °C COMPOSITION IN mole %

    y^ KF 2 BeF,

    NaF^ 9 9 0

    £"-365 ,

    NaF BeF,

    i f - 3 4 0 ,

    3 5 0 ^

    - 4 5 0 -

    4 0 0 ,

    - 5 0 0 -

    ^ - 3 9 0 KF 2 BeFj

    750^

    'oS^

    — ^

    535^^ ,

    v\

    A 2KF BeFj

    TA^JKF BeFj

    A__Af-720

    • ^ O Q

    s950_^

    \L \J_

    ~g50

    V V

    ^50N

    \ / /

    fE-GZQ

    A ^

    750

    M.

    ' 8 0 0

    KF " 8 5 6

    Fig. 3.26. The System N a F - K F - B e P ,

    46

  • 3.27. The System NoF-RbF-BeFj

    R. E. Moore, C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished work performed

    at the Oak Ridge National Laboratory, 1954-57.

    Preliminary diagram.

    Invariant Equil ibria and Singular Points

    Con-

    L iq i

    NaF

    20.5

    50

    46

    45

    37

    52

    33

    51.7

    iposition

    lid (mole

    RbF

    68.5

    37.5

    38

    37

    33

    15

    33.7

    15

    of

    %) BeF j

    11.0

    12.5

    16

    18

    30

    33

    33.3

    33.3

    Temperature

    (°C)

    610

    640

    635

    650

    570

    477

    580

    480

    Type of Equilibrium Solids Present at Invariant Temperature

    Eutectic RbF , N a F , and 3 R b F . B e F 2

    Quasi-binary eutectic 3 R b F ' B e F _ and NaF

    Eutectic 3 R b F - B e F 2 , 2 R b F - B e F 2 , and NaF

    Quasi-binary eutectic 2 R b F ' B e F _ and NaF

    Peritectic 2 R b F - B e F 2 , N a F , and 2 N a F . 4 R b F . 3 B e F 2

    Eutectic 2 N a F ' 4 R b F . 3 B e F 2 , N a F , and 2 N a F ' B e F 2

    Peritectic

    Quasi-binary eutectic 2 N a F - 4 R b F ' 3 B e F 2 and 2NaF«BeF_

    2RbF-BeF2 and 2 N a F . 4 R b F . 3 B e F 2

    UNCLASSIFIED ORNL-LR-DWG 22343R2

    BE BINARY EUTECTIC BP BINARY PERITECTIC CM CONGRUENT MELTING POINT IM INCONGRUENT MELTING POINT TE TERNARY EUTECTIC TP TERNARY PERITECTIC

    TEMPERATURES BeFg

    ARE IN °C CM 543

    COMPOSITION IN mole 7o

    BE 395

    BE 375

    B P 4 4 0 RbF BeF,

    BE 375

    I M 4 4 0

    2RbF BeFp CM 8 0 0

    BE 720 3RbF BeFp CM 725 •

    BE 675,

    BE 335

    2NaFBeF2 • CM 595

    BE 570

    Fig. 3.27. The System N a F - R b P - B e F j .

  • 3.28. The System N o F - Z n P j

    C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak

    Ridge National Laboratory, 1952.

    Preliminary diagram.

    Invariant Equil ibria

    Mole % Z n F j

    in L i q u i d

    Invar ian t

    Temperature

    (°C) Type of Equ i l i b r i um Phase React ion

    at Invar iant Temperature

    33

    50

    69

    635

    748 + 10

    685

    Eutec t i c

    Congruent mel t ing po in t

    Eu tec t i c

    L

    L

    L

    , NaF - H N a F - Z n F j

    ? = i N o F - Z n F j

    ^ = i N a F - Z n F j + Z n F j

    tOGO

    900 —

    UNCLASSIFIED DWG 14627 R

    6 00

    5 00 —

    4001- 20 30 40 50 60 Zn Fp (mole %)

    Fig. 3.28. The System N a F — Z n F j .

    48

  • 3.29. The System KF-ZnF2

    C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak

    Ridge National Laboratory, 1952.

    Preliminary diagram.

    Invariant Equilibria

    Mole % ZnF„

    in Liquid

    Invariant

    Temperature

    (°C)

    Type of Equilibrium Phase Reaction

    at Invariant Temperature

    21

    30

    50

    80

    670 Eutectic

    720 + 10 Peritectic

    850 + 10 Congruent melting point

    740 ± 5 Eutectic

    L ? = ^ K F + 2KF.ZnF2

    L - f K F - Z n F j ; = ^ 2 K F - Z n F 2

    L ^ = ^ K F - Z n F 2

    L ^ = ^ K F - Z n F 2 + ZnF2

    1000

    900

    800

    700

    lij 6 0 0

    500

    400

    UNCLASSIFIED DWG (4625R

    300 40 50 60

    ZnFj (mole7o)

    ZnF,

    Fig. 3.29. The System K F - Z n F - .

    49

  • 3.30. The System RbF-ZnFj

    C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak

    Ridge National Laboratory, 1952.

    Preliminary diagram.

    Invariant Equilibria

    Mole % Z n F j

    in Liquid

    21

    32

    50

    70

    Invariant

    Temperature

    {°C)

    595 ± 10

    620 ± 10

    730 ± 10

    650

    Type of Equilibrium

    Eutectic

    Peritectic

    Congruent melting point

    Eutectic

    Phase Reaction

    at Invariant Temperature

    L ;̂ ' R b F + 2RbF.ZnF2

    L + RbF-ZnFj F = ^ 2RbF-ZnF2

    L f = ^ R b F . Z n F 2

    L I ' RbF.ZnF2 + Z n F j

    1000

    900

    8 0 0

    7 0 0

    600

    500

    4 0 0

    UNCLASSIFIED DWG 15349R

    ® ® ^ ^ ®

    C

    Nl

    b_ Q: C\J

    ^ j ^ ^ ^ ® ^

    C

    Nl

    U-Q:

    ® /

    (J, y B T ^ O U U

    1

    RbF 10 20 30 50 70 90 ZnF,

    Fig. 3.30. The System RbF-ZnFjp

    50

  • 3.31. The System L i F - Y F j

    R. E. Thoma, C. F. Weaver, and H. A. Friedman, unpublished work performed at the Oak

    Ridge National Laboratory, 1958-59.

    Preliminary diagram.

    Invariant Equilibria

    Mol

    i n

    e %

    L i q

    19

    49

    YF3 u i d

    T

    I n v a r i a n t

    e m p e r a t u r e

    (°C)

    695

    815

    Type of Equilibrium Phase Reaction

    at Invariant Temperature

    Eutectic

    Peritectic

    L ^ ^ L i F + L iF-YFg

    L + Y F g ^ ^ ^ L1F.YF3

    1400

    1300

    1200

    1100

    1000

    900

    UNCLASSIFIED ORNL LR-DWG 38116

    8 0 0 -

    700

    5 0 0

    Fig. 3.31. The System L i F - Y F 3 .

    51

  • 3.32. The System LiF-ZrF^

    R. E. Moore, F. F. Blankenship, W. R. Grimes, H. A. Friedman, C. J . Barton, R. E. Thoma,

    and H. Insley, unpublished work performed at the Oak Ridge National Laboratory, 1951-56.

    Preliminary diagram.

    Invariant Equilibria

    Mole % ZrF^

    in Liquid

    21

    25

    -

    -

    29.5

    33.3

    49

    51.5

    -

    Invariant

    Temperature

    (°C)

    598

    662

    475

    470

    570

    596

    507

    520

    466

    Type of Equilibrium

    Eutectic

    Congruent melting point

    Inversion

    Decomposition

    Eutectic

    Congruent melting point

    Eutectic

    Peritectic

    Decomposition

    L ^

    L ^ -

    a-3L

    /^-3L

    L ^

    L f =

    L^=

    Phase Reaction

    at Invariant Temperature

    =i L iF + a - 3 L i F - Z r F ^

    — a -3L iF 'Z rF^

    iP.ZrF^ ^=^ p.3UF-ZrF^

    iF 'Z rP^ ^ = ^ L iF + 2LiF-ZrF4

    =^a-3LiF.ZrF . + 2 L i F . Z r F . 4 4

    =^2LiF-ZrF4

    : ^2L iF -Z rF4 + 3LiF-4ZrF4

    L + ZrF4 ^ = ^ 3 L i F . 4 Z r F 4

    3L iF.4ZrF^ f = ^ 2LiF.ZrF4 + ZrF^

    52

  • UNCLASSIFIED ORNL-LR-DWG (6951

    ! 1 1 1 1

    1 >

    . 1

    \ j - d -JL iF ZrF^ + LIOUID ' Ji

    LiF+ LIQUID \ 1 V

    t !-3LiF ZrF^ + 2LiF ZrF^^^

    LiF+ a -3L iF ZrF^

    ^ ^ Vi X

    , . , i . . _ ' / - L i r 1-p oLir- irr-^

    2L;F ZrF^+/3-3LiF ZrF^^

    LiF+ 2LiF ZrF^

    /

    ^2LiF ZrF^+LIQUID /

    1 ^ / 2LiF + LIQt in \ / * ^

    \ ^ ' 2LiF ZrF^+ 3L(F 4ZrF^

    ^

    ' ZrF^+LIQUID

    1 ! F 4ZrF,+LIQUID

    \

    M

    -J CM

    1

    3LiF 4ZrF4+ZrF^

    ^ 3 L i F 4ZrF,

    2LiF ZrF,+ ZrF^

    LiF 10 20 30 40 50 ZrF. (mole%)

    60 70 80 90

    Fig. 3.32. The System L iF -Z rF^ .

    53

  • 3 .33 . The System NcF-ZrF^

    C. J. Barton, W. R. Grimes, H. Insley, R. E. Moore, and R. E. Thoma, "Phase Equilibria

    in the Systems NaF-ZrF^ , UF^ -Z rF^ , and N a F - Z r F ^ - U F ^ , " / . Phys. Chem. 62, 665-76 (1958).

    Invariant Equilibria

    Phase Reaction

    at Invariant Temperature

    L f = ^ N a F + 3NaF-ZrF, 4

    L F=^3NaF .Z rF *

    a-5NaF.2ZrF^ ^ = i /S-5NaF.2ZrF^

    a-5NaF-2ZrF^ss ^ ^ /3-5NaF.2ZrF^ +

    + 7-2NaF'ZrF^

    34 640 Peritectic L + 3NaF.ZrF^(sj:, ca. 27.5 mole %

    Z r F . ) ^ = ^ a - 5 N a F . 2 Z r F . 4 4

    39.5 544 Peritectic L + a-5NaF.2ZrF^(ss, 30 mole %

    ZrF. ) = = f a-2NaF.ZrF, 4 V 4

    Mole % ZrF^

    in Liquid

    20

    25

    -

    30.5

    T.

    Invariant

    emperature

    (°C)

    747

    850

    523

    500

    Type of Equilibrium

    Eutectic

    Congruent melting point

    Invers ion

    Eutectoid

    533 Inversion a-2NaF.ZrF, p= i / 3 -2NaF .Z rF 4 '

    505

    4

    Inversion /3-2NaF.ZrF^ ^=^ -y .2NaF.Z rF^

    40.5 500 Eutectic L '7 -2NaF.ZrF^ + 7NaF.6ZrF^s5

    46.2 525 Congruent melting point L ^ 7NaF-6ZrF.

    49.5 512 Eutectic L ^ = ^ 7NaF-6ZrF^ + 3NaF.4ZrF^

    56.5 537 Peritectic L + Z r F . = = = : 3NaF.4ZrF.

    *A determination of the crystal structure of 3NaF-ZrF . has been reported by L. A. Harris, "The Crystal

    Structures of No jZrF^ and NogHfF^," Acta Cryst. 12, 172 (1959).

    54

  • TE

    MP

    ER

    AT

    UR

    E

    (°C

    )

    CO

    Q •n

    I N

    "n

    O

    IV

    O

    O

    -Ci

    O

    NJ 3

    ui

    1 o

    59

    en

    0 0 0 0

    3N

    aF

    Z

    rF^

    ZZ

    rF^

    2N

    aF

    Z

    rF^

    3N

    aF

    2

    ZrF

    ^ ^

    ^

    7N

    aF

    6

    ZrF

    ^

    3N

    aF

    4

    ZrF

    4

    " r

    J \ S

    fc^ X

    1

    _——̂

    -^

    ^

    ^ '—

    \

    X 9

    J

    \ 0

    1

  • 3.34. The System K F - Z r F ^

    C. J . Bar ton, H. Ins ley, R. P. Metcal f , R. E. Thoma, and W. R. Grimes, unpubl ished work

    performed at the Oak Ridge Nat ional Laboratory, 1951-55.

    Pre l iminary diagram.

    Invariant Equilibria

    Mole % ZrF^j

    in Liquid

    14

    25

    36

    40.5

    42

    50

    55

    Invariant

    Temperature

    {°C)

    765

    910

    590

    412

    390

    475

    440

    Type of Equilibrium

    Eutectic

    Congruent melting point

    Peritectic

    Eutectic

    Congruent melting point

    Eutectic

    Phase Reaction

    at Invariant Temperature

    L f = ^ K F + 3KF-ZrF^

    L ^ = ^ 3KF-ZrF^

    3KF-ZrF4 + L ^ = ^ 2 K F - Z r F 4

    ?KF'ZrF + L ^3KF'27rF

    L F = ^ 3KF-2ZrF4 + KF-ZrF^

    L f = ^ KF 'ZrF^

    L ?==i KF-ZrF^ + ZrF^

    UNCLASSIFIED

    O R N L - L R - D W G 1 8 9 6 5

    1000

    900

    8 0 0

    7 0 0

    6 0 0

    5 0 0

    4 0 0

    3 0 0

    - f r

    1 , ^

    N

    Li_

    m

    \

    r i i 5

    U-

    :̂ CO

    ^

    u5 U

    M OJ

    L L

    I ^ J /

    v Li5

    N

    U-

    K /

    Y —

    20 30 40 50 ZrF, (mole 7o!

    70 80

    Fig. 3 . 34 The System K F - Z r F ^ .

    56

  • 3.35. The System R b F - Z r F ^

    R. E. Moore, R. E. Thoma, C. J . Barton, W. R. Gr imes, H. Ins ley, B. S. Landau, and H. A.

    Fr iedman, unpubl ished work performed at the Oak Ridge Nat iona l Laboratory, 1955—56.

    Pre l iminary diagram.

    Invariant Equil ibria

    Mole % ZrF^

    in Liquid

    Invariant

    Temperature

    (°C) Type of Equilibrium

    Phase Reaction

    at Invariant Temperature

    10

    25

    34

    42

    44.4

    48

    50

    54

    57

    710 Eutectic

    897 Congruent melting point

    620 Peritectic

    460 Inversion

    370 Lowered inversion and decomposition

    410 Eutectic

    445 Congruent melting point

    390 Eutectic

    423 Congruent melting point

    391 Inversion

    400 Eutectic

    447 Peritectic

    RbF + 3 R b F . Z r F ,

    3 R b F . Z r F ,

    L + 3 R b F . Z r F . s s 4

    : a - 2 R b F . Z r F ,

    a - 2 R b F . Z r F ^ ^ = : i / 3 . 2 R b F . Z r F _ j

    a - 2 R b F . Z r F 4 S s F = ^ /3-2RhF-ZrF^SS

    a - 2 R b F . Z r F .ss + 5 R b F . 4 Z r F . 4 4

    5 R b F . 4 Z r F ,

    L F = ^ 5 R b F . 4 Z r F ^ + /3 -RbF .ZrF^

    L ^ = i a - R b F - Z r F . ^ 4

    a-RbP-ZrF^ F = ^ /3-RbF.ZrF^

    L ^ = i a-RbF-ZrF . + RbF.2ZrF . 4 4

    L + Z rF^ ^ = ^ R b F . 2 Z r F ^

    ZrF, lmol67.)

    Fig . 3.35. The System R b F - Z r F 4 .

    \ r

    1

    X

    % a

    ^N

    1 1 1 1 1 1

    / 1

    i-

    1

    \

    J 3

    1 \ \ \ \ \ \ \ 1 \

    —1—Y 1 \ 1

    1 n t 1 1

    V

    V N

    CC

    "'

    ^--1^

    , —

    /

    x~~

    \r

    az

    -^ / N / N

    °=

    ^

    • — —

    57

  • 3.36. The System CsF-ZrF^

    C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak

    Ridge National Laboratory, 1952-53.

    Preliminary diagram.

    Invariant Equilibria

    Mole % ZrF^

    in Liquid

    9

    25

    35

    40

    50

    -

    59

    Invariant

    Temperature

    (°C)

    640

    775

    520

    420

    515

    320

    470

    Type of Equilibrium

    Eutectic

    Congruent melting point

    Peritectic

    Eutectic

    Congruent melting point

    Inversion

    Eutectic

    Phase Reaction

    at Invariant Temperature

    L ^ = ^ CsF + 3CsF.ZrF4

    L ? = ^ 3CsF.ZrF^

    L + SCsF-ZrF^ ^ = ^ 2CsF-ZrF4

    L ^^=i 2CsF.ZrF^ + a-CsF-ZrF^

    L ^ = ^ a-CsF-ZrF^

    a - C s F - Z r F ^ ^ ^ ^ /3-CsF.ZrF^

    L ? = ^ a-CsF.ZrF_^ + ZrF^

    58

  • TE

    MP

    ER

    AT

    UR

    E

    (°C

    )

    w

    Tl I N

    3C

    sF-Z

    rF^

    2CsF

    CsF

    -Zr

    ZrF

    ^

    ^4

    ^ N y \ ) \

    /

    ^

    -^

    I

    N \ \

    y ^

    \

    \ \

  • 3.37. The System L iF-NaF-ZrF^

    F. F. Blankenship, H. A. Friedman, H. Insley, R. E. Thoma, and W. R. Grimes, unpublished

    work performed at the Oak Ridge National Laboratory, 1953-59.

    Preliminary diagram.

    invariant Equilibria

    Composition of Liquid ^mol V) Temperature Type of Solids Present

    Invariant at Invariant Temperature L i F

    37

    55

    32

    31

    31

    26

    29

    29

    28

    NaF

    52

    22

    36

    35

    34.5

    37

    25.5

    24.5

    24

    Z r F ,

    11

    23

    32

    34

    34.5

    37

    45.5

    46.5

    48

    604

    590

    450

    448

    445

    425

    449

    453

    475

    Eutectic

    Eutectic

    Peritectic

    Peritectic

    Peritectic

    Eutectic

    Eutectic

    Peritectic

    Peritectic

    NaF, L iF, and 3NaF.ZrF,

    a -3L iF .ZrF , , 3NaF.ZrF,ss, and LiF

    /S-SLiF-ZrF,, 3t^aF.ZrF^ss, and 2L iF .ZrF ,

    3NaF.ZrF,, a-5NaF.2ZrF,ss, and 2LiF .ZrF ,

    2NaF.ZrF, , a-5NaF.2ZrF4Ss, and 2LiF.ZrF4

    2NaF.ZrF, , 7NaF.6ZrF,, and 2LiF.ZrF4

    7NaF.6ZrF,, 2HaF.4ZrF^ss. and 2LiF.ZrF4

    3NaF.4ZrF,S5, 3LiF.4ZrF,ss, and 2L iF .ZrF ,

    3NaF.4ZrF,ss, 3LiF.4ZrF,ss, and Z r F ,

    60

  • UNCLASSIFIED O R N L - L R - D W G 38115

    TEMPERATURE IN C COMPOSITION IN mole %

    II INDICATES SOLID SOLUTION

    i N o F 4 Z r F ^ -

    / ° - 5 3 7

    £ - 5 1 2

    3L iF • 4 Z r F ,

    -P-520 f-507

    7 NaF- 6ZrF^

    f -

    P-544

    /°-640,

    2NaF-ZrF4-;;,

    5NaF 2ZrF4~

    3NaF-ZrF4

    E- 747-

    f -570

    £-605

    £-652 LiF 845

    Fig. 3.37. The System L i F - N a F - Z r F , .

    61

  • 3.38. The System N o F - K F - Z r F ,

    R. E. Thoma, C. J. Barton, H. Insley, H. A. Friedman, and W. R. Grimes, unpublished work

    performed at the Oak Ridge National Laboratory, 1951-55.

    Preliminary diagram.

    Invariant Equilibria*

    Composition of i • ^ Invariant

    " " ' ° Temperature Type of Equilibrium Solids Present at Invariant Point

    NaF KF Z r F , (°C)

    695 Eutectic NaF, KF, and 3KF-ZrF ,

    720 Eutectic NaF, SKF-ZrF,, and 3NaF.3KF.2ZrF,

    710 Eutectic NaF, 3NaF-ZrF, , and 3NaF.3KF.2ZrF,

    Peritectic 3NaF.ZrF, , 3NaF-3KF.2ZrF,, and

    NaF.KF.ZrF,

    Peritectic 3NaF.ZrF, , NaF-KF 'ZrF , , and

    5NaF.2ZrF,

    Peritectic 3NaF.3KF.2ZrF,, SKP.ZrF, , and

    NaF-KF.ZrF,

    12 51 37 Peritectic SKP.ZrF, , 2KF.ZrF , , and

    NaF.KF.ZrF,

    40 21 39 Peritectic 5NaF.2ZrF,, 2NaF.ZrF, , and

    NaF.KF.ZrF. 4

    Peritectic 2NaF.ZrF, , 7NaF.6ZrF,, and

    NaF.KP.ZrF,

    34

    45

    61

    52

    48

    33

    58

    38

    19

    17

    18

    32

    8

    17

    20

    31

    34

    35

    39

    11

    10

    15

    22

    25

    21

    20

    21

    49

    48

    40

    33

    25

    29

    30

    40

    40

    42

    45

    45

    50

    51

    50

    Peritectic 2KF.ZrF, , 3KF.2ZrF, , and 4

    CF

    NaF.KF-ZrF,

    385 Eutectic 3KF.2ZrF, , KF-ZrF , , and 4

    F

    NaP.KP.ZrF, 4 Eutectic KF .Z rF , , NaP.KP.ZrF, , and

    2NaF.3KF.5ZrF, 4

    2NaF.3KF.5ZrF,

    Peritectic NaF-KF.ZrF ., 7NaF.6ZrF. , and 4 4

    4

    Eutectic 7NaF.6ZrF,, 3NaF.4ZrF, , and

    2NaF.3KF.5ZrF. 4

    Eutectic 3NaF.4ZrF ., Z r F , , and 2NaF.3KF.5ZrF^

    4

    432 Congruent melting point 2NaF.3KF.5ZrF.

    *Three solid phases have been observed routinely in the composition region 30—50 mole % ZrF . which

    have not been identified as to composition. Whether these exhibit primary phases at the liquidus surface has

    not yet been determined.

    **Compositions of invariant points shown by the intersection of dotted boundary curves are approximate.

    62

    http://3NaF.3KF.2ZrFhttp://3NaF.3KF.2ZrFhttp://3NaF.3KF.2ZrFhttp://2NaF.3KF.5ZrFhttp://2NaF.3KF.5ZrFhttp://2NaF.3KF.5ZrFhttp://2NaF.3KF.5ZrF

  • UNCLASSIFIED ORNL-LR-DWG35480

    TEMPERATURE IN°C

    COMPOSITION IN mole7„ A 2NaF 3KF 5ZrF,

    NoF KF ZrF̂

    C 3NaF 3KF 2ZrF,

    3NaF 4ZrF^ P 537

    £512

    7NaF 6ZrF,

    £ 500 P54A

    P 640 2NaF ZrF^ / — 7 5 0

    5NaF 2ZrF 4

    3NaF ZrE,

    £ 747 A

    3KF ZrF,

    £ 7 6 5

    F i g . 3 . 3 8 . T h e Sys tem N a F - K F - Z r F , . T h e i s o t h e r m s for the t e m p e r a t u r e s 6 0 0 , 6 5 0 , and 7 0 0 ° C

    b e t w e e n the 30 and 40 m o l e % Z r F , c o m p o s i t i o n s h a v e been o m i t t e d in o rder not to o b s c u r e t h e p h a s e

    r e l a t i o n s h i p s in t h i s p o l y t h e r m a l p r o j e c t i o n .

    63

  • 3.39. The System N a F - R b F - Z r F ,

    R. E. Thoma, H. Insley, H. A. Friedman, and W. R. Grimes, unpubl ished work performed at

    the Oak Ridge Nat ional Laboratory, 1951-56.

    Prel iminary diagram.

    Invariant Equilibria

    Composi t ion of i • i "̂ Invar iant

    L i qu i d (mole %) -r . ^ Temperature

    NaF RbF Z r F , (°C) Type of Equi l ibr iun Sol ids Present at Invar iant Point

    23 72 5 643

    50 27 23 720

    37 32 31 605

    39 26 35

    36.3 24.2 39.5

    34.5 24 41.5

    34 23.5 42.5

    33 23.5 43.5

    28.5 21.5 50

    28 21.5 50.5

    23.5 39.5 37

    21 40 39

    8 50 42

    8.5 47 44.5

    545

    427

    424

    422

    420

    443

    446

    470

    438

    400

    395

    Eutec t ic

    Eutec t ic

    Eutec t ic

    Per i tec t i c

    Per i tec t i c

    Per i tec t i c

    Per i tec t i c

    Eutect ic

    Eutec t ic

    Per i tec t i c

    Per i tec t i c

    Per i tec t i c

    Eutec t ic

    Eutec t ic

    N a F , R b F , and 3 R b F . Z r F .

    6.2

    5

    6.5

    33.3

    25

    45.8

    42

    39

    33.3

    25

    48

    53

    54.5

    33.3

    50

    380

    398

    423

    642

    462

    Eutectic

    Eutectic

    Peritectic

    Congruent

    Congruent

    N a F , 3 R b F . Z r F , , and 3 N a F . Z r F ,

    M a F . Z r F , , 3Rb

    N a F . R b F . Z r F ,

    3 N a F . Z r F , , 3 R b F . Z r F , , and

    3 N a F . Z r F , , 5 N a F . 2 Z r F , , and

    N a P . R b P . Z r F ^ 4

    5 N a F . 2 Z r F , , 2 N a F . Z r F , , and

    N a F - R b F . Z r F . 4

    2 N a F . Z r F , , N a F - R b F . Z r F , , and

    3 N a F . 3 R b F . 4 Z r F ,

    2 N a F . Z r F , , 7 N a F . 6 Z r F , , and

    3 N a F . 3 R b F . 4 Z r F ,

    7 N a F . 6 Z r F , , 3 N a F . 3 R b F - 4 Z r F , , and

    N a F - R b F . 2 Z r F . 4

    3 N a F . 4 Z r F , , 7 N a F . 6 Z r F , , and

    N a F . R b F . 2 Z r F . 4

    3 N a F . 4 Z r F , , Z r F , , and

    N a F . R b F . 2 Z r F . 4

    N a F . R b F . Z r F , , 2 R b F . Z r F , , and 3 R b F . Z r F ,

    4

    N a F . R b F . Z r F , , 2 R b F - Z r F , , and

    3 N a F - 3 R b F - 4 Z r F ,

    3 N a F - 3 R b F - 4 Z r F , , 2 R b F - Z r F , , and

    5 R b F . 4 Z r F , 4

    3 N a F - 3 R b F - 4 Z r F , , 5 R b F - Z r F , , and

    N a F - R b F - 2 Z r F ,

    N a F - R b F - 2 Z r F , , 5 R b F - 4 Z r F , , and

    R b F - Z r F ,

    N a F - R b F - 2 Z r F , , R b F - Z r F , , and

    R b F . 2 Z r F ,

    Z r F , , N a F . R b F . 2 Z r F , , and

    R b F . 2 Z r F ,

    Congruent mel t ing point N a F . R b F - Z r F .

    Congruent mel t ing point N a F . R b F - 2 Z r F .

    64

    http://3NaF.3RbF.4ZrFhttp://3NaF.3RbF.4ZrFhttp://NaF.RbF.2ZrFhttp://NaF.RbF.2ZrFhttp://NaF.RbF.2ZrF

  • Minimum Temperatures on Alkemade Lines

    Composition of Liquid (mole %)

    NaF RbF ZrF ,

    Temperature (°C)

    Alkemade Line

    24.75

    6

    7.5

    8.5

    28

    22

    29

    37

    47

    36

    30

    24.75

    44

    46.5

    48.5

    28

    40

    41.5

    24.5

    28

    48

    36.7

    51.5

    50

    46

    43

    44

    38

    49.5

    38.5

    25

    16

    33.3

    455

    402

    405

    405

    435

    442

    450

    610

    732

    777

    598

    NaF.RbF.2ZrF , -Z rF ,

    NaF.RbF-2ZrF. -RbF.ZrF. 4 4

    NaF-RbF-2ZrF,-5RbF.4ZrF, 4 4

    3NaF-RbF.4ZrF.-5RbF.4ZrF, 4 4

    3NaF.RbF.4ZrF.-NaF.RbF.2ZrF, 4 4

    3NaF.3RbF.4ZrF,-2RbF.ZrF, 4 4

    NaF.RbF.2ZrF,-7NaF.6ZrF,

    NaF.RbF.ZrF, -3NaF.ZrF, 4 4

    3NaF-ZrF, -3RbF-ZrF,

    NaF-3RbF.ZrF,

    NaF-RbF.ZrF, -3RbF.ZrF, 4 4

    COMPOSITION IN mole %

    TEMPERATURE IN "C a NaF RbF 2ZrF^

    * 3NaF 3RbF 4ZrF„

    C NaF RbF ZrF.

    RbF 2Zr^

    P447 £ 4 0 0

    RbF-ZrF, 423 f 390

    5RbF 4ZrF,445

    - / '620 2Rbi- ZrF.

    3RbF ZrF. 897

    Fig. 3.39. The System N a F - R b F - Z r F , .

    65

    http://NaF.RbF-2ZrF.-RbF.ZrFhttp://3NaF-RbF.4ZrF.-5RbF.4ZrFhttp://3NaF.RbF.4ZrF.-NaF.RbF.2ZrF

  • 3.40. The System NaF-CrF j -Z rF , : The Section NoF-CrFj - ZrF,

    R. E. Thoma, H. A. Friedman, B. 5. Landau, and W. R. Grimes, unpublished work performed

    at the Oak Ridge National Laboratory, 1956-57.

    Preliminary diagram. No invariant equilibria occur for compositions lying on the section

    NaF .CrF j -Z rF , .

    UNCLASSIFIED ORNL-LR-DWG 19367R

    9 0 0

    600

    500

    4 0 0 NaF

    \ \

    \ \

    NaF- CrFj

    ^ \

    \ \

    \ \

    f LIQUID

    NaF- CrFj +

    NaF-CrFj-l

    \ / a-NaF-CrFj

    •/3-NaF-CrF

    / /

    a-NaF- CrFj +• LIQU

    •ZZrF^

    2-2ZrF4

    - ^

    -2ZrF4

    ID

    ^^^'^

    CM

    O 2

    ^

    CrF^-Zr

    cr-NoF-

    /3-NaF

    " ZrF4+LIQUID

    F4 -F LIQUID

    CrFj- 2ZrF4

    CrF2-2ZrF4

    + ZrF4

    -FZrF4

    CrF2 10 20 30 40 50 60 ZrF4 (mole 7o)

    ZrF.

    Fig. 3.40. The Section N a F . C r F j - Z r F , .

    66

  • 3.41. The System NoF-CeFg-Z rF ,

    W. T. Ward, R. A. Strehlow, W. R. Grimes, and G. M. Watson, "Solubil ity Relationships of

    Rare Earth Fluorides and Yttrium Fluoride in Various Molten N a F - Z r F , and N a F - Z r F , - U F ,

    Solvents," / . Chem. Eng. Data (in press).

    UNCLASSIFIED ORNL-LR-DWG 29164R

    CeF3(1387°C)

    ZrF^(918°C)

    Fig. 3.41a. The System N a F - C e F , - Z r F , .

    UNCLASSIFIED ORNL-LR-DWG 29165R

    PROBABLE NaF- ZrF^ PRIMARY PHASE FIELDS

    A ZrF„ D 2NaF-ZrF, '4 " " " " ' " " 4 B 3NaF-4ZrF4 E5NaF-2ZrF4 C 7NaF-6ZrF^ F SNoF- ZrF^

    20 . A 20

    16

    \ • "

    %

    ; \ \ V

    Fig. 3.416. The System N a F - C e F j - Z r F , in the Region 30-70 Mole % NaF, 0-20 Mole % CeFj , 30-70 Mole % ZrF , .

    67

  • 3.42. The System L iF -CeF j

    C. J. Barton, L. M. Bratcher, R. J. Shell, and W. R. Grimes, unpublished work performed at

    the Oak Ridge National Laboratory, 1956-57.

    Preliminary diagram. The system L i F - C e F j contains a single eutectic at 81 L iF -19 CeF

    (mole %), m.p. 755 + 5°C.

    68

    #

  • TE

    MP

    ER

    AT

    UR

    E

    (°C

    )

    lO N

    -I

    3- a (/I

    •<

    H a 3 r Tl

    « tp ) ) )

    / \

    \ V

    , K S-̂ \ \ \

    "\

    r̂P

    ON

  • 3.43. The System N a F - H f F ,

    R. E. Thoma, C. F. Weaver, T. N. McVay, H. A . Fr iedman, and W. R. Grimes, unpubl ished

    work performed at the Oak Ridge National Laboratory, 1956-58.

    Prel iminary diagram.

    Invariant Equilibria

    Mole % HfF, in Liquid

    18.5

    25

    34

    -

    35

    -

    43

    45

    50

    53

    Invariant

    Temperature

    (°C)

    Be

    Be

    695

    863

    606

    535

    586

    low 350

    low 350

    510

    531

    557

    535

    Type of Eq

    Eutectic

    Congruent

    Peritectic

    Inversion

    Peritectic

    Inversion

    Eutectic

    Peritectic

    Congruent

    Eutectic

    me

    me

    ui

    Iti

    It

    librium

    ing

    ing

    poi

    poi

    nt

    int

    Phase Reaction

    at Invariant Temperature

    L F = ^ NaF-f 3NaF.HfF,

    L f = ^ 3 N a F . H f F , *

    L + 3NaF.HfF, ^ = ^ a.5NaF.2HfF,

    a-5NaF.2HfF, ^==i:/3-5NaF.2HfF,

    L + a-5NaF.2HfF, p = ^ ;S-2NaF.HfF,

    /S.2NaF.HfF, ^ ^ 7-2NaF.HfF,

    'V-2NaF.HfF : ^ ?-2NaF-HfF

    L ^ = ^ /3-2NaF.HfF, + 7NaF.6HfF,

    L + NaF.HfF, ^=^7NaF .6HfF ,

    L F = ^ NoF.HfF,

    L ^ NoF.HfF, + HfF,

    *A determination of the crystal structure of 3NaF.HfF has been reported by L. A. Harris, "The Crystal

    Structures of NogZrF^ and NajHfF^," Acta Cryst. 12, 172 (1959).

    70

  • 1050

    9 5 0 -

    8 5 0

    750

    650

    UNCLASSIFIED ORNL-LR-OWG 35488

    450

    350 NQF

    V

    \ , v A

    (

    l i ?

    o

    fN. \

    I CM U.

    z in

    -

    \

    \

    \ \

    u ?

    X

    o z

    N^ / " • ^ v̂

    \g

    o z 1^

    I

    D z

    ^

    20 30 4 0 50 60 70 80 90

    Fig. 143. The System NaF-HfF^.

    71

  • 3.44. The System LiF-ThF^

    R. E. Thoma, H. Insley, B. S. Landau, H. A. Friedman, and W. R. Grimes, "Phase Equilibria

    in the Fused Salt Systems LiF-ThF^ and NaF-ThF^," / . Phys. Chem. 63, 1266-74 (1959).

    Invariant E q u i l i b r i a

    Mole % T h F ^

    in L i qu i d

    23

    25

    29

    30.5

    42

    62

    Invar iant

    Temperature

    (°C)

    568

    573

    565

    597

    762

    897

    Type of Equ i l i b r i um

    Eutec t i c

    Congruent mel t ing point

    Eutect ic

    Per i tec t i c

    Pe r i t ec t i c

    Per i tec t i c

    Phase React ion

    at Invar iant Temperature

    L ^ ^ L i F + 3 L i F . T h F ^

    L ^ 3 L i F . T h F ^

    L ^ ^ S L i F ' T h F . + 7 L i F . 6 T h F 4 4

    L i F . 2 T h F ^ + L ^ 7 L l F . 6 T h F ^

    L i F . 4 T h F . + L F = ^ L i F . 2 T h F ^ 4 4

    T h F . + L F = ^ L i F . 4 T h F . 4 4

    1150

    1050

    950

    cr 850

    < cr ^ 750

    650

    550

    450

    1

    ^

    1 \

    31

    ^

    . i F - T h F ^ -

    r^ / /

    7 L i F - 6 T h

    /

    /

    \ -

    ^

    UNCLASSIFIED ORNL-LR-DWG 26535A

    /

    /

    U P 2ThF 4

    -

    l ^

    \^

    ^ _ i "

    1

    LiF 10 20 30 40 50 60 70 80 90 ThF^ ThF^(mole7o)

    Fig. 3.44. The System L i F - T h F ^ .

    72

  • 3.45. The System NoF-ThF ,

    R. E. Thoma, H. Insley, B. S. Landau, H. A. Friedman, and W. R. Grimes, "Phase Equilibria

    in the Fused Salt Systems L i F - T h F , and N a F - T h F , , " / . Phys. Chem. 63, 1266-74 (1959).

    Invariant E q u i l i b r i a

    Mole % T h F ^

    in L i q u i d

    Invar iant

    Temperature

    (°C)

    Type of Equ i l i b r i um Phase React ion

    at Invar iant Temperature

    21.5

    22.5

    33.3

    37

    40

    41

    45.5

    58

    645

    618

    604

    558

    705

    690

    712

    705

    683

    730

    831

    Per i tec t i c

    Eu tec t i c

    Invers ion

    Decompos i t ion

    NaF + L ^ ^ a - 4 N a F . T h F ,

    L ^=^ a - 4 N o F . T h F , + 2 N a F . T h F ,

    a - 4 N a F . T h F , ^ = i / 3 . 4 N a F . T h F ,

    / S - 4 N a F . T h F , ; = ^ NaF -f 2 N a F . T h F ,

    Congruent mel t ing point L ^ ^ 2 N a F . T h F ,

    Eutec t ic

    Congruent mel t ing point L ^ ^ 3 N a F . 2 T h F ,

    Eutec t ic

    Decompos i t ion 3 N a F . 2 T h F

    Per i tec t i c

    Pe r i t ec t i c

    L ^ ^ 2 N a F . T h F , + 3 N a F . 2 T h F ,

    L ^ = ^ 3 N a F . 2 T h F , 4- a - N o F - T h F ,

    2 N a F . T h F , + a - N a F . T h F ,

    N a F . 2 T h F , + L ? = ^ a - N a F . T h F ,

    T h F , + L ? = : ^ N a F . 2 T h F ,

    cc

    < cr Q_

    UJ

    1150

    1050

    950

    850

    750

    650

    550

    UNCLASSIFIED ORNL-LR-DWG 28528AR

    450

    N \

    \

    \ \ )

    4NaF-ThF4-'

    2NQ

    L/ V r • ^•ThF^-—

    ^ » x

    / / ,^

    f ^̂ 0

    . ^

    /

    /

    \;^

    LL o

    Y^ / I \ \ \

    -7 /

    /

    \

    NaF 10 20 30 40 50 60 70 80 90

    T h i ^ (mole 7c,)

    Fig. 3.45. The System N a F - T h F , .

    ThF4

    73

  • 3.46. The System KF-ThF^

    W. J. Asker, E. R. Segnit, and A. W. Wylie, "The Potassium Thorium Fluorides," / . Chem.

    Soc. 1952,4470-79.

    This system has also been reported by A. G. Bergman and E. P. Dergunov, Doklady Akad.

    Nauk S.S.S.R. 53, 753 (1941) and by V. S. Emelyanov and A. J. Evstyukhin, " A n Investigation

    of Fused-Salt Systems Based on Thorium Fluoride - I I . N a F - K F - T h F ^ , NaF-ThF^ , and K F -

    T h F ^ , " / . Nuclear Energy 5, 108-14 (1957).

    Invariant Equilibria

    Mole % ThF^ in Liquid

    14

    -

    -

    25

    -

    31

    -

    5 0 *

    56

    66

    75

    78

    Invariant

    Temperature

    (°C)

    694

    635

    712

    865

    570

    691

    747

    645

    905

    875

    930

    990

    980

    Type of Equilibrium

    Eutectic

    Inversion

    Pentectic

    Congruent melting point

    Decomposition

    Eutectic

    Pentectic

    Inversion

    Congruent melting point

    Eutectic

    Pentectic

    Congruent melting point

    Eutectic

    Phase Reaction at Invariant Temperature

    L < = ^ K F + / 3 - 5 K F . T h F ^

    a-SKF-ThF^ ;; ^/3-5KF.ThF^

    L + 3KF.ThF^ ^ = ^ a-5KF.ThF^

    L I '-SKF-ThF^

    3KF.ThF^ ^=: i /3 .5KF.ThF^+/3.2KF.ThF^

    L ^ = i 3 K F . T h F ^ + a-2KF.ThF^

    L + KF-ThF^ ^ = ^ a-2KF.ThF4

    n.9KF.ThF ^ /^.9KF.TIiF

    L ^ = ^ K F . T h F ^

    L ^ = i KF.ThF^ + KF-2ThF^

    L + KF.3ThF^ ^=^KF.2ThF^

    L ^=^KF.3ThF^

    L ^ = ^ KF-SThF^ + ThF^ss

    *lt has been shown that the compound labeled by Asker et al, has the actual formula 7KF'6ThF ., cf. R.

    E. Thomo, Crystal Structures of Some Compounds of UF. and ThF, with Alkali Fluorides, ORNL CF-58-12-

    40 (December 11, 1958).

    74

  • TE

    MP

    ER

    AT

    UR

    E (

    °C)

    3 7s

    3 °

    SK

    F-T

    hF^

    ZK

    F-T

    hF

    ^

    KF

    -ThF

    ^

    y ^ c ^

    3K

    F-T

    ::r;; \

    KF

    -ZT

    hF^

    KF

    -3T

    hF4

    / \ IF,

    \

    y ^ \ < --

    \ / ^ \

    N \ <

    \

    '-

    "•

    -.

    ^ \

  • 3.47. The System RbF-ThF^

    E. P. Dergunov and A. G. Bergman, "Complex Formation Betv/een Alkal i Metal Fluorides

    and Fluorides of Metals of the Fourth Group," Doklady Akad. Nauk S.S.S.R. 60, 391-94 (1948).

    Invariant Equilibria

    Mole % ThF^

    in Liquid

    15

    25

    37

    50

    54

    75

    80

    Invariant

    Temperature

    (°C)

    664

    974

    762

    852

    848

    1004

    1000

    Type of Equilibrium

    Eutectic

    Congruent melting point

    Eutectic

    Congruent melting point

    Eutectic

    Congruent melting point

    Eutectic

    Phase Reaction

    at Invariant Temperature

    L F = ^ RbF + 3 R b F . T h F , 4

    L f = ^ SRbF-ThF^

    L F = ^ 3RbF.ThF . + RbF-ThF. 4 4

    L ^ = ^ RbF-ThF^

    L ^= : ^ RbF-ThF^ + RbF.3ThF^

    L ^ = ^ RbF.3ThF^

    L ^ = ^ RbF-3ThF4 + ThF^

    UNCLASSIFIED ORNL~LR-DWG 20461

    o 900

    E 800 u •^SO

    6 6 4 °

    1 1

    9"

    /

    SI

    L i .

    rO

    4 0

    1

    \

    \

    - ^

    \

    8;

    762°

    ^ l i _ J 3 Q:

    ,.. / r~—/

    ^

    848°

    1004°

    y

    L i . X ) Q:

    1114^

    1000°

    1

    RbF \0 20 30 4 0 5 0 6 0 70 ThF. (mole % )

    9 0 ThF.

    Fig. 3.47. The System RbF-ThF^ .

    76

  • 3.48. The System BeFj-ThF^

    R. E. Thoma, H. Insley, H. A. Friedman, and C. F. Weaver, "Phase Equilibria in the Sys-

    tems BeF2-ThF4 and L i F - B e F 2 - T h F 4 , " paper to be presented at the 136th National Meeting

    of the American Chemical Society, Atlantic City, N. J . , Sept. 13-18, 1959.

    The system BeF2-ThF4 contains a single eutectic at 98.5 BeF2-1.5 ThF4 (mole %), m.p.

    526 ± 3°C.

    UNCLASSIFIED ORNL-LR-DWG 24551

    1200 I 1 1 1 ] , , 1 1 , 1

    noo ^ ^ . — ^ =

    „ 1000 ^ ^ ^ ^ ^ .,— 2— ^ ^ UJ . QL 9 0 0 -^-< y" S 800 y~

    '" 700 y \ \

    600 —J-