optimizingthesupplychain! performance!at!ericsson!ab1058947/fulltext01.pdf · acknowledgement!...

178
Optimizing the Supply Chain Performance at Ericsson AB A Study of Lead Time Reduction and Service Level Improvement Jesper Larsson Marcus Stenberg Supervisor at Ericsson: Christer Johansson Supervisor at LiU: Magnus Berglund Examiner at LiU: Mats Abrahamsson LIU-IEI-TEK-A--16/02656--SE Department of Management and Engineering Linköping University, Sweden

Upload: others

Post on 16-Mar-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

       

Optimizing  the  Supply  Chain  Performance  at  Ericsson  AB  

 A  Study  of  Lead  Time  Reduction  and  Service  Level  Improvement  

 

             

Jesper  Larsson  Marcus  Stenberg  

 Supervisor  at  Ericsson:  Christer  Johansson  

Supervisor  at  LiU:  Magnus  Berglund  Examiner  at  LiU:  Mats  Abrahamsson  

         

LIU-IEI-TEK-A--16/02656--SE Department  of  Management  and  Engineering  

Linköping  University,  Sweden    

Page 2: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

   

Page 3: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

ACKNOWLEDGEMENT  This  master  thesis  is  the  final  examination  of  the  authors’  Master  in  Industrial  Engineering  and  Management  at  the  Institute  of  Technology  at  Linköping  University,  Sweden.  The  past  20  weeks  have  been  spent  at  the  premises  of  Ericsson  AB  in  Kista,  from  where  a  global  supply  chain  has  been  studied  and  resulting  in  many  interesting  meetings.        First,  we  would  like  to  extend  our  sincerest  thanks  to  all  the  Ericsson  employees  that  we  have  met  during  this  journey.  Each  of  them  have  been  very  helpful  and  shown  great  engagement  to  the  project  and  thereby  contributed  to  the  result  of  this  study.  Among  these  employees,  we  would  like   to   give   further   acknowledgements   to   Christer   Johansson,   our   supervisor   who  made   this  master  thesis  possible  and  that  has  been  a  great  support  during  the  entire  time.  Thank  you  for  giving   us   the   opportunity   to   acquire   a   global   perspective   on   a  major   international   company.  Moreover,  we  want   to   thank   Sheikh   Faisal   ur   Rehman,  Myra   Benrabah,   Lars  Magnusson   and  Katarina  Pettersson   for  your  patience  and   friendliness,  without  you   this  would  not  have  been  possible.    We  would  also  like  to  thank  Magnus  Berglund,  our  supervisor  at  Linköping  University  who  has  guided  us  through  the  project  and  has  been  a  great  support,  both  in  good  and  tough  times.  Thanks  to   our   opponents   Sofia   Rosenquist   and   Melina   Wiklund   for   meaningful   feedback   and   great  discussions  during  the  project.  It  has  been  a  great  journey  and  good  luck  with  your  future  careers!    Last,  but  not  least,  we  want  to  thank  all  the  fantastic  people  at  Linköping  University  who  have  been  part  of  five  unforgettable  years.  A  chapter  has  come  to  an  end  and  now  it  is  time  for  a  new  one,  in  one  we  take  off  as  engineers.        With  this  said,  the  authors  just  want  to  wish  you,  the  reader,  a  pleasant  and  informative  reading.      Kista,  2016-­‐06-­‐21            Jesper  Larsson                     Marcus  Stenberg                      

Page 4: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

     

Page 5: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

EXECUTIVE  SUMMARY  

Title     Optimizing  the  Supply  Chain  Performance  at  Ericsson  AB  -­‐  A  Study  of  Lead  Time  Reduction  and  Service  Level  Improvement  

 Background   Ericsson   has   recently   experienced   difficulties   to  meet   the   customer  

demand,  which  has  led  to  lost  market  shares.  This  is  mainly  due  to  the  long   and   unpredictable   lead   times   within   their   supply   chains.  Therefore,   Ericsson   seeks   to   increase   their   ability   to   meet   the  customer  demand  by  reducing  the  customer  order  lead  time.  A  shorter  lead  time  would  imply  a  greater  responsiveness  and  improved  service  level   towards   the   customers.   A   directive   from   the   company  was   to  base  the  study  on  the  supply  chain  for  the  customer  Algeria  Telecom  Mobile.  

 Purpose   The   purpose   of   the   study   is   to   give   recommendations   for  

improvements   that   reduce   the   total   lead   time   in   a   supply   chain  perspective  in  order  to  improve  the  customer  service  level.    

 Methodology   To  be  able  to  fulfill  the  purpose,  four  objectives  were  distinguished  and  

supported  with  existing  frameworks  for  analyzing  supply  chains.  The  first  step  was  to  create  a  current  state  map,  which  was  achieved  by  conducting  24  interviews  with  people  working  within  the  supply  chain.  The  second  step  was  to  identify  potentials  for  lead  time  reduction.  This  was  done  by  categorizing  the  supply  chain  parts  and  the  problems  that  were   gathered   during   the   current   state   mapping   into   meaningful  groups,   and   thereafter   prioritize   the   categories   with   the   greatest  potential.   The   third   step   was   to   generate   alternative   solutions   by  conducting  a  second  literature  review  based  on  the  potentials  that  was  identified   during   the   prior   step.   The   general   solutions   were   later  modified   in  order  to  fit  the  current  supply  chain.   It  resulted   in  eight  Ericsson   specific   solutions.   The   fourth   step   was   to   evaluate   these  solutions  in  combination,  which  led  to  a  recommended  combination  of  solutions  that  provided  the  greatest  lead  time  reduction.  Also  the  requirements  for  implementing  these  solutions  were  presented  in  this  step.  

           

Page 6: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Conclusions   The  recommendation  for  Ericsson  is  to  rearrange  their  current  supply  chain  for  the  studied  customer  and  use  two  different  supply  chains;  the  Regional  supply  chain  and  the  Alternative  supply  chain.  The  two  arrangements  will  both  be  based  on  the  implementation  of  a  supply  hub,   which   implies   a   movement   of   the   customer   order   decoupling  point  closer  to  the  customer.  The  Regional  supply  chain  will  cover  the  main   flow  and  be  used  when   the   customer  orders   products   from  a  product   portfolio   that   has   been   agreed   within   the   region.   The  Alternative  supply  chain  will  act  as  a  complement  and  cover  the  flow  of  products  outside  the  regional  product  portfolio.      

    The  estimated  customer  order  lead  time  for  the  Regional  supply  chain  

is   17  days,  which   is   a   reduction  of   80  %   in   the  normal   case   for   the  studied  supply  chain.  The  lead  time  for  the  Alternative  supply  chain  is  more   difficult   to   estimate   precisely,   but   it   will   be   reduced   in  comparison   with   the   current   situation.  Moreover,   the   service   level  towards  the  customer  will  be  increased  for  both  the  Regional  and  the  Alternative  supply  chain.  To  summarize  the  recommendations  that  are  forwarded  to  Ericsson,  they  are  listed  below:    

 •   Implement  a  regional  supply  hub  •   Agree  on  a  regional  product  portfolio  •   Implement  time  slots  for  inbound  flows  •   Use  BPO  as  a  payment  method  instead  of  Letter  of  Credit  •   Use  a  CIP,  DAP  or  DAT  Incoterm  •   Implement   a   product   configurator   and   let   the   customer   place  

orders  on  commercial  descriptions  or  a  solution  id.  •   Integrate  processes  and  activities  throughout  the  supply  chain  and  

establish  a  greater  information  exchange.  

     

Page 7: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

TABLE  OF  CONTENTS  1   INTRODUCTION  ..........................................................................................................................  1  1.1   Background  ......................................................................................................................................  2  1.2   Purpose  ............................................................................................................................................  3  1.3   Directives  ..........................................................................................................................................  3  1.4   Target  Group  ....................................................................................................................................  3  1.5   Requirements  for  Academic  Assignments  ........................................................................................  3  1.6   Scientific  Approach  ...........................................................................................................................  4  1.7   Disposition  of  the  Report  .................................................................................................................  5  

2   BUSINESS  INTRODUCTION..........................................................................................................  7  2.1   Ericsson  AB  .......................................................................................................................................  8  2.2   Business  Unit  Radio  ..........................................................................................................................  9  2.3   Group  Supply  ..................................................................................................................................  10  2.4   The  Supply  Chain  Network  .............................................................................................................  11  2.5   Algeria  Telecom  Mobile  .................................................................................................................  14  2.6   The  Overall  System  .........................................................................................................................  15  

3   THEORETICAL  FRAMEWORK  .....................................................................................................  17  3.1   The  Supply  Chain  ............................................................................................................................  18  3.2   Supply  Chain  Management  ............................................................................................................  20  3.3   Customer  Service  ...........................................................................................................................  20  3.4   Supply  Chain  Integration  ................................................................................................................  21  3.5   Analyzing  Supply  Chains  .................................................................................................................  22  3.6   Distribution  Models  ........................................................................................................................  26  3.7   Inventory  Handling  .........................................................................................................................  29  3.8   Supply  Chain  Strategies  ..................................................................................................................  30  3.9   Supply  Chain  Time  Compression  ....................................................................................................  33  3.10   Supply  Chain  Transparency  ............................................................................................................  38  

4   Specification  of  Task  .................................................................................................................  41  4.1   Clarification  of  Purpose  ..................................................................................................................  42  4.2   The  Studied  System  ........................................................................................................................  42  4.3   Specification  of  Purpose  .................................................................................................................  43  4.4   Question  Formulation  ....................................................................................................................  46  4.5   Summary  of  the  Specification  of  Task  ............................................................................................  53  

5   METHODOLOGY  ........................................................................................................................  57  5.1   Approach  ........................................................................................................................................  58  5.2   Planning  Phase  ...............................................................................................................................  62  5.3   Current  State  Mapping  ...................................................................................................................  66  5.4   Identifications  of  Potentials  for  Lead  Time  Reduction  ...................................................................  68  5.5   Generation  of  Alternative  Solutions  ...............................................................................................  70  5.6   Recommended  Solutions  and  Requirements  for  Implementation  ................................................  71  5.7   Final  Phase  .....................................................................................................................................  73        

Page 8: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

6   Current  State  Mapping  .............................................................................................................  75  6.1   Supply  Chain  Structure  ...................................................................................................................  76  6.2   Supply  Chain  Performance  –  Lead  Times  .......................................................................................  83  6.3   Business  Context  –  Strategies  ........................................................................................................  88  6.4   Experienced  Problems  and  Suggested  Solutions  ............................................................................  88  

7   IDENTIFICATION  OF  POTENTIALS  FOR  LEAD  TIME  REDUCTION  ..............................................  97  7.1   Categorization  ................................................................................................................................  98  7.2   Prioritization  .................................................................................................................................  105  

8   GENERATION  OF  ALTERNATIVE  SOLUTIONS  ..........................................................................  107  8.1   General  Solutions  .........................................................................................................................  108  8.2   Ericsson  Specific  Solutions  ...........................................................................................................  120  

9   RECOMMENDED  SOLUTIONS  AND  REQUIREMENTS  FOR  IMPLEMENTATION  ......................  131  9.1   Evaluation  and  Recommendation  ................................................................................................  132  9.2   Requirements  for  Implementation  ..............................................................................................  139  

10   CONCLUSIONS  ........................................................................................................................  141  

11   DISCUSSION  ............................................................................................................................  145  11.1   Critical  Review  of  the  Result  .........................................................................................................  146  11.2   Generalization  of  the  Result  .........................................................................................................  147  11.3   Research  Ethics  ............................................................................................................................  147  11.4   Contributions  of  the  Study  ...........................................................................................................  147  11.5   Recommendations  for  Further  Studies  ........................................................................................  148  

BIBLIOGRAPHY  ......................................................................................................................................  I  

APPENDIX  A.  COLLECTION  OF  ABBREVIATIONS  .................................................................................  X  

APPENDIX  B.  RESPONDENTS  –  PLANNING  PHASE  .............................................................................  XI  

APPENDIX  C.  RESPONDENTS  –  CURRENT  STATE  MAPPING  .............................................................  XII  

APPENDIX  D.  GENERIC  INTERVIEW  QUESTIONS  .............................................................................  XIII  

APPENDIX  E.  LITERATURE  RESEARCH  ...............................................................................................  XV        

Page 9: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

LIST  OF  FIGURES  FIGURE  1.  ERICSSON’S  OPERATING  REGIONS.  SOURCE:  BRAUN  (2016)  ........................................................................  8  FIGURE  2.  THE  MAIN  PARTS  OF  A  RADIO  BASE  STATION.  SOURCE:  JOHANSSON  (2016A)  ............................................  9  FIGURE  3.  OPERATIONS  OF  GROUP  SUPPLY.  SOURCE:  JOHANSSON  (2016A)  ..............................................................  10  FIGURE  4.  THE  OVERALL  SYSTEM.  ................................................................................................................................  15  FIGURE  5.  THE  GENERIC  VALUE  CHAIN.  SOURCE:  PORTER,  M.E.  (P.37,  1985)  .............................................................  18  FIGURE  6.  WHERE  THE  DIFFERENT  SERVICE  ELEMENTS  ARE  MEASURED.    SOURCE:  BASED  ON  OSKARSSON  ET  AL.  

(P.37,  2013)  .........................................................................................................................................................  21  FIGURE  7.  ACHIEVING  AN  INTEGRATED  SUPPLY  CHAIN.  SOURCE:  STEVENS  (1989)  ....................................................  22  FIGURE  8.  A  FRAMEWORK  FOR  CASE  ANALYSIS.  SOURCE:  TAYLOR  (P.4,  1997)  ...........................................................  25  FIGURE  9.  THE  CLASSICAL  DISTRIBUTION  SYSTEM.  SOURCE:  BASED  ON  SKJOTT-­‐LARSEN  ET  AL.  (P.133,  2007)  ..........  26  FIGURE  10.  THE  TRANSIT  DISTRIBUTION  SYSTEM.    SOURCE:  BASED  ON  SKJOTT-­‐LARSEN  ET  AL.  (P.133,  2007)  ..........  27  FIGURE  11.  THE  REGIONAL  DISTRIBUTION  SYSTEM.    SOURCE:  BASED  ON  SKJOTT-­‐LARSEN  ET  AL.  (P.133,  2007)  .......  28  FIGURE  12.  THE  DIRECT  DISTRIBUTION  SYSTEM.    SOURCE:  BASED  ON  SKJOTT-­‐LARSEN  ET  AL.  (P.133,  2007)  .............  28  FIGURE  13.  THE  CODP  IN  RELATION  TO  THE  MANUFACTURING  SITUATION.    SOURCE:  BASED  ON  SHARMAN  (P.73,  

1984)  ...................................................................................................................................................................  33  FIGURE  14.  THE  STUDIED  SYSTEM.  ...............................................................................................................................  43  FIGURE  15.  THE  FOUR  OBJECTIVES  OF  THE  STUDY.    SOURCE:  BASED  ON  TAYLOR  (P.4,  1997)  ....................................  45  FIGURE  16.  APPROACH  OF  THE  FIRST  OBJECTIVE.  SOURCE:  BASED  ON  TAYLOR  (P.4,  1997)  .......................................  49  FIGURE  17.  APPROACH  OF  THE  SECOND  OBJECTIVE.  SOURCE:  BASED  ON  TAYLOR  (P.4,  1997)  ..................................  50  FIGURE  18.  APPROACH  OF  THE  THIRD  OBJECTIVE.  SOURCE:  BASED  ON  TAYLOR  (P.4,  1997)  ......................................  51  FIGURE  19.  APPROACH  OF  THE  FOURTH  OBJECTIVE.  SOURCE:  BASED  ON  TAYLOR  (P.4,  1997)  ..................................  52  FIGURE  20.  THE  APPROACH  FOR  FULFILLING  THE  OBJECTIVES  OF  THE  STUDY.  SOURCE:  BASED  ON  TAYLOR  (P.4,  

1997)  ...................................................................................................................................................................  53  FIGURE  21.  THE  TYPICAL  APPROACH  OF  A  MARKET  SURVEY.    SOURCE:  LEKVALL  AND  WAHLBIN  (P.183,  2001)  ........  59  FIGURE  22.  THE  OVERALL  APPROACH  OF  THE  STUDY.  SOURCE:  BASED  ON  LEKVALL  AND  WAHLBIN  (P.183,  2001)  

AND  TAYLOR  (P.4,  1997)  .....................................................................................................................................  61  FIGURE  23.  APPROACH  OF  THE  FIRST  OBJECTIVE.  SOURCE:  TAYLOR  (P.4,  1997)  .........................................................  68  FIGURE  24.  APPROACH  OF  THE  SECOND  OBJECTIVE.  SOURCE:  BASED  ON  TAYLOR  (P.4,  1997)  ..................................  70  FIGURE  25.  APPROACH  OF  THE  THIRD  OBJECTIVE.  SOURCE:  BASED  ON  TAYLOR  (P.4,  1997)  ......................................  71  FIGURE  26.  APPROACH  OF  THE  FOURTH  OBJECTIVE.  SOURCE:  BASED  ON  TAYLOR  (P.4,  1997)  ..................................  73  FIGURE  27.  THE  LOCATION  OF  THE  MEMBERS  IN  THE  STUDIED  SUPPLY  CHAIN.  .........................................................  77  FIGURE  28.  THE  L/C  PROCESS  BETWEEN  EAB  AND  ATM.  .............................................................................................  78  FIGURE  29.  THE  INFORMATION  AND  MATERIAL  FLOW  IN  THE  STUDIED  SUPPLY  CHAIN.  ...........................................  80  FIGURE  30.  THE  LEAD  TIMES  IN  THE  INFORMATION  FLOW.  ........................................................................................  84  FIGURE  31.  THE  LEAD  TIMES  IN  THE  MATERIAL  FLOW.  ...............................................................................................  85  FIGURE  32.  THE  REASONS  FOR  LONG  LEAD  TIMES  IN  THE  LOCAL  PROCESSING  PHASE.  ............................................  100  FIGURE  33.  THE  REASONS  FOR  LONG  LEAD  TIMES  IN  THE  PRODUCTION.  .................................................................  102  FIGURE  34.  THE  REASONS  FOR  LONG  LEAD  TIMES  AT  EDC  GBG.  ...............................................................................  104  FIGURE  35.  THE  REGIONAL  SUPPLY  CHAIN.  ................................................................................................................  135  FIGURE  36.  THE  ALTERNATIVE  SUPPLY  CHAIN.  ..........................................................................................................  137        

Page 10: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

LIST  OF  TABLES  TABLE  1.  COMPARISON  OF  FRAMEWORKS  FOR  APPROACHING  LOGISTIC  CASE  STUDIES.  SOURCE:  BASED  ON  

OSKARSSON  ET  AL.  (2013),  STOCK  AND  LAMBERT  (2001)  AND  TAYLOR  (1997)  .................................................  23  TABLE  2.  ACTIONS  FOR  LEAD  TIME  REDUCTION.  SOURCE:  OSKARSSON  ET  AL.  (2013)  ................................................  36  TABLE  3.  PRACTICAL  WAYS  FOR  LEAD  TIME  REDUCTION.  SOURCE:  MASON-­‐JONES  AND  TOWILL  (1998)  BASED  ON  

EVANS,  TOWILL  AND  NAIM  (1996)  .....................................................................................................................  37  TABLE  4.  THE  QUESTION  FORMULATION.  ....................................................................................................................  54  TABLE  5.  COMPARISON  OF  FRAMEWORKS  FOR  APPROACHING  SURVEYS.  SOURCE:  BASED  ON  LEKVALL  AND  

WAHLBIN  (2001)  AND  PATEL  AND  DAVIDSSON  (2011)  ......................................................................................  58  TABLE  6.  METHODS  TO  ANSWER  THE  SUB  QUESTIONS  OF  THE  FIRST  OBJECTIVE.  ......................................................  68  TABLE  7.  METHODS  TO  ANSWER  THE  SUB  QUESTIONS  OF  THE  SECOND  OBJECTIVE.  .................................................  70  TABLE  8.  METHODS  TO  ANSWER  THE  SUB  QUESTIONS  OF  THE  THIRD  OBJECTIVE.  .....................................................  71  TABLE  9.  METHODS  TO  ANSWER  THE  SUB  QUESTIONS  OF  THE  FINAL  OBJECTIVE.  .....................................................  73  TABLE  10.  LEAD  TIMES  FOR  DIFFERENT  ACTIVITIES  AND  PROCESSES  IN  THE  STUDIED  SUPPLY  CHAIN.  ......................  86  TABLE  11.  THE  CUSTOMER  ORDER  LEAD  TIME  IN  THE  BEST,  NORMAL  AND  WORST  CASE  SCENARIO.  .......................  88  TABLE  12.  THE  IDENTIFIED  PROBLEMS  AND  SUGGESTED  SOLUTIONS.  ........................................................................  95  TABLE  13.  CATEGORIZATION  OF  THE  SUPPLY  CHAIN  PARTS.  .......................................................................................  99  TABLE  14.  ROOT  CAUSES  FOR  THE  LONG  LEAD  TIME  IN  THE  LOCAL  PROCESSING  PHASE.  ........................................  101  TABLE  15.  ROOT  CAUSES  FOR  THE  LONG  LEAD  TIME  IN  THE  PRODUCTION.  .............................................................  102  TABLE  16.  ROOT  CAUSES  FOR  THE  LONG  LEAD  TIME  AT  EDC  GBG.  ...........................................................................  104  TABLE  17.  THE  IDENTIFIED  POTENTIALS  FOR  LEAD  TIME  REDUCTION.  ......................................................................  106  TABLE  18.  THE  THREE  ROOT  CAUSES  AND  THE  SUGGESTED  SOLUTION  THAT  HAVE  SUBSTANTIATED  THE  FIRST  

GENERAL  SOLUTION.  ........................................................................................................................................  108  TABLE  19.  THE  THREE  ROOT  CAUSES  AND  THE  SUGGESTED  SOLUTION  THAT  HAVE  SUBSTANTIATED  THE  SECOND  

GENERAL  SOLUTION.  ........................................................................................................................................  110  TABLE  20.  THE  TWO  ROOT  CAUSES  AND  THE  SUGGESTED  SOLUTION  THAT  HAVE  SUBSTANTIATED  THE  THIRD  

GENERAL  SOLUTION.  ........................................................................................................................................  111  TABLE  21.  THE  ROOT  CAUSE  AND  THE  TWO  SUGGESTED  SOLUTIONS  THAT  HAVE  SUBSTANTIATED  THE  FOURTH  

GENERAL  SOLUTION.  ........................................................................................................................................  112  TABLE  22.  THE  TWO  ROOT  CAUSES  AND  THE  TWO  SUGGESTED  SOLUTIONS  THAT  HAVE  SUBSTANTIATED  THE  FIFTH  

GENERAL  SOLUTION.  ........................................................................................................................................  113  TABLE  23.  THE  THREE  ROOT  CAUSES  AND  THE  TWO  SUGGESTED  SOLUTIONS  THAT  HAVE  SUBSTANTIATED  THE  

SIXTH  GENERAL  SOLUTION.  ..............................................................................................................................  115  TABLE  24.  THE  THREE  ROOT  CAUSES  AND  THE  TWO  SUGGESTED  SOLUTIONS  THAT  HAVE  SUBSTANTIATED  THE  

SEVENTH  GENERAL  SOLUTION.  .........................................................................................................................  117  TABLE  25.  THE  ROOT  CAUSE  THAT  HAS  SUBSTANTIATED  THE  EIGHT  GENERAL  SOLUTION.  ......................................  118  TABLE  26.  INCOTERMS  FOR  MULTIMODAL  TRANSPORTS.  SOURCE:  BASED  ON  COOK  (2014)  AND  INTERNATIONAL  

CHAMBER  OF  COMMERCE  (2016)  ....................................................................................................................  119  TABLE  27.  THE  CONNECTION  BETWEEN  THE  GENERAL  SOLUTIONS  AND  THE  ERICSSON  SPECIFIC  SOLUTIONS.  ......  120  TABLE  28.  THE  ROOT  CAUSES  THAT  ARE  SOLVED  WITH  THE  FIRST  ERICSSON  SPECIFIC  SOLUTION.  .........................  121  TABLE  29.  THE  ROOT  CAUSES  THAT  ARE  SOLVED  WITH  THE  SECOND  ERICSSON  SPECIFIC  SOLUTION.  .....................  122  TABLE  30.  THE  ROOT  CAUSE  THAT  IS  SOLVED  WITH  THE  THIRD  ERICSSON  SPECIFIC  SOLUTION.  .............................  123  TABLE  31.  THE  ROOT  CAUSE  THAT  IS  SOLVED  WITH  THE  FOURTH  ERICSSON  SPECIFIC  SOLUTION.  ..........................  124  TABLE  32.  THE  ROOT  CAUSE  THAT  IS  SOLVED  WITH  THE  FIFTH  ERICSSON  SPECIFIC  SOLUTION.  ..............................  125  TABLE  33.  THE  ROOT  CAUSE  THAT  IS  SOLVED  WITH  THE  SIXTH  ERICSSON  SPECIFIC  SOLUTION.  ..............................  126  TABLE  34.  THE  ROOT  CAUSES  THAT  ARE  SOLVED  WITH  THE  SEVENTH  ERICSSON  SPECIFIC  SOLUTION.  ...................  127  TABLE  35.  THE  ROOT  CAUSE  THAT  IS  SOLVED  WITH  THE  EIGHTH  ERICSSON  SPECIFIC  SOLUTION.  ...........................  128  TABLE  36.  THE  ROOT  CAUSES  TOGETHER  WITH  THEIR  SOLUTIONS.  ..........................................................................  129  TABLE  37.  LEAD  TIMES  FOR  THE  REGIONAL  SUPPLY  CHAIN  COMPARED  TO  THE  CURRENT  STATE.  ..........................  136  TABLE  38.  LEAD  TIMES  FOR  THE  ALTERNATIVE  SUPPLY  CHAIN  COMPARED  TO  THE  CURRENT  STATE.  .....................  138  TABLE  39.  LEAD  TIMES  FOR  THE  REGIONAL  SUPPLY  CHAIN  AND  THE  ALTERNATIVE  SUPPLY  CHAIN  IN  COMPARISON  

WITH  THE  EXISTING  SUPPLY  CHAIN.  .................................................................................................................  143  

Page 11: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

TABLE  40.  THE  LEAD  TIME  REDUCTION  ACCOMPLISHED  WITH  THE  REGIONAL  SUPPLY  CHAIN  IN  THE  THREE  DIFFERENT  CASES.  .............................................................................................................................................  143  

TABLE  41.  THE  EXPECTED  EFFECTS  ON  THE  DELIVERY  SERVICE  AND  ITS  SERVICE  ELEMENTS.  ..................................  144  TABLE  42.  RESPONDENTS  INTERVIEWED  DURING  THE  PLANNING  PHASE  OF  THE  STUDY.  ..........................................  XI  TABLE  43.  RESPONDENTS  INTERVIEWED  DURING  THE  CURRENT  STATE  MAPPING.  ...................................................  XII  TABLE  44.  LITERATURE  RESEARCH  BASED  ON  KEY  WORDS.  ........................................................................................  XV  TABLE  45.  LITERATURE  RESEARCH  BASED  ON  REFERENCES.  .....................................................................................  XVII        

Page 12: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

   

Page 13: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

INTRODUCTION  

     1  

 

1   INTRODUCTION  

The  introductory  chapter  aims  to  create  an  understanding  of  the  problem  that  led  to  the  start  of  this  project.  The  chapter  presents  the  project’s  background  followed  by  the  purpose,  directives  and   the   targeted   group.   Finally,   the   academic   requirements   are   described   together   with   the  scientific  approach  and  disposition  of  the  report.  

   

Page 14: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

INTRODUCTION  

     2  

1.1   Background  In   recent   years   there   have   been   significant   changes   in   the   society   regarding   how   people  communicate,  work  and  are  entertained.  This  is  partially  due  to  the  introduction  of  the  broadband  network,  increased  mobility  and  the  cloud  that  connects  people,  places,  applications  and  devices  with  each  other.  The  connected  system  is  called  the  Networked  Society  and  is  predicted  to  induce  major  changes   in  many   industries.  Ericsson  AB,  hereinafter   referred   to  as  Ericsson,   is  a  global  company   that   is   and   has   been   a   pioneer   in   the   high-­‐quality   telecommunication   market  contributing  to  the  Networked  Society.  Innovation  is  an  important  part  of  the  company  culture  and  being  first  to  market  with  new  solutions  has  been  a  distinct  competitive  advantage.  (Ericsson  AB,  2013)    A  part  of  Ericsson’s  strategy  is  to  lead  the  radio  development  by  meeting  the  needs  of  the  network  evolution  (Ericsson  AB,  2013).  Recently,  the  Group  Supply  of  Business  Unit  Radio  has  experienced  difficulties  to  fully  meet  the  customer  demand.  Because  of  this  problem  and  lost  market  shares,  Group  Supply  seeks  to   increase  the  ability   to  meet  the  customer  demand.   (Johansson,  2016a)  Ericsson’s  ability  to  meet  the  customer  demand  with  their  supply  chain  mainly  depends  on  three  factors:  inventory,  forecast  accuracy  and  responsiveness  (Braun,  2016).    The   inventory   level   is  desired   to  be  as   low  as  possible   for  economic   reasons.  The   technology-­‐intensive  market,  with  new  products  constantly  being  introduced  and  old  ones  being  phased  out,  contributes  to  an  increased  risk  of  inventory  obsolescence  and  the  desire  to  have  low  inventory  levels.   Ericsson’s   radio   portfolio   consists   of   a   numerous   variety   of   products,   making   it  unsustainable  to  keep  enough  components  and  finished  products  on  stock  to  match  the  volatile  demand  without  tying  up  too  much  capital.  Ericsson  is  a  profit-­‐driven  company,  meaning  that  the  tied   up   capital   affects   the   financial   results   negatively.   (Johansson,   2016a)   It   is   therefore   not  relevant  to  increase  the  total  inventory  level  in  order  to  match  the  customer  demand.      The  customers  generally  demand  large  and  varied  quantities  with  an  uneven  frequency,  making  the  future  demand  difficult  to  foresee.  The  technology-­‐intensive  market  complicates  the  forecast  process  further  given  that  new  products  are  constantly  being   introduced  and  old  ones  phased  out.  The  time  from  when  a  customer  places  an  order  until  the  goods  are  delivered  is  today  too  long  and  contributes  to  additional  uncertainty  when  forecasting.  (Johansson,  2016a)  Thus,  it   is  difficult  to  improve  the  forecast  accuracy  with  today’s  lead  time  and  thereby  the  ability  to  meet  the  customer  demand.      Consequently,  the  Group  Supply  has  decided  to  examine  the  possibility  to  reduce  the  lead  time,  from  customer  order  to  delivery,  in  order  to  improve  the  responsiveness  and  the  ability  to  meet  the  customer  demand.  A  reduced  lead  time  is   in   line  with  Ericsson’s  competitive  advantage  of  being  first  to  market  with  new  products  and  at  the  same  time  offer  a  high  service  level.  A  short  lead  time  and  a  high  service  level  are  essential  for  Ericsson  to  remain  in  the  forefront  of  the  radio  development   and   are   necessary   when   facing   the   increasing   competitiveness   on   the   market.  (Johansson,  2016a)      

Page 15: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

INTRODUCTION  

     3  

1.2   Purpose  Give   recommendations   for   improvements   that   reduce   the   total   lead   time   in   a   supply   chain  perspective  in  order  to  improve  the  customer  service  level.    1.3   Directives  Directive  1  –  The  study  only  examines  the  lead  times  of  the  products  of  Business  Unit  Radio  Ericsson  is  divided  into  several  different  business  units  that  each  is  responsible  for  their  own  type  of  products.  This  study  only  focuses  on  the  product  portfolio  of  the  Business  Unit  Radio.          Directive  2  –  The  study  aims  to  reduce  the  total  lead  time  by  50  %  in  a  long-­‐term  perspective  Ericsson  has  a  long-­‐term  objective  to  reduce  the  total  lead  time  by  50  %.  Therefore,  this  study  will  provide  solutions  in  a  long-­‐term  perspective  and  not  consider  if  the  solutions  are  reasonable  to  implement  in  the  present  situation.          Directive  3  –  The  study  only  focuses  on  one  of  Ericsson’s  customers  The   study   focuses   on   one   of   Ericsson’s   customers   because   of   the   limited   time   period   of   this  project.  The  customer  Algeria  Telecom  Mobile  was  selected  since  it  is  considered  as  an  important  customer   in  a  region  with  great  potential  for   improvements.  The  region  of  Mediterranean  has  historically  experienced  difficulties  with  meeting  the  customer  demand.        Directive  4  –  The  study  focuses  on  the  lead  time  that  is  perceived  by  the  customer  The   study   aims   at   reducing   the   lead   time   in   order   to   improve   the   customer   service   level.  Therefore,  the  lead  time  that  is  perceived  by  the  customer  will  get  the  attention.    1.4   Target  Group  The   target   group   for   this  master   thesis   is   primarily   the  Group   Supply   at   Ericsson   AB   and   the  Institute   of   Technology   at   Linköping  University.   The   paper  will   hopefully   provide   people  with  limited  knowledge  within  supply  chain  management  and  lead  time  analysis  a  deeper  insight  into  the  subjected  areas.    1.5   Requirements  for  Academic  Assignments  An  academic  assignment  is  an  assignment  that  is  presented  at  a  university  or  university  college  and  must   fulfill   certain   requirements,   considering   that   it   is  an  academic  product   through  new  academic   knowledge   can   be   created.   (Björklund   &   Paulsson,   2014)   The   requirements   of   an  academic  assignment  are  explained  below.    The  authors  of  an  academic  study  are  required  to  demonstrate  awareness  of  existing  theories,  models  and  data  within  the  studied  area.  Existing  knowledge  within  the  studied  area  must  serve  as  a  base  or  be  taken  into  account  in  the  study  and  later  on  act  as  a  comparison  to  establish  the  results  of   the  study.  These  requirements  prevent  authors   from  spending  time  on  unnecessary  duplication  of  effort  such  as  doing  work  that  has  already  been  done  by  someone  else,  but  also  relates  new  knowledge  with  already  existing  and  thus  enhances  the  knowledge  within  the  field.  

Page 16: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

INTRODUCTION  

     4  

(Björklund  &  Paulsson,  2014)  Given  the  above  assertions,  the  report  will  be  comprised  by  existing  literature  that  is  considered  relevant  for  this  study.      Additional   requirements   of   academic   assignments   are   to   deal  with   questions   of   both   general  interest  and  theoretical  dimensions  in  order  for  it  to  become  an  academic  product.  The  method  of  the  academic  study  is  required  to  be  a  widely  accepted  scientific  method  and  fulfill  the  ideals  of   being   verifiable,   repeatable   and   not   dependent   on   particular   individuals.   (Björklund   &  Paulsson,  2014)  Some  often  occurring  concepts  in  scientific  contexts  are  validity  and  reliability,  which  will  be  taken  into  consideration  by  using  appropriate  methods  in  accordance  with  Bjöklund  and  Paulsson  (2014),  Jakobsen  (2002)  and  also  Lekvall  and  Wahlbin  (2001).    Throughout  the  paper,  there  must  be  a  main  thread  so  that  the  connection  between  the  various  parts   of   the   study   is   obvious   for   the   reader.   It   is   important   to   provide   the   readers   with   an  opportunity  to  adopt  their  own  conclusions  by  providing  an  as  accurate  and  thorough  picture  as  possible  of  the  design,  implementation  and  results  of  the  study.  It  is  also  required  to  clarify  for  the  readers  which  of  the  standpoints  that  belongs  to  the  authors  of  the  study  and  which  belongs  to  others.  (Björklund  &  Paulsson,  2014)  To  fulfill  these  requirements,  an  objective  approach  will  permeate  the  study  in  conformity  with  Björklund  and  Paulsson  (2014)  together  with  Lekvall  and  Wahlbin  (2001).    1.6   Scientific  Approach  The  purpose  of  a  study  can  be  achieved  in  various  different  ways  and  it  is  therefore  important  to  show  method  awareness  when  choosing  approach.  Method  awareness  indicates  that  the  authors  have  knowledge  of  potential  methods,  their  advantages  and  disadvantages,  and  then  motivate  the  choice  of  method  based  on  this  knowledge.  (Björklund  &  Paulsson,  2014)      Gammelgaard   (2004),   Björklund   and   Paulsson   (2014)   as   well   as   Arbnor   and   Bjerke   (1994)  describes  three  scientific  approaches  that  provide  a  solid  basis  for  academic  researchers.  The  first  approach  is  called  the  analytical  approach  and  emphasizes  the  reality  as  a  whole  that  is  made  up  of   different   independent   parts.   The   investigator   strives   to   explain   the   truth   as   objective   and  complete  as  possible  and  tries  to  find  relations  of  cause-­‐and-­‐effect.  (Björklund  &  Paulsson,  2014)  Seeing  the  parts  of  the  supply  chain  as  isolated  fragments  may  cause  sub-­‐optimization  and  the  scientific  approach  is  therefore  not  applied  in  this  study.  According  to  the  actor  approach,  the  reality  is  a  result  of  numerous  social  constructions  (Arbnor  &  Bjerke,  1994).  The  explanation  of  the   reality   is   subjective   and   highly   dependent   on   the   investigators   experience   and   actions  (Björklund  &  Paulsson,  2014).  This  study  examines  quantitative  lead  times  and  a  more  objective  approach  is  therefore  appropriate.      The  systems  approach   is   the  dominant  approach  for  both  researchers  and  practitioners   in  the  fields  of  supply  chain  management  and  logistics  (Gammelgaard,  2004).  From  this  perspective,  the  reality  is  described  objectively  similar  to  the  analytical  approach  but  often  considers  the  sum  of  the  parts  as  a  small  fragment  separated  from  the  whole.  The  parts  themselves  and  their  relations  are  from  this  perspective  of  equal  importance.  (Björklund  &  Paulsson,  2014)  This  master  thesis  examines   a   supply   chain   composed   of   several   activities   and   processes   in   different   areas   and  

Page 17: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

INTRODUCTION  

     5  

functions.  The  aim  is  to  reduce  the  total  lead  time  and  any  changes  made  within  the  supply  chain  may  change  the  relation  between  different  parts.  As  a  result,  the  system  approach  is  used  in  this  study.    1.7   Disposition  of  the  Report  This  section  provides  a  brief  description  of  the  content  in  this  report  in  order  to  give  the  reader  an  overview  of  the  structure  and  to  facilitate  the  search  for  information.    1  INTRODUCTION  The  introductory  chapter  aims  to  create  an  understanding  of  the  problem  that  led  to  the  start  of  this  project.  The  chapter  presents  the  project’s  background  followed  by  the  purpose,  directives  and   the   targeted   group.   Finally,   the   academic   requirements   are   described   together   with   the  scientific  approach  and  disposition  of  the  report.    2  BUSINESS  INTRODUCTION  The  business  introduction  provides  a  brief  presentation  of  Ericsson  as  a  company,  followed  by  a  more  detailed  description  of  the  considered  business  unit  and  its  industry.  Moreover,  the  supply  chain   network   for   Ericsson   is   introduced  with   the   including  members   and   finally,   the   studied  customer  is  presented  and  the  overall  system  of  the  study  is  defined.      3  THEORETICAL  FRAMEWORK  The  theoretical  framework  presents  the  literature  that  the  authors  intend  to  use  in  order  to  fulfill  the   purpose   of   the   study.   The   framework   covers   the   theoretical   areas   of   Supply   Chain  Management,  Customer  Service,  Supply  Chain  Integration,  Analyzing  Supply  Chains,  Distribution  Models,   Inventory   Handling,   Supply   Chain   Strategies,   Supply   Chain   Time   Compression   and  Transparency  in  Supply  Chains.      4  SPECIFICATION  OF  TASK  The  specification  of  the  task  means  to  clarify  the  purpose  of  the  study,  define  the  studied  system  and  describe  the  necessary  delimitations.  The  purpose  is  decomposed  into  key  questions,  which  are   further   divided   into   sub  questions   that   are   explained   to   later   be   answered.   The  question  formulation  will  be  fundamental  for  the  forthcoming  parts  of  the  report.      5  METHODOLOGY  The  methodology  chapter  presents  the  approach  of  the  study,  followed  by  methods  for  collecting  data  and  literature.  The  chapter  includes  reasoning  about  the  reliability  and  validity  of  the  study.  Finally,  the  methods  used  to  answer  the  purpose  and  the  question  formulation  is  described.      6  CURRENT  STATE  MAPPING  The   chapter   presents   the   current   state   for   the   studied   supply   chain.   The   current   state   map  includes  a  description  of  the  supply  chain  structure,  the  supply  chain  performance  and  perceived  problems  and  suggested  solutions  from  people  working  within  different  parts  of  the  supply  chain.        

Page 18: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

INTRODUCTION  

     6  

7  IDENTIFICATION  OF  POTENTIALS  FOR  LEAD  TIME  REDUCTION  The  chapter  includes  an  identification  of  potentials  for  lead  time  reduction  based  on  the  current  state   map.   At   first,   a   categorization   is   made   for   different   parts   of   the   supply   chain   and   the  experienced   problems.   The   categorization   is   fundamental   for   the   following   prioritization   that  determines  which  parts,  problems  and  suggested  solutions  that  can  be  considered  as  potentials  and  get  the  further  attention.      8  GENERATION  OF  ALTERNATIVE  SOLUTIONS  The   chapter   contains   a   second   literature   review   that   is   based  on   the  potentials   for   lead   time  reduction.  The  literature  review  results  in  a  number  of  general  solutions  that  are  modified  and  applied  to  the  supply  chain  described  in  the  current  state  mapping.    9  EVALUATION,  RECOMMENDATION  AND  IMPLEMENTATION  The   chapter   includes   an   evaluation   of   the   generated   solutions   and   their   interactions.   A   final  recommendation  is  provided  based  on  the  solutions,  their  interactions  and  the  time  perspective  of   the   solutions.   Lastly,   the   requirements   for   implementing   the   recommended   solutions   are  clarified.    11  CONCLUSIONS  The  concluding  chapter  answers  to  the  purpose  of  the  study  and  includes  recommendations  for  improvements  that  reduces  the  lead  time  and  improves  the  service  level  for  the  studied  supply  chain.  The  recommendations  consist  of  solutions  that  are  suitable  for  different  situations  and  the  chapter  contains  an  estimation  of  the  expected  lead  time  reduction  for  the  solutions.    11  DISCUSSION  The   discussion   chapter   presents   a   critical   review   of   the   applied   research   methods   and  delimitations   made   to   approach   the   objectives   of   the   study.   Potential   sources   of   error   are  highlighted  and  their  effects  on  the  final  result  is  discussed.  The  generalizability  of  the  result,  the  contribution  of  the  study  and  recommendations  for  further  studies  are  also  considered.        

Page 19: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

BUSINESS  INTRODUCTION  

     7  

 

2   BUSINESS  INTRODUCTION  

The  business  introduction  provides  a  brief  presentation  of  Ericsson  as  a  company,  followed  by  a  more  detailed  description  of  the  considered  business  unit  and  its  industry.  Moreover,  the  supply  chain   network   for   Ericsson   is   introduced   with   the   including  members   and   finally,   the   studied  customer  is  presented  and  the  overall  system  of  the  study  is  defined.  

   

Page 20: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

BUSINESS  INTRODUCTION  

     8  

2.1   Ericsson  AB  The  history  of  Ericsson  has  its  start  in  the  year  of  1876  when  Lars  Magnus  Ericsson  opened  up  a  small  telegraph  repair  shop  in  central  Stockholm.  During  the  same  year,  Abraham  Bell  received  a  patent  for  the  telephone  that  did  not  cover  the  Nordic  countries.  Ericsson  utilized  this  and  started  to  produce  his  own  telephones,  which  were  on  the  market  just  two  years  later  (Meurling  &  Jeans,  2000).   This   was   the   start   of   today’s   company   with   over   116   000   employees   that   provides  communication  networks,  telecom  services  and  support  solutions  for  customers  in  more  than  180  countries  (Ericsson  AB,  2013).  The  business  extends  worldwide  and  can  be  divided  into  ten  global  regions  that  are  listed  below  and  visualized  in  Figure  1.    

•   Southeast  Asia  &  Oceania  (RASO)    •   Northern  Europe  &  Central  Asia  (RECA)  •   Western  &  Central  Europe  (RWCE)  •   India  (RINA)  •   Latin  America  (RLAM)        

     

•   North  America  (RNAM)  •   Mediterranean  (RMED)  •   Middle  East  &  Asia  (RMEA)  •   North  East  Asia  (RNEA)  •   Sub-­‐Saharan  Africa  (RSSA)  

(Johansson,  2016a)  

 Figure  1.  Ericsson’s  operating  regions.  Source:  Braun  (2016)  

Ericsson  approximates  that  40  %  of  the  world’s  total  mobile  traffic  passes  through  equipment  that  is  supplied  by  them  (Ericsson  AB,  2013).  The  net  sales  during  2015  amounted  to  more  than  245  billion  SEK,  where  the  Business  Unit  Radio  (BURA)  accounts  for  about  40  %  (Johansson,  2016a).        

Page 21: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

BUSINESS  INTRODUCTION  

     9  

2.2   Business  Unit  Radio  BURA  is  responsible  for  the  radio  operations  in  terms  of  performance  and  customer  satisfaction.  The   organization   has   over   21   000   employees   with   sites   in   more   than   twelve   countries.   The  characteristics  of  the  radio  market  are  large  productions  with  complex  logistics  and  a  constantly  increasing   competitive   pressure.   The   radio  market   is   technology-­‐intensive,  meaning   that   new  products   are   constantly   being   introduced   and   old   ones   phased   out.   The   vision   of   BURA   is   a  networked   society  where  person-­‐to-­‐person  voice   communication  and   internet   connection  are  enabled  at  any  time  and  from  anywhere,  to  the  extent  that  everything  that  benefits  from  being  connected  will  be  connected.  (Johansson,  2016a)  The  mobile  network  of  today  is  built  up  by  a  large  amount  of  radio  base  stations  (RBSs),  which  is  the  main  product  of  BURA.  In  simple  terms,  the  function  of  a  RBS  is  to  enable  a  two-­‐way  wireless  communication  based  on  radio  waves  and  allow  for  transmission  of  data  between  different  devices.  (Ersten,  2016)      A  RBS  consists  of  a  number  of  different  modules  and  site  material  that  together  are  assembled  into  a  cabinet.  A  module  can  refer  to  either  a  radio  unit,  digital  unit  or  a  filter.  These  modules  are  built  up  by  Surface  Mounted  Assemblies  (SMAs),  which  in  turn  are  made  by  printed  circuit  boards  that  are  combined  with  small  electronic  components.  Modules  that  are  assembled  into  a  cabinet  refers  to  as  a  node  and  becomes  a  RBS  first  when  the  node  is  consolidated  with  the  site  material,  such   as   antennas,   cables   etc.   (Ersten,   2016;   Ianev,   2016a)   See   Figure   2   for   an   elementary  visualization  of  the  main  parts  that  constitute  a  radio  base  station.      

 Figure  2.  The  main  parts  of  a  radio  base  station.  Source:  Johansson  (2016a)  

A  RBS  is  customized  after  the  customer  requirements,  meaning  that  the  modules  are  configured  differently   depending   on   the   context   and   what   purpose   it   will   serve.   For   example,   Ericsson  manufactures  over  100  different  filters  that  each  consist  of  some  unique  components.  The  filters  are  configured  differently  and  transmit  different  frequencies,  depending  on  the  country  they  will  be  used  in.  (Özelbir,  2016)  Furthermore,  there  are  RBSs  for  both  indoor  or  outdoor  use  (Ersten,  2016).        

Page 22: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

BUSINESS  INTRODUCTION  

     10  

The  modules  are  both  manufactured  in-­‐house  as  well  as  purchased  from  external  manufacturing  sites.  The  site  material  on  the  other  hand,  are  only  purchased  from  external  manufacturers  for  later  being  consolidated  with  the  nodes  before  the  final  delivery  to  the  customers  are  performed.  (Pettersson,  2016a)  As  mentioned  before,  the  main  product  of  BURA  is  the  RBS.  However,  the  different  modules  in  the  RBSs  can  also  be  sold  in  separate  to  the  customers.  This  is  to  make  it  possible  to  replace  a  module  with  a  new  one  in  order  to  increase  the  performance,  without  buying  a  completely  new  radio  base  station.  (Ianev,  2016a)      The  mission  of  BURA  is  to  lead  the  transmission  of  the  networked  society  through  mobility  and  for  Ericsson  to  remain  in  the  forefront  of  the  radio  development,  short  lead  times  and  high  service  levels  are  vital.  The  accountabilities,   responsibilities  and  support   for  doing  so  are  divided   into  various  operative  and  staff  units,  where  the  operative  unit  responsible   for  the  supply  of  radio  products  is  Group  Supply.  (Johansson,  2016a)    2.3   Group  Supply  Group  Supply  is  the  organization  that  is  responsible  for  the  supply  of  all  hardware  products  in  the  product  portfolio  of  BURA.  Approximately  1  000  RBSs  are  provided  to  different  customers  every  day,  meaning  one  radio  unit  every  80  seconds  for  24  hours  per  day,  7  days  per  week.  (Johansson,  2016a)  In  order  to  give  an  understanding  of  how  Group  Supply  is  spread  globally,  the  different  supply  operations  are  illustrated  in  Figure  3  and  will  be  described  in  more  detail  in  the  upcoming  section.    

 Figure  3.  Operations  of  Group  Supply.  Source:  Johansson  (2016a)  

Distribution*Center,*PanamaPanama

Supply*Site,*BrazilSaõ'Jose'dos'Campos

Supply*Site,*MexicoGuadalajara

Distribution*Center,*SingaporeSingapore

Supply*Site,*ChinaNanjing

Distribution*Center,*ChinaShanghai

Distribution*Center,*UAE*Dubai

Supply*Site,*IndiaJaipur

Distribution*Center,*SwedenBorås,'Gothenburg

Supply*Sites,*SwedenBorås,'Kista, Kumla,'Linköping'

Supply*Site,*EstoniaTallinn

Group*Supply,*SwedenKista

Supply*Site,*USPlano

Supply*Site,*UKSouthampton

Page 23: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

BUSINESS  INTRODUCTION  

     11  

The  market  of  radio  products  is  volatile  and  unpredictable  to  the  extent  that  Group  Supply  has  recently  failed  to  meet  the  customer  demand  and  started  to  lose  market  shares.  Because  of  this,  Group  Supply  has  examined  how  Ericsson  can  increase  their  ability  to  meet  the  customer  demand.  (Johansson,   2016a)   There   are  mainly   three   factors   that   affect   their   ability   to   accomplish   this,  which   are   inventory   levels,   forecast   accuracy   and   responsiveness.   (Braun,   2016).   Ericsson   is   a  profit-­‐driven  company,  and  tied-­‐up  capital  in  form  of  inventories  will  thereby  affect  the  financial  results  negatively.  As  stated  before,  the  radio  market  is  unpredictable  and  in  combination  with  today’s   lead   time  makes   it  difficult   to   improve   the   forecast  accuracy.  Especially   since  Ericsson  offers  a  vast  range  of  product  variants,  making  the  average  demand  per  variant  relatively  low.  Group   Supply   has   concluded   that   the   lead   time   has   to   be   reduced   in   order   to   improve   their  responsiveness   and   ability   to  meet   the   customer   demand,  which  will   be   vital   for   Ericsson   to  remain  in  the  forefront  of  the  radio  development.  Providing  customer-­‐specific  products  in  a  global  supply  chain  with  several  stakeholders  often  results  in  a  large  number  of  interfaces  and  handovers  that  increases  the  complexity  of  the  supply  chains.  (Johansson,  2016a)    2.4   The  Supply  Chain  Network  Considering   that   Ericsson   supplies   customers  all   over   the  world  with   radio  products,   it   places  certain  requirements  on  their  supply  chains.  Today,  the  supply  chains  may  be  arranged  in  a  variety  of  ways  and  include  different  kind  of  members  depending  on  factors  such  as  the  customer  region  or  the  type  of  products  being  distributed.  As  a  result  of  these  conditions,  the  supply  chain  network  tends  to  get  rather  complex  and  places  high  demands  on  efficient  material  and  information  flows.  (Johansson,  2016a)    To  give  an  understanding  of  how  the  supply  chains  of  Ericsson  can  be  arranged,  some  central  and  often   occurring   members   are   introduced   in   the   following   sections.   The   members   can   be  categorized   into   four   main   groups:   Suppliers,   Ericsson,   Third-­‐Part   Logistics   Providers   and  Customers,  which   can   consist  of  members   related   to  either   the   focal   company  or   to  external  parties.   After   presenting   the  most   common  members,   the   studied   customer   Algeria   Telecom  Mobile  is  introduced  and  finally  can  an  overall  system  be  defined  for  this  study.    2.4.1   The  Role  of  the  Suppliers  Ericsson  has  around  700  different  first-­‐tier  suppliers  located  worldwide.  It  refers  to  suppliers  of  electro  mechanic  components,  electronic  components  and  site  materials.  (Johansson,  2016b)  In  this  study,  the  external  manufacturing  sites  are  also  defined  as  suppliers  and  there  are  therefore  four  different  type  of  first-­‐tier  supplier  concepts  that  are  presented  during  this  section.  Note  that  these  suppliers  in  turn  have  their  own  providers,  for  Ericsson  defined  as  second-­‐tier  suppliers.      Component  Supplier:  is  a  type  of  supplier  that  distributes  components  and  can  be  categorized  into   two   groups.   The   first   group   is   the   electro   mechanics,   which   consists   of   suppliers   that  distribute  components  such  as  printed  circuit  boards,  screws,  castings  etc.  There  are  around  140  electro  mechanic   suppliers   that   are   spread   all   over   the  world.   To   avoid   excessive   lead   times,  Ericsson   selects   electro  mechanic   suppliers   that   are   located   near   the   business   to   the   extent  possible.  For  example,  electro  mechanic  components  such  as  castings  are  mainly  supplied  from  China  because  of  the  favorable  pricing  and  they  can  have  extensive  lead  times.  (Neuman,  2016a)    

Page 24: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

BUSINESS  INTRODUCTION  

     12  

The  other  group  is  the  electronics,  which  contains  suppliers  of  components  that  are  mounted  to  the  printed  circuit  boards.  There  are  mainly  two  hubs  that  distribute  the  electronic  components,  which  are  referred  to  as  Arrow  and  acts  as  an  intermediator  between  the  roughly  210  electronic  component   suppliers   and   Ericsson.  One  of   the   electronic   component   hubs   is   located   in  Hong  Kong,   China,   and   the   other   one   is   placed   in   Venlo,   Netherlands.   Arrow   stores   the   electronic  components  on  behalf  of  Ericsson  and  secures  that  the  buffers  of  different  components  are  kept  between  the  preset  minimum  and  maximum  levels.  The  idea  with  the  cooperation  with  Arrow  is  to  secure  short  lead  times  for  inbound  supply  of  electronic  components,  without  having  to  store  them  at  Ericsson.  (Carlheimer,  2016a)    External  Manufacturing  Site  (EMS):   is  a  manufacturing  unit  that  is  owned  and  managed  by  an  external  part.  It  only  produces  modules  and  not  any  nodes.  The  finished  modules  can  either  be  delivered  to  an  Ericsson  Supply  Site  and  be  put  into  a  node,  or  delivered  to  an  Ericsson  Distribution  Center.  Today,  Ericsson  has  contracts  with  eight  different  EMSs.  (Ianev,  2016a)    Site  Material  Supplier:   is  a  member  that  distributes  site  material   in  the  supply  chain.  The  site  material  suppliers  deliver  either  directly  to  an  Ericsson  Distribution  Center  or  to  a  hub  specified  for  site  material.  There  are  around  180  site  material  suppliers  that  in  total  distributes  around  4  000  different  site  material  products,  with  new  ones  being  introduced  each  month.  (Pettersson,  2016a)    2.4.2   The  Role  of  Ericsson  Ericsson  is  the  focal  company  and  the  second  main  actor  in  the  supply  chain.  It  is  important  to  distinguish  between  Ericsson  and  the  subsidiaries  of  Ericsson,  considering  that  the  two  types  are  managed   in  different  ways.   It   is  also   important  to  distinguish  between  subsidiaries  at  regional  level  and  subsidiaries  at  local  level.  During  the  following  section  some  common  units  related  to  both  Ericsson  and  its  subsidiaries  are  described.    Ericsson  Supply  Site  (ESS):  is  a  manufacturing  site  that  produces  both  modules  and  nodes.  The  ESSs  receive  deliveries  from  both  component  supplier  and  from  EMSs  and  supplies  the  Ericsson  Distribution  Centers  with  finished  goods.  An  ESS  can  be  owned  and  managed  by  either  Ericsson  or  by  its  subsidiaries,  depending  on  where  it  is  located.  If  the  ESS  is  located  in  Sweden  it  belongs  to  Ericsson,  otherwise  to  a  subsidiary.  There  are  not  any  differences  between  the  ownerships  in  this   case,   except   for   the   type   of   order   that   triggers   the   production.   If   the   ESS   is   owned   and  managed  by  a  subsidiary,  Ericsson  places  a  purchase  order  to  the  ESS  that  triggers  the  production  and  in  the  other  case,  if  the  ESS  is  owned  by  Ericsson,  they  place  a  so  called  stock  transfer  order  since  they  already  have  the  ownership  of  the  goods.  There  are  in  total  six  ESSs  (Ianev,  2016a).    Ericsson   Distribution   Center   (EDC):   is   a   consolidation   point   for   finished   products   that   are  incoming  from  both  ESSs,  EMSs  and  site  material  suppliers.  The  products  are  consolidated  into  specific  customer  orders  before  delivered  to  a  regional  warehouse,  a  local  warehouse  or  directly  to  the  customer.  There  are   in  total   five  EDCs  spread  out  over  the  ten  regions  and  they  are  all  owned  by  Ericsson.  Just  as  for  the  ESSs,  whether  they  are  managed  by  Ericsson  or  a  subsidiary  depends  on  the  location  of  the  EDC.  (Ianev,  2016a)    

Page 25: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

BUSINESS  INTRODUCTION  

     13  

Order   Desk:   is   a   function   at   Ericsson   in   Kista,   consisting   of   several   people   with   different  responsibilities.  The  overall  responsibility  of  the  order  desk  is  to  manage  the  incoming  customer  purchase  orders  and  to  make  sure  that  the  information  is  complete.  Sometimes  there  are  some  additional  documents   that  have   to  be  processed.  As   the  orders  are   complete,   the  order  desk  sends  out  purchase  orders  and  stock  transfer  orders  to  ESSs,  EMSs  and  site  material  suppliers.  There  is  also  a  distribution  order  sent  to  the  specific  EDC.  (Pettersson,  2016a)    Control  Tower:  is  located  in  Kista  and  managed  by  Ericsson.  Their  main  objective  is  to  manage  forecasts,  both  long  term  and  short  term.  The  Control  Tower  is  responsible  for  coordination  of  the  predicted  demand  with  future  capacity.  (Johansson,  2016b)    Local  Company:  refers  to  the  local  subsidiary  to  Ericsson.  The  local  company  usually  consists  of  a  local  sales  team  and  supply  team.  Most  often,  it  is  the  local  company  that  has  the  direct  contact  with  the  customers  in  each  country.  (Ur  Rehman,  2016a)    Regional  and  Local  Warehouse:  are  warehouses  for  storing  of  goods,  either  covering  a  regional  or  local  market.  These  warehouses  are  managed  by  subsidiaries  to  Ericsson.  (Johansson,  2016b;  Pettersson,  2016a)    Site  Material  Hub:  is  a  unit  located  in  Borås  that  is  owned  and  managed  by  Ericsson.  The  hub  only  buffers  site  material   for  deliveries   to   the  EDC   in  Gothenburg.  Since  both  the  EDC  and  the  site  material  hub  is  owned  by  Ericsson,  pick  from  stock  at  the  hub  can  be  applied  when  site  material  is  needed  and  it  is  not  necessary  to  send  any  purchase  orders.  Suppliers  of  site  material  deliver  into  the  hub  and  Vendor  Managed   Inventory   (VMI)   is  often  applied.  Around  90  %  of   the  total  customer   demand   of   site   material   that   pass   the   EDC   in   Gothenburg   is   covered   by   the   hub.  (Pettersson,  2016a)        2.4.3   The  Role  of  the  Third-­‐Part  Logistics  Providers  The   Third-­‐Part   Logistics   (3PL)   providers   are   the   third  main   actor   in   the   supply   chain.   Ericsson  purchase  services  such  as  transportation  and  site  installation.  (Pettersson,  2016a).  Two  members  classified  as  3PL-­‐providers  are  introduced  below.    Application  Service  Provider  (ASP):  is  hired  as  a  third  part  company  and  manages  the  installation  of  the  products  at  the  project  sites.  (Pettersson,  2016a)      Distribution  Service  Provider   (DSP):   refers   to  a   third  part   that  manages   the   transportation  of  goods.  Ericsson  has  contracts  with  several  freight  companies,  which  provides  transportations  by  both  truck,  boat  and  flight.  (Ur  Rehman,  2016a)            

Page 26: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

BUSINESS  INTRODUCTION  

     14  

2.4.4   The  Role  of  the  Customers  The  customers  are   the   fourth  and   final  main  actor   in   the   supply   chain.   Ericsson  has  over  700  customers  worldwide.  The  customer  experiences  a  need,  places  an  order  that  moves  upstream  the   supply   chain   and   finally   gets   the   order   delivered   after   it   has   passed   the   three   previous  introduced  main  actors  downstream.  Three  supply  chain  components  connected  to  the  customer  are  briefly  introduced  below.        Customer  Order  Desk:  is  the  unit  that  places  the  customer  purchase  orders  to  Ericsson,  but  that  most  often  goes  via  the  local  company  that  acts  as  an  intermediate.  (Ur  Rehman,  2016a)    Customer  Warehouse:   is  where   the  customer  stores   their   received  products  and  Ericsson  has  little  or  none  insight  to  these  units.  (Ur  Rehman,  2016a)    Project  Site:  is  where  the  need  occurs  and  where  the  radio  base  stations  are  installed.  The  goods  can  either  be  delivered  directly  to  the  project  site  or  to  the  customer  warehouse,  depending  on  the  customer  requirements.  (Ur  Rehman,  2016a)      2.5   Algeria  Telecom  Mobile  Algeria  Telecom  Mobile  (ATM)  is  a  customer  to  Ericsson  and  the  incumbent  operator  in  Algeria  with   a   national   geographic   presence   covering   over   15   million   subscribers.   It   is   one   of   the  customers  that  orders  the  largest  volumes  in  RMED  and  therefore  considered  as  an  important  customer  to  Ericsson.  As  things  stand,  Ericsson  has  a  delivery  precision  of  35-­‐40  %  to  ATM  and  is  desired  to  be  improved.  (Benrabah,  2016a)  The  delivery  precision  will  be  improved  by  reducing  the  lead  times  and  hence,  providing  a  higher  service  level  towards  ATM  (Johansson,  2016a).    Traditionally,  ATM  bulk  orders  the  same  type  of  products  on  mostly  quarterly  patterns  and  is  a  demanding  customer  in  terms  of  a  long  bill  of  material  and  high  forecast  deviations.  ATM  is  in  a  great  extent  ordering  RBSs  with  standard  modules,  but  it  can  happen  that  they  order  modules  that   are  not   classified   as   standards.   Because  of   an  Algerian   legislation,   Ericsson   and  ATM  are  obliged  to  use  Letter  of  Credit  (L/C)  as  payment  method.  It  acts  as  an  assurance  for  both  the  seller  and  the  buyer  in  the  sense  that  the  seller  is  guaranteed  payment  and  the  buyer  is  guaranteed  the  delivery   that   they   have   agreed   upon.  With   L/C   comes   a   process   consisting   of   much   manual  paperwork,   such   as   documents   concerning   invoicing,   transportation   and   other   terms   and  conditions.  L/C  requires  that  at  least  one  bank  acts  as  an  intermediary  and  for  this  case,  Ericsson  and   ATM   are   using   two   respective   banks   that   both   charges   a   fee   for   the   provided   service.  (Benrabah,  2016a)    Ericsson  has  three  contractual  supply  chain  models  that  are  used  based  on  the  type  of  contract  that  is  signed  with  the  customer,  which  are  referred  to  as  Ericsson,  Local  or  Split  contracts.  The  contract  displays  the  legal  owner  of  the  contract  and  is  determined  by  factors  such  as  the  model  that   supports   the   business   in   the   best  way,  where   it   is  most   beneficial   to   pay   taxes   etc.   (Ur  Rehman,  2016a)  In  this  case,  the  finance  department  has  decided  that  an  Ericsson  contract  is  to  be  used  with  ATM,  meaning  that  Ericsson  is  the  formal  order  taker  and  the  local  company  only  acts  an   intermediary  (Benrabah,  2016a).  Carriage  Paid  To  (CPT)   is  an   international  commercial  

Page 27: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

BUSINESS  INTRODUCTION  

     15  

term  used  in  the  contract  between  Ericsson  and  ATM.  It  implies  that  Ericsson  is  paying  for  the  carriage  of  goods  to  the  port  of  destination,  while  ATM  is  responsible  for  the  insurance  of  the  goods  during  transportation.  (Benrabah,  2016a;  Ur  Rehman,  2016a)    2.6   The  Overall  System  As  mentioned  earlier,  the  supply  chain  of  Ericsson  can  be  arranged  in  a  variety  of  ways,  but  there  are  most  often  four  main  actors  composing  it.  These  actors  are  the  suppliers,  Ericsson,  the  3PL-­‐providers  and  the  customers.  The  suppliers  in  turn  have  their  own  suppliers,  called  the  second-­‐tier  suppliers,  and  ATM  have  their  project  sites  where  the  products  are  installed.  The  six  members  and  the  material  and  information  flow  that  connects  them  are  together  composing  the  overall  system  of  this  study,  illustrated  in  Figure  4.  The  solid  lines  in  the  figure  refer  to  material  flow  and  is  the  physical  flow  of  goods.  The  dashed  lines  refer  to  the  information  flow  in  terms  of  orders  and  information  exchange.  To  get  more  information  about  the  actors  and  the  flows  in  the  studied  supply  chain,  it  requires  further  investigation.    

 Figure  4.  The  overall  system.  

     

Second'tiersuppliers

First'tiersuppliers Ericsson ATM Project6 sites

3PL'providers

Information*flowMaterial*flow

Page 28: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

BUSINESS  INTRODUCTION  

     16  

   

Page 29: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

THEORETICAL  FRAMEWORK  

     17  

 

3   THEORETICAL  FRAMEWORK  

The  theoretical  framework  presents  the  literature  that  the  authors  intend  to  use  in  order  to  fulfill  the   purpose   of   the   study.   The   framework   covers   the   theoretical   areas   of   Supply   Chain  Management,  Customer  Service,  Supply  Chain  Integration,  Analyzing  Supply  Chains,  Distribution  Models,   Inventory   Handling,   Supply   Chain   Strategies,   Supply   Chain   Time   Compression   and  Transparency  in  Supply  Chains.  

   

Page 30: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

THEORETICAL  FRAMEWORK  

     18  

3.1   The  Supply  Chain  Nowadays,  companies  are  in  a  greater  extent  competing  at  a  global  level  which  requires  more  from  them  to  be  successful  (Christopher,  2011;  Sandberg,  2015;  Jespersen  &  Skjott-­‐Larsen,  2005).  As  the  technology  constantly  develops,  the  demand  from  customers  change  more  rapidly  than  it  has  before.  Many  large  companies  often  have  several  segmented  markets  which  also  need  to  be  handled   in   different   ways.   At   the   same   time,   the   global   competition   increases   which   forces  companies   to   become   faster,   better   and   cheaper.   A   tendency   today   is   a   greater   cooperation  between  the  focal  company  and  its  suppliers,  customers  and  other  strategic  partners.  Because  of  this,  the  focus  is  no  longer  at  competition  between  individual  firms,  but  at  competition  between  whole  supply  chains.  (Christopher,  2011;  Jespersen  &  Skjott-­‐Larsen,  2005)  Jonsson  and  Mattsson  (2011)  believes   that  a   requirement   for  efficient   logistics   is   for  companies   to  apply  an  external  approach,  i.e.  include  the  direct  customers  and  suppliers  in  their  system  boundaries  and  together  achieve  efficient  material  and  information  flows.    To  understand  the  supply  chain  concept,  one  must  first  recognize  what  Porter  (1985)  defines  as  the   generic   value   chain   (Christopher,   2011;  Mattsson,   2012;   Skjott-­‐Larsen,   Schary,  Mikkola  &  Kotzab,  2007).  The  value  chain  illustrated  in  Figure  5  consists  of  the  following  series  of  activities:  inbound   logistics,   operations,   outbound   logistics,   marketing   &   sales   and   services.   These   are  primary   activities   that   all   create   value   for   a   company   and   its   outputs.   Additionally,   there   are  supporting   activities   that   strive   to   support   the   primary   activities,   including   human   resources,  technology   development,   procurement   and   management.   To   gain   competitive   advantage,   a  company  must   perform   the   value   chain   activities   in   a   unique   way   or  more   efficient   than   its  competitors  do.  (Porter,  1985)      

 Figure  5.  The  generic  value  chain.  Source:  Porter,  M.E.  (p.37,  1985)  

 

Page 31: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

THEORETICAL  FRAMEWORK  

     19  

The  logistic  pipeline  described  by  Christopher  (2011)  together  with  Oskarsson,  Aronsson  &  Ekdahl  (2013)  can  be  compared  to  the  generic  value  chain  described  by  Porter  (1985),  but  seen  from  a  logistic   perspective.   The   pipeline   consists   of   three   major   components:   material   supply,  production  and  distribution.  It  is  a  simplified  model  of  components  going  in  to  a  company  through  the   material   supply,   being   produced   and   assembled   in   the   production,   and   finally   being  distributed  to  the  customers.  These  three  major  components  can  be  further  divided  into  different  processes   and   activities.   Order   and   delivery   processes   link   the   different   parts   in   the   pipeline  together  and  manage  the  flow  through  it.  Some  physical  main  activities  such  as  inventory  storage,  transportation  and  material  handling  are  often  recurring  in  the  whole  pipeline.  It  is  vital  with  a  well  working  information  flow,  why  the  pipeline  and  its  parts  need  clear  planning  and  control.  (Christopher,  2011;  Oskarsson  et  al.,  2013)      There   are   three   essential   aspects   to   take   into   consideration   regarding   the   pipeline.   The   first  aspect  is  to  dimension  the  capacity  of  the  pipeline  after  the  customer  needs.  This  is  to  minimize  the  risk  for  under  or  over  capacity,  which  may  lead  to  additional  costs  or  a  shifting  service  level.  The  second  is  to  balance  the  capacity  throughout  the  pipeline  in  order  to  create  an  even  flow.  This   is   to  avoid  bottlenecks,  which  may   lead   to  queues  and   inventory  buildups,  which   in   turn  contribute  to  a  longer  pipeline.  This  bring  us  in  to  the  final  aspect,  which  is  to  create  an  as  short  pipeline  as  possible.  (Oskarsson  et  al.,  2013)  A  short  pipeline  is  desirable  since  the  length  of   it  affects   both   customer   service   and   the   costs   for   the   company.   The   length   of   the   pipeline  represents  the  time  it  takes  a  product  to  pass  through  it  and  are  determined  by  a  numerous  of  factors.  These  are  for  instance  choice  of  distribution  method,  how  inventories  are  handled,  type  of  products  and  how  they  are  produced  and  also,  in  what  extent  companies  have  worked  with  trying  to  make  their  pipelines  more  effective.  (Christopher,  2011;  Oskarsson  et  al.,  2013)    As  mentioned  earlier  by  Christopher  (2011)  and  Jespersen  and  Skjott-­‐Larsen  (2005),  there  is  often  a  great  cooperation  between  a  company  and  its  different  suppliers  and  customers.  As  well  as  the  focal  company  has  a  value  chain  and  a  logistic  pipeline,  its  suppliers  and  customers  also  have  their  individual  value  chains  and  pipelines.  When  a  supplier  delivers  input  to  a  customer,  which  in  turn  delivers  input  to  its  customers,  the  different  companies  need  to  cooperate  with  each  other.  This  means   that   their  value  chains  and  pipelines  get   interconnected  and   the  connections  between  different  companies  creates  a  supply  chain.  (Skjott-­‐Larsen  et  al.,  2007)  Mentzer,  DeWitt,  Keebler,  Min,  Nix  and  Smith  (p.4,  2001)  defines  a  supply  chain  more  precisely  as:    “…a  set  of  three  or  more  entities  (organizations  or  individuals)  directly  involved  in  the  upstream  and  downstream  flows  of  products,  services,  finances,  and/or  information  from  a  source  to  a  

customer.”            

Page 32: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

THEORETICAL  FRAMEWORK  

     20  

3.2   Supply  Chain  Management  There  are  no  organizations  that  are  strong  enough  to,  on  their  own,  manage  to  fully  meet  the  markets   demand   in   the   environment   of   intense   competition,   fast   changing   technologies   and  growing  requirements  from  customers  (Christopher,  2011;  Skjott-­‐Larsen  et  al.,  2007).  The  way  relations  and  business  processes  across  the  supply  chain  are  handled  to  create  value  for  all  parts  within  it,  is  called  supply  chain  management  (Christopher,  2011;  Jespersen  &  Skjott-­‐Larsen,  2005).  Skjott-­‐Larsen  et  al.  (p.21,  2007)  presents  the  Council  of  Supply  Chain  Management  Professional’s  definition  of  supply  chain  management:    

“SCM  encompasses  the  planning  and  management  of  all  activities  involved  in  sourcing  and  procurement,  conversion,  and  all  Logistics  Management  activities.  Importantly,  it  also  includes  coordination  and  collaboration  with  channel  partners,  which  can  be  suppliers,  intermediaries,  

third-­‐party  service  providers,  and  customers.”    In  most  markets,  companies  rarely  differentiate  themselves  from  their  competitors  because  of  their  products  that  often  share  the  same  functional  characteristics.  Instead,  the  ability  to  provide  high   service   level   to   the   end   customer   is   a   factor   of   great   value   and   a   central   parameter   of  competition.  The  ability  to  offer  a  high  service  level  is  highly  dependent  on  how  good  companies  are  at  handle  the  management  throughout  their  supply  chains.  (Jespersen  &  Skjott-­‐Larsen,  2005)    3.3   Customer  Service  Customer  service  is  a  common  expression  when  talking  about  supply  chains  and  is  determined  by  the  activities  that  takes  place  during  the  interaction  with  the  customer,  which  can  be  categorized  as  before,  during  and  after  the  delivery.   (Christopher,  2011;  Mattsson,  2012;  Oskarsson  et  al.,  2013)  Before  the  delivery  refers  to  how  easy  it  is  to  make  business  with  a  certain  company,  while  during  the  delivery  implies  how  well  a  company  lives  up  to  what  has  been  promised  and  if  the  information  exchange  towards  the  customer  is  clear.  After  the  delivery  can  mean  the  offering  of  spare  parts  or   the  handling  of  guarantees  and  return  of  goods   in  a  good  way.  A  more  precise  definition  of  the  customer  service  that  is  directly  related  to  an  actual  delivery  is  referred  to  as  the  delivery  service.  This  delivery  service  consists  of  a  number  of  elements  that  constitutes  the  service  level  and  depends  on  the  specific  industry  or  customer.  (Mattsson,  2012;  Oskarsson  et  al.,  2013;  Storhagen,  2003)  The  service  elements  are  described  briefly  in  the  list  below.    

•   Lead  time  is  the  time  between  ordering  and  receiving  of  delivery.  •   Delivery  reliability  is  the  reliability  of  the  promised  lead  time.  •   Delivery  dependability  refers  to  if  it  is  the  right  product  in  the  right  quantity  and  quality  

that  is  delivered.  •   Stock  availability  is  the  amount  of  orders  or  order  lines  that  can  be  delivered  according  to  

the  customer  demand.  Is  only  useable  for  stock  items.    •   Information  exchange  refers  to  how  information  is  shared.  •   Flexibility  refers  to  the  ability  to  customize.  

 (Mattsson,  2012;  Oskarsson  et  al.,  2013;  Storhagen,  2003)  

Page 33: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

THEORETICAL  FRAMEWORK  

     21  

According  to  the  definitions  of  the  service  elements,  they  are  measured  at  different  parts  of  the  supply  chain,  see  Figure  6.  The  lead  time  is  the  time  from  when  the  customer  places  an  order  until  the  goods  are  delivered.  Both  the  delivery  reliability  and  the  delivery  dependability  are  service  elements   that   are   measured   at   the   customer.   The   stock   availability   on   the   other   hand,   is  measured  at  the  supplying  company.  Both  the  information  exchange  and  the  flexibility  are  overall  service  elements  and  can  be  measured  at  the  supplier  and  all  the  way  to  the  customer.    

 Figure  6.  Where  the  different  service  elements  are  measured.    

Source:  Based  on  Oskarsson  et  al.  (p.37,  2013)  

3.4   Supply  Chain  Integration  In   order   to   provide   higher   customer   service   level,   without   incurring   any   substantial   costs,  companies  are  required  to  develop  integrated  supply  chains  driven  by  the  needs  of  the  business.  An  integrated  supply  chain  is  successfully  achieved  by  going  through  a  number  of  stages  described  below,  see  Figure  7.  (Stevens,  1989)    The   first   stage,   called   the   baseline,   relates   to   the   traditional   approach   where   companies  concentrate   at   the   operational   and   planning   levels   and  make   up   for   the   imbalance   between  activities   with   excess   inventory   and   capacity.   Independent   departments   with   incompatible  control   systems   and   procedures   characterize   this   stage.   The   second   stage   recognizes   the  functional   integration,   meaning   that   the   adjacent   activities   in   the   baseline   are   integrated   as  discrete   business   functions,   each   of   which   still   are   buffered   by   inventory.   The   third   stage   is  characterized  by  full  system  visibility  throughout  the  business.  It  is  not  until  the  final  stage  that  the   scope   of   integration   extends   outside   the   company   to   cover   suppliers   and   customers,  achieving  full  supply  chain  integration.  (Stevens,  1989)      

Supplier Customer

Information*exchangeFlexibility

Lead time

Delivery reliabilityDelivery dependability

Stock*availability

Page 34: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

THEORETICAL  FRAMEWORK  

     22  

 Figure  7.  Achieving  an  integrated  supply  chain.  Source:  Stevens  (1989)  

When  describing,  analyzing  and  managing  a  supply  chain  there  are  three  vital  dimensions  to  take  into  consideration:  the  horizontal  structure,  the  vertical  structure  and  the  horizontal  location  of  the  focal  company  within  the  supply  chain.  The  horizontal  structure  describes  the  number  of  tiers  along  the  supply  chain,  while  the  vertical  structure  refers  to  the  number  of  suppliers  or  customers  contained   in   every   tier.   The   horizontal   location   of   the   focal   company   can   be   positioned  somewhere  between  the  initial  source  of  supply  and  the  end  customer.  (Lambert  &  Cooper,  2000)  The  longer  the  horizontal  structure  of  the  supply  chain,  the  less  responsive  to  volatile  demand  will  the  system  be  (Christopher,  2011).      3.5   Analyzing  Supply  Chains  It  exists  various  different  frameworks  for  analyzing  logistic  and  supply  chain  cases.  Oskarsson  et  al.  (2013),  Stock  and  Lambert  (2001)  and  Taylor  (1997)  describes  three  frameworks  consisting  of  key  steps  that  can  be  used  to  approach  most  case  studies,  see  Table  1.  In  the  following  paragraph,  the  different  frameworks  are  compared  followed  by  a  more  detailed  description  of  the  framework  made  by  Taylor  (1997).  

Page 35: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

THEORETICAL  FRAMEWORK  

     23  

Oskarsson  et  al.  (2013)  argue  that  the  first  step  before  initiating  an  analysis  should  be  to  clarify  the  preconditions,  e.g.  the  targeted  lead  time  reduction,  available  resources  etc.,  and  thereafter  perform  an  analysis  of  the  current  state  as  a  second  step.  Stock  and  Lambert  (2001)  together  with  Taylor  (1997)  differs  from  Oskarsson  (2013)  since  their  first  step  is  to  analyze  the  current  state  and  then  identify  the  problems  as  a  second  step.  However,  the  clarification  of  preconditions  is  to  some  extent   included  in  the  current  state  analysis  for  Stock  and  Lambert  (2001)  as  well  as  for  Taylor  (1997).      After  completed  the  description  and  analysis  of  the  current  state,  all  three  frameworks  describe  the  third  step  as  generating  and  justifying  alternative  solutions,  the  fourth  step  as  presenting  a  recommended   solution   and   the   fifth   step   as   implementation.   The   frameworks   of   Stock   and  Lambert  (2001)  and  Taylor  (1997)  are  completed  after  the  five  steps,  but  Oskarsson  et  al.  (2013)  present  a  final  step  where  the  result  of  the  implemented  solution  is  followed  up.      In  summary,  the  presented  frameworks  have  similar  overall  approaches  and  the  main  difference  is  how  the  approaches  are  divided  into  key  steps.  The  current  state  description  is  fundamental  for   all   the   frameworks,   which   is   analyzed   in   order   to   generate   alternative   solutions   that  subsequently  result  in  a  recommended  solution  and  implementation.      

Table  1.  Comparison  of  frameworks  for  approaching  logistic  case  studies.  Source:  Based  on  Oskarsson  et  al.  (2013),  Stock  and  Lambert  (2001)  and  Taylor  (1997)  

Overall  stages   Oskarsson  et  al.  (2013)  

Stock  &  Lambert  (2001)  

Taylor  (1997)  

Clarification  of  preconditions   X      

Current  state  analysis   X   X   X  

Identification  of  problems     X   X  

Generation  and  evaluation  of  alternative  solutions   X   X   X  

Recommended  solution  and  justification   X   X   X  

Implementation   X   X   X  

Follow  up   X      

         

Page 36: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

THEORETICAL  FRAMEWORK  

     24  

Out  of  the  three  authors,  Taylor  (1997)  describes  the  framework  in  most  detail.  It  is  a  five-­‐step  procedure  to  approach  the  analysis  of  logistic  and  supply  chain  cases,  see  Figure  8  below.  The  first  step  is  to  analyze  the  existing  situation  or  more  precisely,  the  supply  chain  structure,  the  supply  chain  performance  and  the  business  context.  The  three  major  issues  that  need  to  be  considered  for  the  supply  chain  structure  are  the  physical  flow  of  goods,  the  information  management  and  the  organizational  and  management  structures  that  control  the  supply  chain.  It  is  necessary  to  assess  the  performance  of  the  supply  chain  in  order  to  determine  where  to  target  future  efforts  and   when   examining   the   benefits   of   the   improvements.   This   can   be   done   for   the   overall  performance,  the  relative  performance  and  the  performance  of  individual  logistics  functions.  The  analysis   of   the   business   context   is   done  both   internally   and   externally,   aiming   for   logistics   to  contribute  to  corporate  performance  and  developing  policies   in  anticipation  of  changes   in  the  environment.  (Taylor,  1997)    The   second   step   is   to   identify   major   issues   and   problems   in   the   current   situation.   A  comprehensive  and  thorough  situation  analysis  will  increase  the  chances  of  finding  the  key  issues  and  problems  that  are  crucial  for  making  appropriate  recommendations.  Therefore,  this  is  seen  as   the  most   difficult   and   critical   step   of   the   analysis.   It   is   necessary   to   differentiate   between  symptoms   and   causes   and   also   not   to   only   focus   on   the   problems,   but   to   identify   relevant  opportunities.  All  the  identified  problems  and  issues  are  thereafter  categorized  into  meaningful  related  groups  and  prioritized  in  order  to  reach  sensible  solutions.  (Taylor,  1997)    Once  the  issues  and  problems  have  been  identified,  there  is  a  step  of  generating  and  evaluating  as   many   different   ideas   and   solutions   as   possible.   To   do   so,   it   can   be   beneficial   to   work   in  brainstorming   groups   since   such   discussions   often   cover   different   perspectives   and   result   in  several   solutions.   It   can   also   be   helpful   to   divide   the   solutions   into:   functional   issues,   the  corporate   context   and   the   supply   chain   context.   Probably   the   most   important   aspect   when  evaluating  solutions  is  to  consider  the  realities  of  implementation.  The  intention  of  this  step  is  to  produce  two  or  three  solutions  that  can  be  implemented  and  evaluated  in  terms  of  requirements,  benefits,  consequences  and  such.  The  fourth  step  is  to  describe  the  given  recommendation  and  justify  the  choice  in  terms  of  costs  and  benefits  while  the  final  step  is  the  implementation,  where  practical  questions  are  addressed  such  as  the  required  resources,  timing,  monitoring  etc.  (Taylor,  1997)    

Page 37: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

THEORETICAL  FRAMEWORK  

     25  

 Figure  8.  A  framework  for  case  analysis.  Source:  Taylor  (p.4,  1997)  

     

Step%1Situation(analysis

Step%2Identification(of(main(issues(and(problems

Step%3Generation(and(

evalutation(of(alternative(solutions

Step%4Recommended(solution(

and(justification

Step%5Implementation

Supply(chain(structures

The(business(context

Supply(chain(performance

Categorize

Prioritize

Brainstorm(ideas

Select(2B3(alternatives(and(evaluate

Resources

Timing

Monitoring

Description

Justification

Page 38: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

THEORETICAL  FRAMEWORK  

     26  

3.6   Distribution  Models  As  mentioned  by  Oskarsson  et  al.  (2013),  one  factor  determining  the  length  of  the  logistic  pipeline  is  the  choice  of  distribution  method.  Picard  (1983)  also  says  that  one  of  the  hardest  challenges  for  companies  is  to  manage  the  distribution  of  goods,  while  assuring  a  high  customer  service  and  keeping  the  physical  distribution  costs  low.  The  distribution  cost  includes  transportation,  shipping  expenses,  warehousing   costs  etc.   It   is   a  great   challenge   to  decide  on  what   is   the  best  way  of  moving   goods   from   production   to   customer,   mainly   due   to   the   need   for   great   coordination  between  numerous  organizational  units  that  sometimes  have  conflicting  interests.  For  example,  if  a  company  wants  to  increase  delivery  frequency  to  customers  in  order  to  decrease  the  costs  for  inventory  holding,  it  will  instead  increase  the  costs  for  transportation.  This  coordination  is  extra  hard   in   multinational   companies   that   have   subsidiaries   in   foreign   markets,   that   handle   e.g.  manufacturing,  procurement  or  sales.  (Picard,  1983)      A  common  issue,  regarding  sales  and  distribution,  is  whether  local  sales  are  best  handled  by  local  distribution  or   by   a  more   centralized  distribution   structure   (Skjott-­‐Larsen  et   al.,   2007).   Picard  (1983)  means   that   there   are   two  different   solutions:   either   apply   a  decentralized  distribution  handled  by  the  subsidiaries,  or  use  a  regional  distribution  centers  where  inventory  is  centralized.  He   also   proposes   that   there   are   four   basic   models   over   how   products   can   be   moved   from  production   to   the   customer:   the   classical   system,   the   transit   system,   the   regional  distribution  system  and  the  direct  system.  These  distribution  systems  will  be  described  below.    3.6.1   The  Classical  System  The   classical   distribution   to   customers   is   fully  managed   by   the   subsidiary,   see   Figure   9.   Even  though  there  might  be  a  supporting  regional  supply  organization,  the  deliveries  and  the  inventory  holding  are  done  by  the  subsidiary  or  a  local  distributor.  (Picard,  1983)  This  system  gives  control  to   the   local   operator,   but   there  might   be   a   problem  with  phasing   in   and  out   products   in   the  product   portfolio,   due   to   separation   of   important   supply   chain   elements.   There   may   occur  multiple   inventories  and  a   low  degree  of   integration   in   the   supply   chain.   (Skjott-­‐Larsen  et  al.,  2007)    

 Figure  9.  The  classical  distribution  system.  

Source:  Based  on  Skjott-­‐Larsen  et  al.  (p.133,  2007)  

Page 39: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

THEORETICAL  FRAMEWORK  

     27  

3.6.2   The  Transit  System  The   subsidiary   in   the   transit   system   has   a   greater   responsibility   at   a   higher   level   in   the  organization.   The   parent   company   holds   inventory   and   handle   orders,   but   the   orders   are  managed  through  the  subsidiary  for  local  deliveries,  see  Figure  10.  (Picard,  1983)  The  goods  are  seen   as  mobile   inventory  when   they   are   transported,   and   the   supplier   constantly   looks   for   a  destination  where  a  customer  demand  might  occur.  Then  they  try  to  send  the  goods  as  close  as  possible  to  that  destination,  before  a  customer  order  is  received.  (Claesson  &  Hilletofth,  2011)  Cross-­‐docking,  further  described  in  Section  3.7.4,  is  an  occurring  practice  in  this  system,  and  refers  to   goods   being   transshipped   in   a   network   of   terminals   (Skjott-­‐Larsen   et   al.,   2007).   Some  advantages  with  this  system  are:  shorter   lead  times,  possibility  to  a   lower  stock  volume  and  a  lower   tied-­‐up  capital.  The  disadvantages   in   turn  are:   the  need   for  a  good   forecast,   the   risk  of  unnecessary   movement   of   goods   and   the   need   for   a   well   working   transparent   information  system.  (Claesson  &  Hilletofth,  2011)    

 Figure  10.  The  transit  distribution  system.    

Source:  Based  on  Skjott-­‐Larsen  et  al.  (p.133,  2007)  

3.6.3   The  Regional  Distribution  System  In  the  regional  distribution  system,  companies  use  a  central  distribution  center  within  a  region  to  provide  goods  for  the  customers  in  the  region,  see  Figure  11.  In  Europe,  companies  often  have  a  few  distribution  centers  to  be  able  to  reach  their  whole  customer  base  within  just  a  couple  of  days.  (Skjott-­‐Larsen  et  al.,  2007)  The  advantages  with  centralize  inventories  in  form  of  regional  distribution  centers  are  e.g.  a  lower  total  stock  level,  a  higher  flexibility  and  lower  administrative  costs.  The  disadvantages  are  e.g.  higher  transportation  costs  and  a  risk  for  lower  customer  service  due  to  lower  inventories  close  to  the  customer.  (Attwood  &  Attwood,  1992)    

Page 40: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

THEORETICAL  FRAMEWORK  

     28  

 Figure  11.  The  regional  distribution  system.    

Source:  Based  on  Skjott-­‐Larsen  et  al.  (p.133,  2007)  

3.6.4   The  Direct  System  The  idea  of  the  direct  system  is  to  ship  products  directly  from  production  to  the  customer  without  any  intermediaries,  shown  in  Figure  12.  This  is  enabled  by  the  need  of  efficient  and  coordinated  transportation   and   transparent   information   systems,   and   may   lead   to   both   a   decrease   in  inventory   costs   and   delivery   times.   (Skjott-­‐Larsen   et   al.,   2007)   A   disadvantage   is   the   high  transportation  costs,  which  enable  a  thorough  balance  between  cost  and  speed.  Direct  deliveries  are  common  for  products  with   risk   for  obsolescence,  as  well  as  within  e-­‐commerce  and  are  a  growing  trend.  (Gattorna,  1998)        

 Figure  12.  The  direct  distribution  system.    

Source:  Based  on  Skjott-­‐Larsen  et  al.  (p.133,  2007)  

Skjott-­‐Larsen  et  al.  (2007)  mean  that  companies  often  apply  a  combination  of  above  described  distribution  models,  depending  on  the  product  being  distributed.  A  fast-­‐moving  product  is  often  preferably  kept  in  inventory  close  to  the  customer,  while  a  slow-­‐moving  product  is  rather  handled  with  a  centralized,  inventory  kept,  distribution  system.  (Skjott-­‐Larsen  et  al.,  2007)      

Page 41: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

THEORETICAL  FRAMEWORK  

     29  

3.7   Inventory  Handling  Inventory  handling  is  in  practice  of  the  same  purpose  as  of  distribution;  reduce  costs  and  improve  service  level.  Attwood  &  Attwood  (1992)  states  that,  by  managing  a  good  inventory  management,  over  10  %  of  the  total   inventory  costs  can  be  saved.  It  can  also  prevent  stock-­‐outs  and  reduce  investments  connected  to  inventories.  (Attwood  &  Attwood,  1992)  Though  inventory  is  a  factor  affecting  the  length  of  the  logistic  pipeline,  described  by  Oskarsson  et  al.  (2013)  in  Section  3.1,  and  thus  the  customer  service  level,  some  commonly  occurring  practices  connected  to  inventory  in   supply   chains   will   be   presented   in   this   section.   The   inventory   handling   practices   that   are  presented  are:  Traditional  Inventory  Management,  Just-­‐in-­‐Time,  Vendor  Managed  Inventory  and  Cross-­‐Docking.    3.7.1   Traditional  Inventory  Management  The   traditional  way  of  handle   inventories  between  parties   in  a   supply  chain   is  when  both   the  supplier  and   the  customer  have   their  own   inventories   they  are   responsible   for.  The  customer  places  an  order  to  the  supplier,  who  in  turn  sends  a  confirmation  of  the  order,  and  then  delivers  within  the  order  lead  time.  The  customer  also  gets  a  notification  of  when  the  delivery  will  arrive,  and  if  any  deviations  in  the  order  occur.  Typically,  each  party  take  their  own  decisions  without  considering  the  others  and  no  information,  e.g.  about  when  a  promotion  is  planned,   is  shared  between  them.  (Govindan,  2013)  A  disadvantage  is  the  need  for  high  inventory  buffer  levels,  to  secure  the  requested  service  level.  (Skjott-­‐Larsen  et  al.,  2007)    3.7.2   Just-­‐In-­‐Time  The  concept  of  Just-­‐In-­‐Time  (JIT)  originates  from  lean  manufacturing  and  is  about  to  meet  the  customer  demand  by   coordinate   the   flow  of  material   through   the  production   and   the   supply  chain.  Goods  are  only  produced  when  needed  and  the  concept  includes  elimination  of  inventory  buffers.  For   this   to  be  possible,   from  a  production  perspective,   the  material  has   to  arrive  at  a  specific  station  in  the  right  quantity  and  at  the  exact  point  of  time  when  it  is  needed,  in  order  to  match   the   production   schedule.   (Skjott-­‐Larsen   et   al.,   2007)   Orders   are   placed   in   fixed   time  intervals  but   the  quantities  may  vary   from  time  to   time.  Due  to   the  need   for  goods   to  be   JIT,  without   buffers,   smaller   quantities,   than   in   the   traditional   way,   are   delivered   with   a   higher  frequency.  (Attwood  &  Attwood,  1992)  By  applying  JIT,  several  advantages  for  the  receiving  firm  can  be  identified.  These  are  e.g.  the  need  for  a  reduced  inventory  and  factory  space,  as  well  as  less  material  handling  and  quality  controls.  The  supplier  will   face  either  a  stable  production,  a  shift  of  inventory  costs  from  manufacturer  to  supplier,  or  a  production  that  is  flexible  to  demand.  Further,  JIT  requires  a  well  working  coordination  and  information  sharing  between  the  different  parties.   And   in   reality,   small   buffers   of   inventories   occur   to   cover   up   for   delays   and   volatile  demand,  although  in  smaller  quantities  than  without  JIT.  (Skjott-­‐Larsen  et  al.,  2007)              

Page 42: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

THEORETICAL  FRAMEWORK  

     30  

3.7.3   Vendor  Managed  Inventory  Vendor  managed  inventory  (VMI)  is  a  process  where  the  vendor  manages  and  take  responsibility  for   the   replenishment   of   a   customer’s   inventories   (Bjornland,   Persson   &   Virum,   2003;  Christopher,  2011;  Govindan,  2013).  Normally,  the  two  parties  have  decided  on  a  minimum  and  a  maximum  level  the  inventories  shall  be  kept  between.  To  do  so,  the  customer  shares  data  on  sales-­‐points   and   forecasts   with   the   vendor,   and   keeps   it   updated   with   upcoming   events.  (Govindan,  2013)  There  are  both  advantages  and  disadvantages  with  VMI,  both  for  vendors  and  for  customers.  Commonly,  a  great  advantage  is  a  reduction  of  inventories,  due  to  the  sharing  of  information,   which   enables   a   greater   logistics   control   over   shipments   and   inventory   for   the  vendor.  The  disadvantages  for  the  vendor,  comes  when  there  are  unstable  order  patterns  and  shipments  for  individual  stores  has  to  be  prepared.  VMI  is  most  beneficial  when  there  is  a  stable  demand   from   customers,   and   when   the   product   portfolio   is   of   limited   size.   There   has   been  criticism  of  VMI   from  retailers,   i.e.   the  customer,  about   the   lack  of   integration   into   their  own  processes.  The  supplier  makes  deliveries  based  on   the  difference  between   the  actual  and   the  maximum  stock  levels,  which  are  based  on  sales-­‐data,  and  they  plan  their  production  based  on  forecasts.  Data  regarding  point-­‐of-­‐sales  is  not  always  available  or  sometimes  hard  to  read,  which  cause  problems  when  the  retailer  needs  precise  deliveries  in  time  and  quantity,  due  to  the  holding  of  no  safety  stocks.  Another  criticism  is  the  lack  of  visibility  into  suppliers’  systems,  which  makes  it  hard  to  find  out  problems  that  might  occur.  (Skjott-­‐Larsen  et  al.,  2007)      3.7.4   Cross-­‐Docking  Cross-­‐docking  is  the  practice  for  products  arriving  at  a  distribution  center,  being  unloaded  and  then  reloaded  to  a  new  outgoing  destination,  without  being  stored.  Deliveries  are  incoming  with  goods,  with  different  target  destination,  from  multiple  suppliers  to  the  distribution  center  where  the  goods  are  consolidated  before  send  away  again.  (Bjornland  et  al.,  2003;  Gattorna,  1998)  The  goods  may  be  in  form  of  finished  goods  that  just  need  to  be  repacked,  or  of  different  parts  that  are  assembled  together  before  consolidated  to  fill  the  customer  order,  e.g.  parts  for  a  personal  computer.   It   is  quite  common  to  outsource  the  cross-­‐docking   function  to  a   third  part   logistics  firm,  which  coordinates  the  material  flow  and  makes  sure  that  the  incoming  deliveries  arrive  at  the  same  time.  By  coordinated  deliveries,  without  keeping  goods  on  stock,  both  time  and  money  can  be  saved.  (Fredholm,  2006)  The  prerequisites  for  cross-­‐docking  to  be  possible,  a  well  working  information  system  that  enables  all   involved  parties   to  communicate   is  needed,  as  well  as  an  advanced  IT-­‐support  for  the  planning.  The  suppliers  have  to  send  electronic  notifications  about  what  a   specific  delivery   consist  of   and  when   it  will   arrive.   Furthermore,  when   it   arrives,   each  package   has   a   bar-­‐code   that   tells   its   identity,   which   enables   it   being   connected   to   a   specific  customer  order.  (Fredholm,  2006)        3.8   Supply  Chain  Strategies  Customer   satisfaction   and   marketplace   understanding   are   vital   elements   when   developing   a  supply   chain   strategy,   since   the   destiny   of   supply   chains   is   ultimately   determined   in   the  marketplace   by   the   end   customers   (Mason-­‐Jones,  Naylor,  &   Towill,   2000).   To  meet   the   ever-­‐increasing  customer  demands  for  variation  and  fast  deliveries  at  the  same  time  as  keeping  costs  down,  companies  are  striving  for  groundbreaking  supply  chain  configurations  (Van  Hoek,  1998).  Postponement  and  speculation  strategies  provide  an  alternative  to  the  conventional  logistic  and  

Page 43: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

THEORETICAL  FRAMEWORK  

     31  

manufacturing  structure,  enabling  rapid  and  cost-­‐effective  deliveries.  Combining  the  concept  of  postponement  together  with  a  supply  chain  orientation  provides  opportunities  to  improve  the  performance  of  both  the  individual  company  as  well  as  the  entire  supply  chain.  (Pagh  &  Cooper,  1998)      Lean  is  a  well-­‐known  and  popular  strategy  for  companies  that  strive  for  improved  efficiency  and  more   recently,   the   concept   of   agile   has   been   introduced   as   an   alternative   to   lean  when   the  demand  is  volatile  or  even  as  a  further  step  after  leanness  (Mason-­‐Jones  et  al.,  2000).  This  is  seen  as  too  simplistic  a  view  since  the  need  for  leanness  and  agility  depend  upon  the  total  supply  chain  strategy  (Naylor,  Naim,  &  Berry,  1999).  The  use  of  customer  order  decoupling  points  makes   it  possible   for   supply   chains   to   exploit   the   benefits   of   both   lean   and   agile   strategies   (Towill   &  Christopher,  2002).  Olhager  (2012)  concludes  that  the  customer  order  decoupling  point  is  a  vital  aspect   when   developing   and  managing   value   chains.   The   above   presented   strategies   will   be  described  further  in  the  following  sections.      3.8.1   Postponement  and  Speculation  Logistics  and  manufacturing  operations  can  differentiate  goods  by  form,  place  and  time  which  might   generate   risk   and   uncertainty   costs   if   not   taken   into   consideration.   The   purpose   of  postponing   logistics  and  manufacturing  operations  until   customer  order  point   is   to   reduce,  or  fully  eliminate,  the  risk  and  uncertainty  of  those  operations.  (Pagh  &  Cooper,  1998)    Van  Hoek  (1998)  describes  three  different  types  of  postponement:  form,  place  and  time.  Form  postponement   is  a  manufacturing  postponement   implying  that  the  final  manufacturing  step   is  delayed  until  customer  orders  are  received,  enabling  mass-­‐customization  strategies  (Van  Hoek,  1998).   Delaying   the   customization   increases   the   responsiveness   to   changes   in   the   customer  demands.  Depending  on  where  the  customization  is  performed,  the  company  can  increase  the  flexibility  to  orders  or  reduce  the  tied  up  capital  in  stock.  (Lee,  Billington,  &  Carter,  1993)  Place  postponement   aims   at   having   a   limited   number   of   finished   goods   inventories   while   time  postponement   implies   delivery   to   order.   Both   place   and   time   postponements   are   logistics  postponements.  (Van  Hoek,  1998)    Speculation  on  the  other  hand,  implies  that  logistics  and  manufacturing  operations  are  based  on  inventory  forecasts  and  is  a  more  common  strategy  in  companies  compared  to  postponement.  The   purpose   of   speculation   is   to   reduce   costs   by   taking   advantage   of   full   logistics   and  manufacturing  economies  of  scale.  By  doing  so,  the  speculation  strategy  constrains  the  number  of  stock  outs.  (Pagh  &  Cooper,  1998)    3.8.2   Leanness  and  Agility  The  general  view  of  lean  has  developed  over  time,  from  being  applied  on  the  shop  floor  of  the  automotive  industry  to  be  spread  into  many  other  industry  sectors  (Hines,  Holweg,  &  Rich,  2004).  Naylor  et  al.   (1999)  define   leanness   in  a  supply  chain  context  as  a  value  stream  developed   to  eliminate  waste   in   all   forms   and   to   level   out   the  workload.   The   lean   approach   is   successfully  applicable  in  a  predicable  environment  where  the  requirement  for  variety  is  low  and  volume  is  high  (Christopher,  2000).  Mason  et  al.   (2000)  describes  how  different  supply  strategies  can  be  

Page 44: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

THEORETICAL  FRAMEWORK  

     32  

used  for  different  type  of  products  and  in  accordance  with  the  authors,  a  lean  supply  strategy  is  appropriate  for  products  with  long  life  cycles  and  stable  demand  where  the  price  is  the  market  winner.    Agility  is  another  concept  that  has  developed  over  time,  from  being  focused  on  manufacturing  flexibility  to  be  serving  a  wider  business  context  (Christopher,  2000).  Naylor  et  al.  (1999)  define  agility   in   a   supply   chain   context   as   the   ability   to   use   market   knowledge,   and   in   a   virtual  organization  to  take  advantage  of  revenue  opportunities  in  a  volatile  market.  In  contrast  to  the  lean  approach,   agility   is   appropriate  where   the  demand   is   volatile   and  unpredictable   and   the  requirement  for  variety  is  high  (Christopher,  2000).  Mason  et  al.  (2000)  argue  that  products  with  short  life  cycles  and  volatile  demand,  where  availability  is  the  market  winner,  should  be  handled  with  an  agile  supply  strategy.      Christopher  (2000)  describes  four  distinguishing  characteristics  that  a  supply  chain  has  to  acquire  in  order  to  become  agile:  market  sensitiveness,  virtuosity,  process  integration  and  network  based.  Market  sensitive  supply  chains  are  capable  of  interpret  and  respond  to  actual  customer  demand.  This   is   usually   not   the   case   since  most   organizations   have   inadequate   information   regarding  customer  demand  and  are  therefore  forced  to  keep  inventory  based  on  forecasts.  Virtual  supply  chains  imply  supply  chains  composed  of  information  rather  than  inventory.  The  extensive  use  of  information  technology  creates  virtual  supply  chains,  but  also  makes  it  easier  for  organizations  to  capture   and   respond   to   the   actual   customer   demand   and   thereby   increase   the   market  sensitiveness.  Electronic  Data  Interchange  (EDI)  have  together  with  the  internet  made  it  possible  for   all   partners   in   the   supply   chain   to   act   on   actual   customer   demand   instead   of   grounding  decisions  on  corrupted  data  that  has  been  distorted  on  its  way  through  the  supply  chain.  Shared  information   within   supply   chains   can   only   be   fully   exploited   by   integrating   the   supply   chain  partners’  processes.  Process  integration  indicates  cooperative  working  between  customers  and  suppliers,  e.g.  collaborative  product  development,  united  systems  and   information  sharing.  As  stated  earlier   in  Section  3.1,  businesses  no   longer  compete  at  an   individual   level  but  rather  as  partners  linked  together  as  supply  chains.  This  calls  for  network  based  companies,  which  is  the  fourth  ingredient  of  agility.  (Christopher,  2000)    3.8.3   The  Customer  Order  Decoupling  Point  The   customer   order   decoupling   point   (CODP)   is   the   point   where   customer   orders   affect   the  material   flow,   i.e.   the   point   in   the   material   flow   where   the   products   are   linked   to   specific  customer  orders.  This  is  where  the  forecast-­‐driven  and  order-­‐driven  operations  meet.  A  guideline  for  the  CODP  is  that  it  occurs  with  the  strategic  stock  that  supplies  the  customers.  (Mason-­‐Jones  et   al.,   2000)   Thus,   using   inventories   can   create   CODPs   in   the   supply   chain   and   facilitate   the  management  of  uncertain  demand  (Christopher  &  Peck,  2004).  The  location  of  the  CODP  relates  to   different   manufacturing   situations,   for   instance   Make-­‐To-­‐Stock   (MTS),   Assemble-­‐To-­‐Order  (ATO),  Make-­‐To-­‐Order   (MTO)  and  Engineer-­‐To-­‐Order   (ETO)   (Olhager,  2012),  as  can  be  seen   in  Figure  13.    

Page 45: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

THEORETICAL  FRAMEWORK  

     33  

 Figure  13.  The  CODP  in  relation  to  the  manufacturing  situation.    

Source:  Based  on  Sharman  (p.73,  1984)  

For  companies  where  there  is  only  one  manufacturing  situation,  e.g.  a  company  only  providing  MTS  products,  it  is  possible  to  apply  a  common  approach  for  the  whole  value  chain.  This  is  usually  not  the  case,  since  most  companies  tends  to  have  a  mix  of  MTO  and  MTS  products  and  therefore  needs   to   apply   different   approaches   for   different   parts   of   the   value   chain.   (Olhager,   2012)  Because  of  the  CODP,  a  hybrid  strategy  between  lean  and  agile   is  made  possible  for  the  value  chain,  also  known  as  the  leagile  strategy.  A  leagile  strategy  implies  a  lean  strategy  being  applied  for  the  upstream  flow,  from  the  CODP,  to  maximize  the  efficiency  through  standardization  and  economies  of  scale  while  applying  an  agile  strategy  for  the  downstream  flow  in  order  to  be  flexible  and  responsive  to  the  actual  customer  demand.  (Towill  &  Christopher,  2002)    3.9   Supply  Chain  Time  Compression  When  talking  about  supply  chain  reforms  the  focus  has  traditionally  been  on  cutting  costs,  while  successful  organizations  are  instead  examining  their  supply  chains  for  opportunities  to  improve  the  customer  service  and  satisfaction  (Bumstead,  1998).  According  to  Stalk  and  Webber  (1993),  lead   time   compression   has   become   a   major   order   winner   and   Bumstead   (1998)   writes   that  organizations  that  have  managed  to  compress  their  supply  chain  response  time  noticed  that  the  financial   paybacks   were   greater   than   the   investment.   If   being   able   to   deliver   according   to  customer  demand  and  still  compress  time,  both  cost  and  quality  problems  will  be  reduced  in  the  value-­‐delivery  process.  (Stalk  &  Hout,  1990)    When  analyzing  material  and  information  flows  with  purpose  to  accomplish  a  lead  time  reduction,  a  common  first  approach  is  to  divide  the  total  lead  time  into  value-­‐added  and  non-­‐value-­‐added  time.   Value-­‐added   time   refers   to   the   time   when   some   kind   of   activity   is   performed,   e.g.  transportation,  processing  of  material,  assemble,  placing  into  storage  or  feeding  a  computer  with  information.   The   non-­‐value-­‐adding   time   is   e.g.   the   time   goods   are   waiting   in   buffers  interconnected  to  a  machine  or  are  placed  in  storage.  It  can  also  be  in  form  of  a  customer  order  

Engineer Fabricate Assemble Deliver

Make4to4stock

Assemble4to4order

Make4to4order

Engineer4to4order

Forecast4driven

Order4drivenCustomer:order:decoupling:point

Page 46: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

THEORETICAL  FRAMEWORK  

     34  

waiting  to  be  handled.  It  is  mainly  the  non-­‐value-­‐adding  time  that  is  tried  to  be  shortened  when  reducing  lead  time.  (Oskarsson  et  al.,  2013)    Companies  are  generally  poor  at  using  time  efficiently  since  the  non-­‐value  adding  activities  take  up  most  of  the  time  (Stalk  &  Hout,  1990;  Stock  &  Lambert,  2001).  It  has  been  found  that  the  non-­‐value  adding  time  often  accounts  for  up  to  95  %  of  the  total  time  (Storhagen,  2003).  Both  lean  and  agile  strategies  call   for   time  compression,  since   leanness   implies  elimination  of  non-­‐value  adding   time   and   agility   indicates   responsiveness   (Naylor   et   al.,   1999).   A   survey   of   time  compression   literature   conducted   by   Towill   (1996)   shows   that   the   key   drivers   for   time  compression   are   improved   demand   forecast   accuracy,  more   rapid   defect   detection,   faster   to  market  and  displace  the  decoupling  point  towards  the  end  customer.  Lead  time  reduction  has  a  vital  role  in  determining  the  stability  of  the  supply  chain  and  is  seen  as  the  most  efficient  way  to  achieve  supply  chain  time  compression,  since  demand  forecasting  is  problematic.  (Towill  D.  R.,  1996)    3.9.1   Time  Based  Performance  Indicators  When  reducing  time  in  supply  chains,  two  main  performance  indicators  are  commonly  used.  The  first   is   lead   time,   already   mentioned   but   not   defined,   and   the   second   is   throughput   time.  (Oskarsson  et  al.,  2013)  Both  of  these  time  based  performance  indicators  will  be  presented  below.      Lead  time  is  the  time  it  takes  from  when  a  need  occurs,  i.e.  from  ordering,  until  the  need  is  fulfilled  and  the  order  delivered.  This  means  that  the  process  of  order-­‐to-­‐delivery  can  consist  of  several  other  order-­‐to-­‐delivery  processes.   In   other  words,   one   lead   time  may   consist   of   a   number  of  shorter  lead  times.  For  example,  the  total  lead  time  from  customer  order  to  delivery  in  a  supply  chain  consists  of  several  other  lead  times,  e.g.  the  picking  lead  time.  The  picking  lead  time  then  refers  to  the  time  it  takes  from  when  the  packing  station  sends  an  order  to  the  picking  station,  until   the  goods  have  been  picked  and  arrive  at   the  packing  station.   (Oskarsson  et  al.,  2013)  A  general  definition  of  lead  time,  formulated  by  Olhager  (p.28,  2013),  and  roughly  translated  from  Swedish  is  presented  below.    “Lead  time  is  the  time  from  when  the  need  of  one  activity  or  a  group  of  activities  occurs  until  the  

knowledge  of  that  the  activity  or  activities  are  completed.”    Throughput  time  is  the  time  it  takes  a  product  or  an  errand  to  pass  through  a  certain  part  of  the  flow.  A  throughput  time  may  consist  of  several  lead  times,  as  well  as  a  lead  time  may  consists  of  a  number  of  throughput  times.  It  can  be  measured  for  both  small  and  bigger  parts  of  a  flow,  e.g.  the  time  it  takes  a  product  to  pass  a  single  inventory  buffer,  or  the  time  it  takes  a  product  to  pass  the  whole  part  of  a  flow  that  is  handled  by  one  supplier.  (Oskarsson  et  al.,  2013)    An  essential  starting  point  when  reducing  lead  time  and  throughput  time  is  to  construct  a  supply  chain  map  that  highlights  the  time  consumed  by  processes  and  activities  as  well  as  the  time  when  materials  and  products  are  standing  still  (Christopher,  2011).  The  total  lead  time  in  a  supply  chain,  from  customer  demand  to  customer  satisfaction,  consists  of  two  key  components  that  is  crucial  for   supply   chain   time   compression.   These   components   are   the  material   flow,   i.e.   the  product  

Page 47: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

THEORETICAL  FRAMEWORK  

     35  

transfer  from  raw  materials  to  final  customer,  and  the  information  flow,  i.e.  the  order  information  transfer  from  point  of  sale  to  raw  material  supplier.  (Mason-­‐Jones  &  Towill,  1998)  The  following  section  will  describe  a  method  of  how  to  map  the  material  and  information  flow.    3.9.2   Current  State  Mapping  As  mentioned   in   the  previous  section,  a   starting  point  when  reducing   the   total   lead   time   in  a  supply  chain  is  to  map  the  current  flows  of  both  material  and  information.  This  is  for  instance  to  make  clear  how  many  activities  and  processes,  locations  for  inventory  etc.  the  flows  consist  of,  what  flow  paths  there  are  and  what  members  that  are  involved.  The  mapping  can  be  done  in  a  numerous  of  different  ways,  but  often  is  a  quite  simple  method  that  gives  an  overall  picture  of  the  flow  enough  to  start  with.  This  is  due  to  that  a  very  detailed  mapping  may  consume  a  lot  of  time  and  will  probably  include  unnecessary  parts  that  do  not  need  improvements.  (Oskarsson  et  al.,  2013)    The   purpose   of   the   first   map   should   be   to   give   an   overall   picture   and   measure   relevant  performance  indicators  of  processes  in  different  parts  of  the  flows.  By  doing  so,  the  parts  in  the  flows  where  most  time  is  consumed  can  be  identified  and  later  studied  in  more  detail  to  identify  what   consumes   the   time   within   them.   (Oskarsson   et   al.,   2013)   This   identification   of   time  consumption  in  a  supply  chain  is  also  in  line  with  the  classification,  suggested  by  Goldratt  (1990),  into  bottlenecks  and  non-­‐bottlenecks.  A  bottleneck  is  defined  as  the  slowest  activity  in  a  chain  and  should  be  in  focus  when  trying  to  achieve  the  lead  time  reduction  (Christopher,  2011).  This  identification  and   classification   is   to  be  able   to   focus  on   the  parts   that  need   improvement   to  accomplish  a   lead  time  reduction   that  makes  change   for   the  whole  supply  chain  performance  (Oskarsson  et  al.,  2013).      After   the  previous  step,   the  map  needs  to  be  redesigned  and  the  time  consuming  parts  more  detailed  described  (Oskarsson  et  al.,  2013).  Due  to  that  customer  requirements  often  is  the  factor  in  focus,  the  mapping  preferably  starts  from  the  shipping-­‐to-­‐customer  end  so  their  needs  are  in  mind  while  moving  upstream  in  the  mapping  process.  The  mapping  is  preferably  done  in  a  few  rounds,  where  the  material  flow  is  mapped  in  the  first,  the  information  flow  in  the  second  and  finally  some  performance  checks  are  done.  The  performance  checks  are  mainly  about  to  identify  bottlenecks   and   identify   how  much  of   the   lead   time   that   is   value-­‐added,   to   give   a   picture   of  potential  improvements.  (Erlach  &  Sheehan,  2016)    When  doing  the  mapping  and  when  trying  to  seek  the  reason  for  time  consumption,  Oskarsson  et  al.  (2013)  mean  that  it  is  important  to  talk  with  different  people  working  with  the  processes,  though  they  may  have  knowledge  and  ideas  about  the  causes.  Different  people  may  also  have  different  perspectives  of  it.  Oskarsson  et  al.  (2013)  further  points  at  the  use  of  literature,  that  can  be  very  useful,  when  seeking  for  more  general  causes  and  alternative  solutions  to  the  identified  time  consuming  parts.  The  authors  also  mention  that  the  alternative  solutions  can  be  generated  based  on  previous  experience  in  the  field  or  by  taking  inspiration  from  others.  Erlach  and  Sheehan  (2016)  argue  that  having  access  to  data  about  all  processes  in  the  flows  is  important,  which  often  is  substantiated  by  interviews,  measures  and  calculations.  Liker  and  Meier  (2006)  points  at  the  importance,  when  evaluating  the  processes  during  the  current  state  mapping,  to  keep  in  mind  

Page 48: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

THEORETICAL  FRAMEWORK  

     36  

that  a  future  state  later  will  be  created.  It  is  also  important  to  have  in  mind  what  the  goal  with  the  mapping  is  and  what  is  trying  to  be  achieved  (Liker  &  Meier,  2006).      3.9.3   Lead  Time  Analysis  A  lead  time  analysis  means  to  analyze  material  and  information  flows  in  a  structured  way  with  purpose   to   compress   time.   This   approach   is   based   on   a   current   state  map,   described   in   the  previous  section,  and  focuses  to  find  alternative  solutions,  which  are  highly  dependent  on  the  specific  situation.  (Oskarsson  et  al.,  2013)    There   are   several   different   actions   to   accomplish   lead   time   reductions   in   value   streams   and  processes.  Oskarsson  et  al.  (2013)  highlights  a  selection  of  these,  which  are  described  in  Table  2.  Actions  1-­‐5  are  meant  to  be  performed  in  chronological  order  and  the  subsequent  actions  are  more  general.    

Table  2.  Actions  for  lead  time  reduction.  Source:  Oskarsson  et  al.  (2013)  

Order   Action   Example  1   Eliminate  

Remove  non-­‐value  adding  activities  Eliminate  duplication  of  work  

2   Simplify  Make  activities  less  complex  

Improve  user  interfaces  for  computer  applications.  

3   Integrate  Merge  activities  that  do  not  add  value  by  being  performed  individually  

Perform  mount  and  quality  control  at  the  same  workstation  

4   Parallelize  Perform  independent  processes  in  parallel  and  not  sequentially  

Paint  the  outside  of  an  airplane  at  the  same  time  as  the  inside  of  the  plane  is  being  furnished  

5   Synchronize  Coordinate  the  flow  so  that  the  non-­‐value  adding  time  between  two  activities  can  be  eliminated  or  at  least  reduced.    

Synchronize  the  incoming  deliveries  of  components  so  that  the  final  assembly  can  start  immediately  without  having  to  wait  for  parts.  

-­‐   Prepare  Prepare  all  the  necessary  materials  in  advance  in  order  for  the  flow  not  to  be  slowed  down  

Bring  out  all  the  necessary  tools  before  the  products  arrive  at  the  workstation.  

-­‐   Communicate  Improve  the  efficiency  of  the  communication  

Use  more  rapid,  safe  and  correct  or  more  useful  information.  

       

Page 49: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

THEORETICAL  FRAMEWORK  

     37  

When  performing  a  lead  time  analysis,  it  is  desirable  to  find  as  many  general  principles  as  possible  to  choose  from  and  then  apply  them  to  the  specific  situation  (Oskarsson  et  al.,  2013).  Mason-­‐Jones  and  Towill  (1998)  refer  to  Evans,  Towill  and  Naim  (1995)  when  describing  the  more  practical  ways   to   achieve   lead   time   reductions   presented   in   Table   3.   The   latter   authors   stress   the  importance   of   information   management   and   add   the   Electronic   Point   of   Sales   (EPoC)   as   a  technique  to  the  original  table.    

Table  3.  Practical  ways  for  lead  time  reduction.  Source:  Mason-­‐Jones  and  Towill  (1998)  based  on  Evans,  Towill  and  Naim  (1996)  

Strategy   Technique   Example  Industrial  engineering  improvements  

Set  up  reduction    Handling  methods    Product  design  

Single  minute  exchange  of  dies  Container  design  and  conveyor  use  Design  for  manufacture  

Production  engineering  improvements  

Integrate  processes  Sequence  processes    

Combine  two  into  one  Re-­‐sequence  to  postpone  variety  

Operations  engineering  improvements  

Kanban    JIT  supplies    Shared  call  off  data    

Product  control  via  actual  orders  Greater  frequency  and  smaller  quantities  Improved  service  levels  via  lower  forecast  errors  

Information  technology   Quicker  and  more  accurate  data  capture  EDI    EPoC  

Barcoding  on  order  paper  work,  materials  packaging  Orders,  funds,  transferred  instantly  Marketplace  demand  data  transferred  instantly  through  the  supply  chain  

 Mason-­‐Jones  and  Towill  (1998)  conclude  that  in  order  for  supply  chains  to  achieve  the  main  gains  of  lead  time  reduction,  the  members  of  the  supply  chain  have  to  be  able  to  provide  undistorted  order   information   rapidly.   The   consequences   will   be   better   customer   service,   reduced   total  inventory  level  and  reduced  risk  of  product  obsolescence.  (Mason-­‐Jones  &  Towill,  1998)          

Page 50: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

THEORETICAL  FRAMEWORK  

     38  

3.10   Supply  Chain  Transparency  Successful   companies   have   proven   to   be   those   that   are   good   at   generating,   sharing   and   use  information   in   their   daily   work,   and   companies   that   desire   to   compress   time   have   to   be  remarkably  good  at  it  (Stalk  &  Hout,  1990).  The  way  information  between  actors  in  a  supply  chain  is   transferred  has  historically   changed   from  physical   transfers  of  documents  accompanied   the  actual  movement  of  the  goods,  to  today’s  more  information  and  communication  technology  (ICT)  intensive  solutions.  Information  can  be  sent  separately  from  shipments  which  in  a  greater  extent  allows  for  necessary  preplanning  and  various  kinds  of  adjustments.  However,  at  the  same  time  as  the  technology  moves  forward,  the  supply  chains  become  more  and  more  complex  and  include  more  parties,  which  set  higher  demands  on  a  well  working  end-­‐to-­‐end  transparency  throughout  the  chain.  Companies  have  here  faced  problems,  generally  because  of  a  lack  in  the  integration  all  the  way  throughout  the  supply  chain.  One  contributing  factor  is  the  use  of  different  systems  for  communication  and  sharing  of  information,  where  one  company  and  their  first-­‐tier  suppliers  may  use  the  same  system  but  suppliers  to  their  suppliers  may  rely  on  other  systems.  (Steinfield,  Lynne,  &  Wigand,  2011)  To  be  able  to  take  the  discussion  of  these  problems  further,  a  description  of  information  systems  takes  place  in  the  following  section.    3.10.1   Information  Systems  Supply  chain  management  includes  more  than  transferring  of  goods  and  as  mentioned  before,  managing  the  flows  of  information  becomes  more  and  more  important.  Parties  in  the  network  of  organizations  connected  to  a  certain  product  flow  might  not  be  directly  involved  in  the  physical  flow,  but  in  the  information  flow.  The  role  of  information  systems  is  to  act  as  a  spider  in  the  net,  for  the  information  flow  between  parties  in  the  supply  chain.  (Skjott-­‐Larsen  et  al.,  2007)  One  can  distinguish  between  two  different  dimensions  of  information  systems:  intra-­‐firm  and  inter-­‐firm.  Easily  described,  intra-­‐firm  refers  to  a  network  that  allows  sharing  of  information  within  a  single  organization.  The  inter-­‐firm  dimension  in  turn,  integrates  an  organization  with  its  suppliers  and  customers  into  a  unified  system  that  can  respond  to  orders,  changes  on  the  market,  in  demand  and  in  direction  of  the  corporate.  (Christopher,  2011;  Skjott-­‐Larsen  et  al.,  2007)    An  information  system  consists  of  three  major  interrelated  components:  hardware,  connecting  links  and  software.  The  hardware  is   in  form  of  computer  power,  connecting  links  refers  to  the  organizing  system,  and  software  refers  to  communication  within  it.  A  well-­‐known  software,  and  the   first   to  manage   information   in   supply   chains   is   the   Enterprise   Resource   Planning   (ERP)   -­‐system.   ERP-­‐systems   only   reach   within   the   boundaries   of   a   single   firm,   where   they   manage  transactions  of  material,  human  and  financial  resources,  and  trying  to  match  the  workflow  in  the  organization.   Examples   of   elements   that   an   ERP-­‐system   handles   are   accounting,   inventory,  human  resources,  financial  payments  and  order  processing.  As  mentioned  earlier,  the  system  is  not  capable  of  managing  the  rest  of  the  supply  chain  outside  the  firm  and  is  therefore  not  dealing  well  with  logistics  alone.  (Skjott-­‐Larsen  et  al.,  2007)          

Page 51: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

THEORETICAL  FRAMEWORK  

     39  

Different   types   of   information   systems   are   those   consisting   of   software   for   supply   chain  management,  e.g.  supply  chain  planning,  supply  chain  execution  and  supply  chain  coordination  systems.   These   systems   give   a  more   holistic   view   of   an   organization   than   ERP   does,   and   the  purpose   is   to   create   one   transaction   system   that   coordinates   a   company   with   suppliers   and  customers.  (Skjott-­‐Larsen  et  al.,  2007)    There   are   several   ways   organizations   can   communicate   and   send   information   to   each   other.  Depending  on  the  size  of  the  organization,  its  information  network  and  its  technological  limits,  different  alternatives  can  be  used.  These  can  be  in  format  of  not  so  technology  intensive  methods  e.g.   e-­‐mail,   text  messages,   or   simply   information   sharing   through  websites.  However,  what   is  maybe   most   commonly   occurring   is   EDI,   or   Electronic   Data   Interchange.   That   is   a   way   that  different  ERP-­‐systems  share  standardized  electronic   transactions  with  each  other.  More  easily  described,  a  standardized  way  of   file  transferring  that   is  done  by  computers  without  a  human  acting  as  an  intermediary.  Types  of  information  that  can  be  transferred  with  EDI  are  e.g.  purchase  orders,  inventory  documents,  shipping  status  documents,  payment  documents  etc.  The  benefit  of   EDI   is   the   potential   of   making   administrative   routines   more   effective,   by   the   fact   that  transactions  automatic  is  created  and  received.  This  results  in  the  possibility  of  decreasing  both  lead  times  and  administrative  time,  at  the  same  time  as  the  number  of  errors  being  minimized.  A  problem  with  EDI   though,   is   that   there  are  several  different   types  and  variations  of  standards  being  used.  When  two  organizations  doing  business  with  each  other,  they  preferably  agree  on  what  standards  to  use  when  sharing  information.  If  organizations  use  different  standards,  which  is  commonly  occurring  in  large  supply  chains,  there  is  a  solution  in  form  of  a  type  of  software  that  act   as   a   converter   between   different   formats   of   EDI   standards.   This   enables   parties   to  communicate  with  different  standards.  (Fredholm,  2006)    3.10.2   The  Bullwhip  Effect  When  organizations,  connected  to  each  other,  use  different  types  of   information  systems  and  standards,  delays  and  sometimes  errors  occur  due  to  the  need  for  information  to  be  rekeyed  as  the  information  is  passed  sequentially  from  point  to  point.  As  mentioned  in  Section  3.10,  there  may  be  a  lack  of  data  and  process  standards  between  supply  chain  members,  contributing  to  the  possibility   for   misunderstandings   when   supply   chains   are   interconnected   and   extended.  (Steinfield  et  al.,  2011)  To  minimize  these  barriers  of  information  problems,  there  is  a  need  for  a  great   transparency   throughout   the   supply   chains   (Egels-­‐Zandén,   Hulthén,   &   Wulff,   2014).  MacLean  &  Rebernak  (2007)  states  that  “there  is  no  better  way  to  build  trust  among  stakeholders  than   through   transparency”   but   according   to   Doorey   (2011),   corporate  managers   have   been  doubtful  to  strive  for  fully  transparent  supply  chains  because  they  claim  that  some  information  about  factories  etc.  is  of  great  value  to  not  share  with  others.      A   well-­‐known   information   problem   resulting   from   insufficient   transparency   or   visibility   in  coordination   of   supply   chains   is   the   “bullwhip   effect”   (Skjott-­‐Larsen   et   al.,   2007)   referring   to  (Forrester,  1961).  This  phenomenon  is  connected  to  forecast  errors  in  demand  that  occur  among  supply   chain   participants   when   the   information   flow   upstream   is   distorted   and   leads   to  fluctuations  in  demand  downstream,  which  in  turn  will  lead  to  larger  fluctuations  of  the  ordering  upstream.  This  contributes  to  large  build-­‐ups  of  inventory  which  may  generate  great  losses.  (Ma,  

Page 52: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

THEORETICAL  FRAMEWORK  

     40  

Wang,   Che,   Huang,   &   Xu,   2013)   The   bullwhip   effect   is   often   an   effect   from   long   lead   times  (Steinfield  et  al.,   2011),   in   combination  with  a   lack  of   transparency,  when  companies  have   to  forecast  and  communicate  future  demand  to  their  suppliers  who  in  turn  have  to  do  the  same  to  their  suppliers  (Ma  et  al.,  2013).                      

Page 53: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Specification  of  Task  

     41  

 

4   Specification  of  Task  

The  specification  of  the  task  means  to  clarify  the  purpose  of  the  study,  define  the  studied  system  and  describe  the  necessary  delimitations.  The  purpose  is  decomposed  into  key  questions,  which  are   further   divided   into   sub   questions   that   are   explained   to   later   be   answered.   The   question  formulation  will  be  fundamental  for  the  forthcoming  parts  of  the  report.    

   

Page 54: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Specification  of  Task  

     42  

4.1   Clarification  of  Purpose  As  described  in  the  introductory  chapter,  Ericsson  has  recently  experienced  problems  in  meeting  the   customer   demand.   As   the   competitiveness   on   the   market   increases,   it   becomes   more  important  for  Ericsson  to  be  able  to  offer  a  high  service  level  toward  their  customers.  In  order  to  reiterate  the  purpose  of  the  study  for  the  reader,  it  is  presented  once  again  below.      

“Give  recommendations  for  improvements  that  reduces  the  total  lead  time  in  a  supply  chain  perspective  in  order  to  improve  the  customer  service  level.”  

 For  this  purpose,  a  specific  customer  is  selected,  namely  Algeria  Telecom  Mobile.  Oskarsson  et  al.  (2013)  describes  in  Section  3.3  that  customer  service  is  a  wide  concept  and  that  lead  time  is  a  service  element  that  underlies  the  service  level  in  direct  relation  to  the  deliveries.  Therefore,  a  more  precise  definition  of  the  service  level  affected  by  the  lead  time  is  delivery  service.  The  lead  time  can  also  be  specified  further  as  the  customer  lead  time  since  it  refers  to  the  time  between  customer  order  to  delivery,   i.e.  the  lead  time  experienced  by  the  customer.  Thus,  the  clarified  purpose  is  to  reduce  the  customer  lead  time  in  a  supply  chain  perspective  in  order  to  improve  the  delivery  service  level.  The  purpose  entails  that  the  lead  time  is  supposed  to  be  reduced  in  a  supply  chain  perspective,  which  will  be  described  in  more  detail  in  the  upcoming  section.    4.2   The  Studied  System  The  scientific  approach  applied  to  this  study  is  the  system  approach,  meaning  that  parts  of  the  whole  reality  is  studied  as  a  system,  see  Section  1.6.  The  purpose  of  the  study  states  that  the  total  lead   time  will  be   reduced   in  a   supply  chain  perspective  and   the  studied  system  will   therefore  consist  of  the  central  parts  that  composes  the  studied  supply  chain  and  their  relations.  The  overall  system   presented   in   the   business   introduction   chapter   is   a   simplified   picture   of   the   complex  reality  that  needs  further  delimitations  to  be  able  to  study.  For  example,  the  customer  ATM  can  have   a   large   amount  of   project   sites   and   if   these   are   taken   into   consideration,   the   study  will  become  excessive   considering   the   limited   time   frame  of   the   study.   Furthermore,   the   first-­‐tier  suppliers  are  of  a  large  amount  and  to  include  their  suppliers  would  make  the  study  unreasonably  extensive,  with  the  same  reasoning  as  for  the  project  sites.  To  avoid  the  study  from  becoming  too  extensive,  the  external  perspective  described  by  Jonsson  and  Mattsson  (2011)  has  been  applied  to  this  study,  meaning  that  the  direct  suppliers  and  the  direct  customer  have  been  included  in  the  studied  system  together  with  Ericsson.  The  project  sites  and  the  second-­‐tier  suppliers  are  instead  a  part  of  the  surrounding  system  that  may  be  have  an  impact  or  be  affected  by  the  studied  system.      As  stated  by  Mentzer  (2001)  in  Section  3.1,  a  supply  chain  includes  a  set  of  three  or  more  entities  directly  involved  in  the  flow  of  products,  services,  finances  and  information  from  a  source  to  a  customer.  In  this  project,  the  system  being  studied  includes  the  first-­‐tier  suppliers,  Ericsson,  ATM  and  the  3PL-­‐providers,  and  is  visualized  in  Figure  14  below.  Since  no  current  state  mapping  has  been  done  in  this  phase  of  the  project,  the  members  are  not  specified  further.  The  studied  system  will  consist  of  the  flows  of  information  and  material  between  the  members.  The  solid  lines  in  the  figure   refer   to  material   flow  and   is   the  physical   flow  of  goods.  The  dashed   lines   illustrate   the  information  flow  in  terms  of  orders  and  information  exchange.  The  financial  flows  will  only  be  examined  if  it  affects  the  lead  time  perceived  by  ATM.    

Page 55: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Specification  of  Task  

     43  

 

 Figure  14.  The  studied  system.  

The  supply  chain  network  for  Ericsson  can  have  a  great  complexity  and  be  arranged  in  different  ways  and  with  different  members.  By  only  studying  the  direct  suppliers  and  the  customer  ATM,  the  complexity  is  reduced  significantly  but  still  needs  some  further  delimitations.  As  can  be  read  in  the  business  introduction  chapter,  the  radio  market  consists  of  products  that  are  constantly  being  introduced  and  later  phased  out.  These  flows  of  products  that  are  introduced  and  phased  out  requires  special  handling  and  are  for  this  study  disregarded.  Moreover,  no  effort  is  taken  in  investigate  the  reverse  logistics  in  the  supply  chain  and  therefore  are  potential  return  flows  of  goods   not   considered.   As   stated   in   the   business   introduction,   3PL-­‐providers   refers   to   e.g.  transportation  firms.  The  study  will  consider  how  transportation  is  managed  between  different  members  in  order  to  provide  lead  times,  but  it  will  not  examine  whether  existing  transportation  modes  are  the  most  appropriate  or  put  effort  in  suggesting  new  transportation  routes.  Further,  the   cost   for   implementing   the   solutions   and   the   potential   savings   that   comes  with   them   are  disregarded  in  the  study.  Finally,  the  studied  system  will  only  include  the  material  and  information  flows  until  the  responsibility  of  the  goods  is  transferred  to  ATM,  and  thereby  not  include  any  local  material  handling  by  the  customer.    4.3   Specification  of  Purpose  Björklund  and  Paulsson  (2014)  suggest  to  specify  the  purpose  with  objectives,  in  order  to  make  it  easier  to  assess  at  the  end  of  the  study  whether  or  not  it  has  been  reached.  The  purpose  of  this  study  is  to  give  recommendations  for  improvements  that  reduce  the  total  lead  time  in  a  supply  chain  perspective  in  order  to  improve  the  service  level.  A  vital  starting  point  for  doing  so,  as  stated  in  Section  3.9.2  by  Christopher  (2011),  is  to  construct  a  map  that  describes  the  current  state  and  how  the  lead  time  is  distributed.  Liker  and  Meier  (2006)  argue  in  a  similar  way,  that  the  current  state  should  be  the  starting  point  for  establishing  effective  value  chains.  This  is  further  supported  by  Oskarsson  et  al.  (2013)  which  stress  the  importance  of  having  sufficient  knowledge  about  the  

Second'tiersuppliers

First'tiersuppliers Ericsson ATM Project6 sites

3PL'providers

Information*flowMaterial*flow

The*studied*system

Page 56: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Specification  of  Task  

     44  

current  state  for  successful  improvements.  The  first  objective  will  therefore  be  to  create  a  current  state  map  of  the  supply  chain.    Once  the  current  state  is  mapped,  the  parts  of  the  material  and  information  flows  where  most  of  the   time   is   consumed   can   be   identified   and   later   studied   in   more   detail   to   determine   what  consumes   time   within   them,   in   accordance   with   Oskarsson   et   al.   (2013).   Thus,   the   second  objective  of  the  study  is  to  identify  areas  with  potential  for  time  reduction.  When  knowing  where  to  target  the  efforts,  knowledge  about  the  critical  areas  can  be  gathered  in  order  to  utilize  the  full  potential   for   improvements.   Oskarsson   (2013)   means   that   using   literature   when   seeking   for  causes  to  the  identified  time  consuming  parts  can  be  very  useful.  As  described  in  the  introductory  chapter,   it   is  an  academic  requirement  to  demonstrate  awareness  of  existing  theories,  models  and  data  within  the  studied  area  to  avoid  spending  time  on  unnecessary  duplication  of  efforts.  Therefore,   the  generation  of  alternative  solutions   is  assumed  to  be  most  efficient   if  based  on  existing   literature  within   the   target  areas.  Consequently,   the   third  objective  of   the  study   is   to  generate  solutions  for  the  potentials  by  conducting  an  additional  literature  review  and  adapting  the  general  solutions  to  the  studied  supply  chain.  In  order  to  fulfill  the  purpose  of  the  study,  the  final  objective   is  to  evaluate  the  generated  solutions  and  give  recommendations  based  on  the  lead  time   in  a  supply  chain  perspective.   It   is  also  desirable  to  determine  the  requirements   for  implementation.  The  four  objectives  can  be  summarized  and  listed  as  the  following  steps.    

1.   Create  a  current  state  map    2.   Identify  areas  with  potential  for  lead  time  reduction  3.   Generate  alternative  solutions  4.   Evaluate  the  solutions,  give  recommendations  and  determine  requirements  for  

implementation      To  confirm  the  objectives  as  appropriate  and  to  specify  the  purpose  further,  the  objectives  are  concretized  and  supported  by  existing  frameworks  for  analyzing  supply  chains.  Oskarsson  et  al.  (2013),  Stock  and  Lambert  (2001)  and  Taylor  (1997)  describe  three  frameworks  consisting  of  key  steps   that   can   be   used   to   approach  most   logistics   case   studies,   see   Section   3.5.   The   overall  approaches  are  similar  and  the  main  difference  is  how  the  approaches  are  divided  into  key  steps.  Therefore,  the  choice  of  framework  is  based  on  its  applicability  to  the  objectives  of  this  study  and  its  supportiveness.  In  this  case,  the  approach  presented  by  Taylor  (1997)  is  used  to  concretize  the  objectives   further   since   it   is   the   framework   described   in   most   detail   and   thereby   the   most  supportive   approach.   Additionally,   the   approach   of   Taylor   (1997)   is   selected   since   it   can   be  modified  to  fit  the  objectives  of  this  study  without  losing  the  intention  of  the  original  framework.    Thus,   the   framework   described   by   Taylor   (1997)   is   applied   to   this   study   and   needs   a   minor  modification  in  order  to  fit  the  objectives.  The  first  and  second  objective  of  this  study,  creating  a  current  state  map  and  identifying  areas  with  potential  for  lead  time  reduction,  are  comparable  to  the  first  two  steps  of  the  framework,  analysis  of  the  current  situation  and  identification  of  major  issues   and   problems,   except   that   the   objectives   are   specified   for   lead   time   reductions.  Considering  that  the  original  framework  described  by  Taylor  (1997)  is  of  a  general  nature,  it  is  not  necessary  to  adapt  the  first  two  steps  to  fit  this  study.  The  third  step  described  by  Taylor  (1997)  

Page 57: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Specification  of  Task  

     45  

is  about  generating  and  evaluating  solutions,  which  can  be  likened  with  the  third  objective  of  this  study  except   that   the  generated  solutions  are  adapted   to   the  specific   situation  and  evaluated  individually.   The   final   evaluation   takes   place   in   the   fourth   objective,   where   the   generated  solutions  are  evaluated  together  and  the  recommended  solution  is  described  in  accordance  with  the  fourth  step  of  Taylor  (1997).  Moreover,  the  fifth  step  in  the  framework  of  Taylor  (1997)   is  requirements  for  implementation  and  is  for  this  study  included  in  the  fourth  objective,  together  with  the  final  evaluation  and  recommendation.  The  four  steps  and  objectives  of  this  study  are  illustrated  in  Figure  15.      

 Figure  15.  The  four  objectives  of  the  study.    

Source:  Based  on  Taylor  (p.4,  1997)  

     

Step%1%(Objective 1)Current' statemapping

Step%2%(Objective 2)Identification'of'

potentials'for'lead time'reduction

Step%3%(Objective 3)Generation'of alternative'

solutions

Step%4%(Objective 4)Recommended solutions'and'requirements for'implementation

Page 58: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Specification  of  Task  

     46  

4.4   Question  Formulation  In  order  to  achieve  the  purpose  of  this  study,  questions  have  been  developed  based  on  the  four  objectives  and  are  successively  presented  in  this  section.  The  aim  of  the  questions  is  to  provide  answers  that  will  fulfill  the  objectives  or  more  precisely  to  give  a  holistic  view  of  the  studied  supply  chain,  identify  problems  and  possible  actions,  determine  how  the  lead  time  can  be  reduced  with  these  actions  and  the  requirements  for  these  improvements.      4.4.1   Current  State  Mapping  The  first  objective  of  this  study  is  to  construct  a  map  of  the  current  state  and  describe  how  lead  time  is  distributed  within  the  supply  chain.  According  to  Mason-­‐Jones  and  Towill  (1998),  lead  time  is  primarily  constructed  of  material  and  information  flows.  Erlach  and  Sheehan  (2016)  argue  that  the  current  state  mapping  starts  with  mapping  the  material  flow,  thereafter  the  information  flow  and  finally  the  performance  indicators.  Considering  this,  it  is  vital  for  the  current  state  mapping  to  start  by  identifying  the  material  flow,  the  information  flow  and  determining  how  the  total  lead  time  is  distributed  in  the  studied  supply  chain.  The  following  key  question  is  formulated  based  on  the  above  reasoning.    

Q1.  How  does  material  and  information  flow  in  the  supply  chain?    Supply   chain  performance   is  partly  determined  by   its   structure,   considering   the   statement  by  Christopher  (2011)  in  Section  3.4  that  a  long  horizontal  structure  of  the  supply  chain  will  imply  a  less  responsive  system.  This  is  further  supported  by  Lambert  and  Cooper  (2000),  which  describe  the   horizontal   structure,   vertical   structure   and   horizontal   location   of   the   focal   company   as  significant  dimensions  to  take  into  consideration  when  describing,  analyzing  and  managing  supply  chains.  Oskarsson  et  al.  (2013)  mentions  in  Section  3.9.2  that  members  of  the  supply  chain  needs  to  be  identified  when  creating  a  current  state  map.  Thus,  in  order  to  create  a  current  state  map  of  the  studied  supply  chain,  the  following  question  is  asked.    

1.1  Who  are  the  supply  chain  members  and  how  are  they  structured?    Porter  (1985)  describes  in  Section  3.1  that  the  future  of  companies  are  highly  dependent  on  how  well   their  activities  are  being  performed,   i.e.  how  well   their   value  chains  are   functioning.  The  same  principle  can  according  to  Skjott-­‐Larsen  (2007)  be  applied  in  a  broader  context  to  whole  supply  chains,  which  are  composed  of   several  value  chains  being  connected.  As  mentioned   in  Section  3.9.2  by  Oskarsson  et  al.  (2013),  the  number  of  activities  and  processes  in  the  supply  chain  needs  to  be  clarified  when  creating  a  current  state  map.  To  identify  what  activities  and  processes  that   are   being   performed   in   the   supply   chain   and   get   an   impression   of   the   value   chain,   the  following  question  seeks  to  be  answered.    

1.2  What  activities  and  processes  can  be  identified  and  where  are  they  performed?        

Page 59: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Specification  of  Task  

     47  

In  accordance  with  Oskarsson  et  al.  (2013)  in  Section  3.1,  the  choice  of  distribution  method  is  a  factor  determining   the   length  of   the   logistic   pipeline.   Picard   (1983)  mentions   that  one  of   the  greatest  challenges   for  companies   is   to  manage   the  distribution  of  goods,  while  assuring  high  customer   service   level   and   physical   distribution   costs   low.   There   are   several  ways   of   how   to  distribute  materials  in  a  supply  chain  depending  on  the  specific  situation,  some  of  them  described  in   Section   3.6.   The   following   question   is   formulated   to   give   information   of   what   distribution  methods  that  are  applied  in  the  studied  supply  chain  and  where.    

1.3  What  distribution  methods  are  applied  and  where?    As  mentioned  in  Section  3.9.2  by  Oskarsson  et  al.  (2013),  the  number  of  inventory  locations  in  the  supply  chain  needs   to  be   identified  when  creating  a  current  state  map.  Having   inventories  on  stock  is  in  practice  of  the  same  purpose  as  of  distribution;  reduce  costs  and  improve  service  level  (Attwood  &  Attwood,  1992).  The  choice  of  inventory  handling  is  a  factor  that  affects  the  logistic  pipeline  and  is  dependent  on  the  specific  situation  (Oskarsson  et  al.,  2013).  Because  of  this,  the  following  question  is  going  to  give  information  of  how  and  where  inventories  are  handled  in  the  studied  supply  chain.      

1.4  What  inventory  practices  are  applied  and  where?    Stalk  and  Hout  (1990)  argue  that  companies  striving  for  lead  time  reductions  have  to  be  good  at  generating,  sharing  and  use  information  in  their  daily  work.  In  today’s  generally  complex  supply  chain   structures   there   is   a   need   for   a   high   transparency   throughout   the   chain,  which   can   be  accomplished   by   a   high   degree   of   integration.   (Steinfield   et   al.,   2011)   One   way   to   manage  integration  is  the  use  of  similar  systems  for  information  sharing  (Skjott-­‐Larsen  et  al.,  2007)  and  standards   for   communication   between   supply   chain  members   (Fredholm,   2006).   Information  systems  can  be  at  both  intra-­‐firm  and  inter-­‐firm  level,  where  the  first  refers  to  information  sharing  between  members  in  a  single  firm  and  the  latter  allows  an  organization  to  be  integrated  with  its  suppliers  and  customers.  (Skjott-­‐Larsen  et  al.,  2007)  Oskarsson  et  al.  (2013)  further  points  at  the  importance  of  a  well  working  information  flow,  and  to  be  able  to  understand  how  information  is  managed  in  the  studied  supply  chain,  the  following  question  seeks  to  be  answered.    

1.5  How  is  information  managed?    When  creating  a  current  state  map  in  order  to  accomplish  a  total  lead  time  reduction  in  a  supply  chain,  two  main  performance  indicators  are  commonly  used  (Oskarsson  et  al.,  2013).  These  are  lead  time  and  throughput  time,  which  are  defined  in  Section  3.9.1.  To  be  able  to  shorten  these  times,  one  must  identify  where  time  is  consumed  in  the  supply  chain.  This  is   in  line  with  what  Christopher  (2011)  stated  in  Section  3.9.1,  that  the  current  state  map  is  for  highlighting  in  what  activities   and   processes   time   is   consumed   and   distributed.   Oskarsson   et   al.   (2013)   further  describes  in  Section  3.9.2  that  the  first  mapping  is  to  give  an  overall  picture  and  measure  relevant  performance  indicators  of  processes  in  different  parts  of  the  flow.  By  doing  so,  the  parts  in  the  flows  where  most  time  is  consumed  can  be  identified  and  later  studied  in  more  detail  to  identify  what  consumes  time  within  them.  In  order  to  not  complicate  things  for  the  reader  and  to  make  it  

Page 60: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Specification  of  Task  

     48  

easier  to  follow  the  report,  lead  time  and  throughput  time  will  not  be  distinguished  in  this  study.  Instead,  they  will  from  now  on  be  generalized  as  just  lead  time.  To  be  able  to  identify  how  the  lead  time   is  distributed   in  the  supply  chain  and  where  there  might  be  potential   to  accomplish  improvements,  the  following  question  seeks  to  be  answered.    

1.6  What  is  the  total  lead  time  and  how  is  it  distributed?      Van  Hoek  (1998)  describes  in  Section  3.8  that  the  general  customer  requests  customized  products  and   fast  deliveries   in   a   greater   extent   than  before.   It   is   therefore   crucial   for   supply   chains   to  employ  a  strategy  that  considers  customer  satisfaction  and  marketplace  understanding  (Mason-­‐Jones  et  al.,  2000).  Towill  and  Christopher  (2002)  argue  that  it  is  possible  to  employ  different  kind  of  strategies  to  the  supply  chain  because  of  the  decoupling  point.  It  is  in  this  reports  interest  to  identify  what  and  where  different  strategies  are  applied  in  the  studied  supply  chain  and  for  this,  the  following  question  has  been  formulated.    

1.7  What  strategies  are  applied  and  where?    Oskarsson  et  al.  (2013)  stresses  the  importance  of  talking  to  several  people  in  the  supply  chain  when  constructing  a  current  state  map  and  seeking  for  the  reasons  for  time  consumption,  see  Section  3.9.2.  This  is  since  people  working  within  the  supply  chain  may  have  knowledge  about  the  causes  and  talking  to  several  persons  will  provide  different  perspectives  of  the  situation.  Taylor  (1997)  stresses  the  importance  to  identify  the  issues  and  problems  in  the  current  situation  and  to  distinguish  between  symptoms  and  causes  for  making  appropriate  recommendations.  He  means  that  it  is  necessary  not  to  only  focus  on  the  problems,  but  also  to  identify  relevant  opportunities.  To   gain   information   about   the   problems   perceived   in   the   studied   supply   chain   together  with  suggested  solutions,  the  following  question  is  expressed.    

1.8  What  problems  are  perceived  and  what  are  the  suggested  solutions?                                  

Page 61: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Specification  of  Task  

     49  

The  approach  to  achieve  the  first  objective,  mapping  the  current  state,  together  with  the  related  sub  questions  are  illustrated  in  Figure  16.    

 Figure  16.  Approach  of  the  first  objective.  Source:  Based  on  Taylor  (p.4,  1997)  

4.4.2   Identification  of  Potentials  for  Lead  Time  Reduction  The  second  objective   is  to   identify  where  in  the  supply  chain  there  are  potential  for   lead  time  reductions  and  as  stated  in  in  the  introductory  chapter,  Ericsson  has  a  long-­‐term  goal  of  reducing  the  total  lead  time  by  50  %.  It  is  therefore  in  the  interest  of  this  report  to  determine  the  greatest  potentials  to  approach,  or  at  best  achieve,  the  stated  goal.  The  second  key  question  is  formulated  below  and  seeks  to  find  the  greatest  potentials  for  lead  time  reduction  in  the  supply  chain.    

Q2.  What  parts  of  the  supply  chain  have  greatest  potential  for  lead  time  reduction?    The  current  state  mapping  strives  to  determine  the  total  lead  time  and  how  it  is  distributed  over  the   studied   supply   chain.   Having   these   measurements   on   hand   allows   for   determining   how  reasonable  each  lead  time  is,  considering  the  activities  and  processes  being  performed.  Thus,  the  lead   times   that  are  considered  unreasonably   long  have   the  opportunity   to  be  shortened.  This  method  is  similar  to  the  common  approach  for  lead  time  reductions  described  in  Section  3.9.3  by  Oskarsson  et  al.  (2013),  where  the  time  spent  is  divided  into  value-­‐added  and  non-­‐value-­‐added  time.  Oskarsson  et  al.  (2013)  refers  to  value-­‐added  time  as  the  time  when  an  activity  is  performed  and  non-­‐value-­‐added  time  as  the  time  when  goods  are  standing  still  or  an  order  is  waiting  to  be  handled.    In  order  to  reduce  the  total  lead  time  as  much  as  possible,  it  is  desirable  to  target  the  effort  to  parts  that  accounts  for  a  significant  portion  of  the  total   lead  time.  This   is   in   line  with  Goldratt  (1990)  and  Oskarsson  et  al.  (2013)  that  argue  to  focus  the  lead  time  reduction  to  bottlenecks,  i.e.  the  most  time  consuming  parts  of  the  supply  chain,  since  it  will  have  the  most  positive  impact  on  the  entire  supply  chain  performance.  By  determining  the  non-­‐value  added  time  for  each  part  and  their  contribution  to  the  total  lead  time,  the  parts  can  be  assessed  as  having  either  low  or  great  

Step%1%(Objective 1)Current state)mapping

Supply)chain)structures

The)business)context

Supply)chain)performance

Organizational)structures

Material)and)information)flow

Information)management

Time)basedperformance)indicators

Strategies

Experienced)problems

1.2)1.3)1.4

1.1

1.5

1.6

1.7

1.8

Page 62: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Specification  of  Task  

     50  

potential  for  lead  time  reduction.  This  approach  is  comparable  to  the  categorization  of  problems  into   meaningful   groups   in   accordance   with   Taylor   (1997).   The   following   question   has   been  formulated  for  the  above  reasoning.          

2.1  For  what  parts  are  the  lead  time  not  reasonable  and  represents  a  significant  portion  of  the  total  lead  time?  

 Before   knowing   where   to   focus   the   improvements,   the   perceived   problems   and   suggested  solutions  notified  during  the  current  state  mapping  need  to  be  further  analyzed.  Taylor  (1997)  highlights   the   importance   of   finding   the   key   issues   and   problems   for   making   appropriate  recommendations.  He  also  means  that  it   is  vital  to  distinguish  between  symptoms  and  causes.  Thus,  it  is  vital  for  this  report  to  focus  on  the  causes  and  to  find  the  key  issues  and  problems  in  order  to  determine  where  to  target  the  efforts  for  lead  time  reduction.  To  do  this,  the  following  question  seeks  to  be  answered.    

2.2  What  are  the  root  causes  for  the  excessive  lead  time?      In   accordance  with   Taylor   (1997),   the   problems   that   have   been   categorized   also   need   to   be  prioritized  in  order  to  reach  a  sensible  solution.  The  prioritization  will   in  this  case  result   in  the  greatest  potentials  for  lead  time  reductions.  This  includes  the  parts  of  the  supply  chain  that  have  a   not   reasonable   lead   time,   considering   the   activities   and   processes   being   performed,   and  represent  a  significant  portion  of  the  total  lead  time.  Also  the  root  cause  problems  causing  the  excessive  lead  times  and  their  suggested  solutions  will  be  prioritized.  Hence,  it  is  the  parts  and  the  problems  with  greatest  potential  for  lead  time  reduction  that  are  prioritized  together  with  their  suggested  solutions.  The  question  to  determine  where  to  target  the  efforts  is  formulated  below.    

2.3  To  what  parts,  problems  and  solutions  will  the  effort  be  targeted?    The  approach  to  achieve  the  second  objective,  identifying  main  issues  and  problems,  is  illustrated  in  Figure  17.    

 Figure  17.  Approach  of  the  second  objective.  Source:  Based  on  Taylor  (p.4,  1997)  

   

Step%2%(Objective 2)Identificationof+

potentials+for+lead+time+reduction

Categorize

Prioritize

2.12.2

2.3

Page 63: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Specification  of  Task  

     51  

4.4.3   Generation  of  Alternative  Solutions  The  third  objective  of  the  study  is  to  generate  alternative  solutions  for  the  excessive  lead  times  in  the  current  supply  chain.  The  greatest  potentials  for  lead  time  reductions  determined  in  the  previous  objective  will   be   fundamental   for   this   stage.   Taylor   (1997)   advocates   to   generate   as  many  alternative  solutions  as  possible  in  order  to  later  be  able  to  evaluate  them.  The  purpose  of  the   third   key   question   is   to   generate   possible   solutions   to   the   excessive   lead   times   and   is  formulated  as  follows.    

Q3.    What  alternative  solutions  will  reduce  the  total  lead  time?    The   greatest   potentials   for   lead   time   reduction  need   to   be   studied   further   together  with   the  connected  parts  of  the  material  and  information  flow,  in  order  to  find  actions  for  improvements.  According  to  Oskarsson  et  al.  (2013),  it  is  desirable  to  find  as  many  general  principles  as  possible  to  choose  from  when  performing  a  lead  time  analysis.  The  authors  suggest  to  seek  for  alternative  solutions   in   the   literature,   basing   the   solutions   on   previous   experience   in   the   field   or   to   find  inspiration  from  other  companies.  To  find  alternative  solutions  to  the  greatest  potentials  for  lead  time  reduction,  the  following  questions  has  been  formulated.      

3.1.  What   general   alternatives   can   be   found   for   the   greatest   potentials   for   lead   time  reduction?  

 As  stated  in  the  paragraph  above  by  Oskarsson  et  al.  (2013),  it  is  desirable  to  find  as  many  general  principles  as  possible  during  the  lead  time  analysis.  The  appropriateness  of  the  general  theories  and   methods   found   in   the   literature   are   highly   dependent   on   the   specific   situation   and   is  therefore  important  to  evaluate  (Oskarsson  et  al.,  2013).  To  be  able  to  fulfill  the  purpose  of  the  study,  more   specific   solutions   for   Ericsson   need   to   be   generated.   In   order   to   proceed  which  general  alternatives  that  can  be  applied  to  the  studied  supply  chain  for  lead  time  reduction,  the  following  question  is  asked.    

3.2.  How  can  the  general  alternatives  be  applied  to  the  studied  supply  chain?    The   approach   to   achieve   the   third   objective,   generating   alternative   solutions,   is   illustrated   in  Figure  18.    

 Figure  18.  Approach  of  the  third  objective.  Source:  Based  on  Taylor  (p.4,  1997)  

Step%3%(Objective 3)Generation)of)alternative)

solutions

Literature)review

Adaptation

3.1

3.2

Page 64: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Specification  of  Task  

     52  

4.4.4   Recommended  Solutions  and  Requirements  for  Implementation  To   fulfill   the  purpose  of   this   study,   the   fourth  and   final  objective   is   to  give   recommendations  based   on   how   the   generated   solutions   affect   the   total   lead   time   and   thereafter   clarify   the  requirements  for  implementation.  For  this,  the  following  key  question  is  formulated.    

Q4.  What  are  the  recommended  solutions  and  what  are  the  requirements  for  implementation?    As  presented  in  the  introductory  chapter,  Ericsson  has  a  long-­‐term  goal  of  reducing  the  total  lead  time  by  50  %.  The  goal  acts  as  a  guideline  for  this  project,  why  the  most  beneficial  combination  of  solutions  needs  to  be  determined.  To  do  so,  the  generated  solutions  need  to  be  evaluated  in  relation  to  each  other  before  making  any  decisions  of  what  actions  that  will  be  implemented.  The  combination  of   solutions   that   contributes   to   the  greatest   lead   time   reduction  will  need   to  be  evaluated  and  the  total  effect  on  the  lead  time  determined.  To  do  so,  the  effect  of  the  solutions  on  the  non-­‐value  added  time  needs  to  be  considered.  This  allows  to  determine  what  actions  that  together   will   contribute   to   an   as   great   lead   time   reduction   as   possible.   This   results   in   a  recommended  supply  chain  with  modified  material  and   information   flows.  With  regard  to  the  above  reasoning,  the  following  question  is  asked.    

4.1  What  combination  of  solutions  will  provide  the  greatest  lead  time  reduction  and  how  great  will  it  be?    

 In   accordance   with   Taylor   (1997),   the   requirements   for   implementing   the   recommended  solutions  are  desired  to  be  clarified.  It  has  to  be  clear  if  anything  additional  of  the  supply  chain  is  needed  when   doing   the   implementation,   and   this  will   be   determined   by   asking   the   question  below.      

4.2  What  are  the  requirements  for  implementation?    The  approach  to  achieve  the  final  objective,  evaluating  solutions  followed  by  a  recommendation  and  implementation,  is  illustrated  in  Figure  19.    

 Figure  19.  Approach  of  the  fourth  objective.  Source:  Based  on  Taylor  (p.4,  1997)  

   

Step%4%(Objective%4)Recommended(solutions(and(requirements(for(implementation

Evaluation(and(recommendation

Requirements(for(implementation

4.1

4.2

Page 65: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Specification  of  Task  

     53  

4.5   Summary  of  the  Specification  of  Task  In  this  section  follows  a  brief  summary  of  the  approach  for  fulfilling  the  objectives  of  the  study,  the  question  formulation  that  will  give  answer  to  the  purpose  and  the  necessary  delimitations  that  has  been  made.      4.5.1   Approach  The  approach  for  fulfilling  the  objectives  of  the  study  is  presented  in  Figure  20,   illustrating  the  objectives  and  their  relations  to  the  determined  sub  questions.    

 Figure  20.  The  approach  for  fulfilling  the  objectives  of  the  study.  Source:  Based  on  Taylor  (p.4,  

1997)  

Step%1%(Objective 1)Current state)mapping

Supply)chain)structures

The)business)context

Supply)chain)performance

Organizational)structures

Material)and)information)flow

Information)management

Time)basedperformance)indicators

Strategies

Step%2%(Objective 2)Identificationof)

potentials)for)lead)time)reduction

Step%3%(Objective 3)Generation)of)alternative)

solutions

Step%4%(Objective%4)Recommended)solutions)and)requirements)for)implementation

Experienced)problems

Categorize

Prioritize

Literature)review

Adaptation

Evaluation)and)recommendation

Requirements)for)implementation

1.2)1.3)1.4

1.1

1.5

1.6

1.7

1.8

2.12.2

2.3

3.1

3.2

4.1

4.2

Page 66: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Specification  of  Task  

     54  

4.5.2   Question  Formulation  The  question  formulation  that  will  achieve  the  objectives  of  the  study  is  summarized  in  Table  4  below.    

Table  4.  The  question  formulation.  

Key  questions   Sub  questions  Q1.  How  does  material  and  information  flow  in  the  supply  chain?  

1.1  Who  are  the  supply  chain  members  and  how  are  they  structured?  1.2  What  activities  and  processes  can  be  identified  and  where  are  they  performed?  1.3  What  distribution  methods  are  applied  and  where?  1.4  What  inventory  practices  are  applied  and  where?  1.5  How  is  information  managed?  1.6  What  is  the  total  lead  time  and  how  is  it  distributed?  1.7  What  strategies  are  applied  and  where?  1.8  What  problems  are  perceived  and  what  are  the  suggested  solutions?  

Q2.  What  parts  of  the  supply  chain  have  greatest  potential  for  lead  time  reduction?  

2.1  For  what  parts  are  the  lead  time  not  reasonable  and  represents  a  significant  portion  of  the  total  lead  time?  2.2  What  are  the  root  causes  for  the  excessive  lead  time?  2.3  To  what  parts,  problems  and  solutions  will  the  effort  be  targeted?  

Q3.  What  alternative  solutions  will  reduce  the  total  lead  time?    

3.1  What  general  alternatives  can  be  found  for  the  greatest  potentials  for  lead  time  reduction?  3.2  How  can  the  general  alternatives  be  applied  to  the  studied  supply  chain?  

Q4.  What  are  the  recommended  solutions  and  what  are  the  requirements  for  implementation?  

4.1  What  combination  of  solutions  will  provide  the  greatest  lead  time  reduction  and  how  great  will  it  be?  4.2  What  are  the  requirements  for  implementation?  

                       

Page 67: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Specification  of  Task  

     55  

4.5.3   Delimitations  The  delimitations  that  has  been  made  during  the  study  are  summarized  below:    Delimitation  1  –  The  study  only  takes  the  first-­‐tier  suppliers  into  consideration    Delimitation  2  –  The  introduction  of  new  products  and  the  out  phasing  of  old  products    Delimitation  3  –  The  reverse  logistics    Delimitation  4  –  The  transportation  efficiency    Delimitation  5  –  The  costs  or  potential  economic  savings      Delimitation  6  –  Only  examine  the  flows  of  material  and  information  until  ATM  takes  over  the                                                                  responsibility  of  the  delivery        

Page 68: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Specification  of  Task  

     56  

   

Page 69: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

METHODOLOGY  

     57  

 

5   METHODOLOGY  

The  methodology  chapter  presents  the  approach  of  the  study,  followed  by  methods  for  collecting  data  and  literature.  The  chapter  includes  reasoning  about  the  reliability  and  validity  of  the  study.  Finally,  the  methods  used  to  answer  the  purpose  and  the  question  formulation  is  described.  

   

Page 70: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

METHODOLOGY  

     58  

5.1   Approach  Before  conducting  a  study,  it  is  desirable  to  gain  sufficient  knowledge  of  the  steps  included,  why  these  steps  are  necessary  and  how  they  fit  together  into  a  whole  (Lekvall  &  Wahlbin,  2001).  The  approach  to  fulfill  the  objectives  of  this  study,  presented  in  Figure  20,  does  not  include  the  steps  prior  to  the  execution  of  the  objectives,  i.e.  it  does  not  include  the  steps  of  the  planning  phase.  Therefore,  the  approach  to  fulfill  the  objectives  needs  to  be  expanded  with  additional  steps  in  order  to  illustrate  the  entire  approach  of  the  study.      Lekvall  and  Wahlbin  (2001)  together  with  Patel  and  Davidsson  (2011)  describe  two  approaches  for  conducting  surveys  and  studies,  where   the   first  mentioned   is   intended   for  market   surveys  while  the  second  is  of  general  purpose.  As  can  be  seen  in  Table  5,  the  two  approaches  consist  of  more  or  less  the  same  overall  stages,  namely:  identification  of  problem,  formulation  of  purpose,  specification  of  task,  selections  of  approach,  method  and  technique,  analysis  and  reporting.  The  main  difference  between  the  approaches  is  that  Lekvall  and  Wahlbin  (2001)  have  included  a  step  for  further  analysis  and  interpretation.  Considering  that  the  frameworks  have  similar  initial  steps,  the  choice  of  approach  will  not  affect   this  study.  Therefore,   the   framework  described   in  most  detail  is  selected  since  it  provides  the  most  support,  that  is  the  approach  of  Lekvall  and  Wahlbin  (2001).      

Table  5.  Comparison  of  frameworks  for  approaching  surveys.  Source:  Based  on  Lekvall  and  Wahlbin  (2001)  and  Patel  and  Davidsson  (2011)  

Overall  stages   Lekvall  &  Wahlbin  (2001)  

Patel  &  Davidsson  (2011)  

Identification  of  problem   X   X  

Formulation  of  purpose   X   X  

Specification  of  task   X   X  

Selection  of  approach,  method  and  technique   X   X  

Preparation  and  execution   X   X  

Analysis   X   X  

Further  analysis   X    

Reporting   X   X  

   

Page 71: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

METHODOLOGY  

     59  

Lekvall  and  Wahlbin  (2001)  argue  that  the  first  step  of  a  market  survey  is  to  analyze  the  decision-­‐making  situation  and  formulate  a  description  of  the  problem  together  with  the  purpose  of  the  study.   The   next   step   is   to   clarify   the   task   using   relevant   literature,   resulting   in   a   theoretical  framework.  An  outcome  of   the   initial   two   steps  will   be   the   research  questions,  which   in   turn  require  an  appropriate  method  in  order  to  be  answered  correctly.  The  method  is  decided  in  the  third  step  when  selecting  approach,  method  and  technique,  which  will  be  fundamental  for  the  following   step   of   fieldwork   and   compilation   of   data.   As   a   fifth   step,   all   the   necessary   data   is  collected  and  analyzed  and  thereafter  are  further  analyzes  and  interpretations  made  of  the  data  based  results,  making   it  possible   to  draw  conclusions  and  answer   the  research  questions.  The  preparation  of  recommendations,  where  the  purpose  of  the  study  is  achieved  and  a  discussion  of  the  study’s  generalizability  is  provided,  is  later  made  and  reported  in  the  final  step.  The  modeled  approach  is  shaped  in  such  a  way  that  certain  stages  are  linked  to  each  other  to  demonstrate  a  relationship  between  them,  see  Figure  21.  (Lekvall  &  Wahlbin,  2001)    

 Figure  21.  The  typical  approach  of  a  market  survey.    

Source:  Lekvall  and  Wahlbin  (p.183,  2001)  

 

Analysis(of(the(decision0making situation

Clarification(of(task

Selection(of(approach,(method and(technique

Planning(of(field(work(and(analysis

Analysis(of(basic(data

Further(analysisInterpretation

Preparation(ofrecommendations

FieldworkCompilation(of(data

Reporting

Decision(problem

Information( requirements(and(research(purpose

Revised(task

Investigation(plan Basic(database

Data(based(results

Conclusions

Recommendations

Page 72: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

METHODOLOGY  

     60  

According  to  Lekvall  and  Wahlbin  (2001),  the  approach  of  their  framework  is  primarily  intended  for  general  market  surveys,  meaning  that  the  framework  most  often  require  a  modification   in  order  to  fit  a  specific  study.  To  adapt  the  authors’  model  to  the  approach  of  this  study,  the  first  stage  where  the  problem  is  described  for  the  current  situation  is  expanded.  For  this  study,  the  description  of  the  current  situation  concerns  not  only  the  problem,  but  also  a  brief  introduction  to  the  business  in  order  to  provide  the  reader  with  some  basic  knowledge  for  the  context.  The  planning  phase  of  this  study  will  therefore  consist  of  a  description  of  both  the  problem  and  the  business  for  the  current  state  as  well  as  a  formulated  purpose.    The  planning  phase  of  this  study  also  consists  of  the  stage  that  Lekvall  and  Wahlbin  (2001)  refers  to   as   clarification   of   task,   where   the   study   is   specified   further   using   relevant   literature.  Furthermore,  the  planning  phase  consists  of  selected  literature  that  is  presented  in  a  theoretical  framework.  Before  starting  to  execute  the  predetermined  objectives,  the  approach,  method  and  technique  needs  to  be  decided  since   it  will  be   fundamental   for   later  steps   in  accordance  with  Lekvall   and   Wahlbin   (2001).   The   step   for   selection   of   approach,   method   and   technique   is  summarized  as  methodology  in  this  study.  Hence,  the  planning  phase  of  this  study  will  not  only  consist  of  a  description  of  the  current  situation  and  a  formulated  purpose,  but  also  a  theoretical  framework,  specification  of  task  and  methodology.      The  stages  after  the  selection  of  approach,  method  and  technique  in  the  model  of  Lekvall  and  Wahlbin   (2001)   can   be   likened   with   the   approach   to   reach   the   objectives   of   this   study.   The  fieldwork  and  compilation  of  data  is  equivalent  to  the  step  where  data  is  gathered  to  the  current  state  mapping,  i.e.  the  first  objective.  Instead  of  compiling  the  collected  data  in  a  basic  database,  it  is  described  in  an  empirical  chapter  named  Current  State  Mapping.  Thereafter,  an  analysis  of  the  data  is  performed  in  accordance  with  Lekvall  and  Wahlbin  (2001).  This  is  to  achieve  the  second  objective  and  to  determine  where  further  efforts  are  to  be  targeted,  which  corresponds  with  the  data   based   results.  Moreover,   a   further   analysis   is   conducted   based  on   the   second   literature  review  in  order  to  determine  alternative  solutions  and  thereby  fulfill  the  third  objective.  Unlike  from  Lekvall  and  Wahlbin  (2001),  the  third  objective  does  not  result  in  final  conclusions.  Instead,  the  alternative  solutions  are  analyzed  in  relation  to  each  other  during  the  fourth  objective  before  any  recommendations  can  be  made.  Once  the  recommendations  are  prepared,  the  final  reporting  with  conclusions  can  be  provided.  This  is  done  in  the  fifth  step  of  the  study,  which  Lekvall  and  Wahlbin   (2001)   refer   to   as   reporting   and   also   consists   of   a   discussion   of   the   study’s  generalizability.    As  described  above,  the  first  two  steps  of  the  framework  by  Lekvall  and  Wahlbin  (2001)  will  be  fundamental   for   the  overall  approach  of   this   study.  The  approach   to   reach   the  objectives  will  instead  be  based  on  the  model  presented  by  Taylor  (1997),  while  the  final  phase  is  inspired  by  Lekvall  and  Wahlbin  (2001).  The  steps  of  the  overall  approach  applied  to  this  study  are  illustrated  in  Figure  22,   together  with  the  corresponding  sub  questions.  The  steps  are  presented  in  more  detail  in  the  following  sections.  

Page 73: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

METHODOLOGY  

     61  

     Figure  22.  The  overall  approach  of  the  study.  Source:  Based  on  Lekvall  and  Wahlbin  (p.183,  

2001)  and  Taylor  (p.4,  1997)  

Step%1%(Objective 1)Current state)mapping

Supply)chain)structures

The)business)context

Supply)chain)performance

Organizational)structures

Material)and)information)flow

Information)management

Time)basedperformance)indicators

Strategies

Step%2%(Objective 2)Identificationof)

potentials)for)lead)time)reduction

Step%3%(Objective 3)Generation)of)alternative)

solutions

Step%4%(Objective%4)Recommended)solutions)and)requirements)for)implementation

Step%0%Planning)phase

Current) situation

Theoretical)framework

Research)purpose

Specification)of)task

Selection)of)approach,)method)and)technique

Experienced)problems

Categorize

Prioritize

Step%5%Final)phase

Conclusion

Discussion

Literature)review

Adaptation

Evaluation)and)recommendation

Requirements)for)implementation

1.2)1.3)1.4

1.1

1.5

1.6

1.7

1.8

2.12.2

2.3

3.1

3.2

4.1

4.2

Page 74: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

METHODOLOGY  

     62  

5.2   Planning  Phase  The  initial  phase  of  the  study  is  the  planning  phase,  consisting  of  the  description  of  the  current  situation,  formulation  of  the  purpose,  the  theoretical  framework,  specification  of  the  task  and  the  selection  of  approach  as  well  as  method  and  technique,  see  Figure  22.  However,  the  selection  of  approach,  method  and  technique  is  not  explained  in  an  individual  section,  but  instead  continually  during   the  methodology   chapter.   Validity   and   reliability   are   two   often   occurring   terms  when  determining  the  quality  of  an  academic  report  according  to  Lekvall  &  Wahlbin  (2001)  and  these  will  also  be  discussed  for  each  phase  separately.        5.2.1   Current  Situation  The   current   situation   includes   both   a   description  of   the  background   to   this   study   and   a   brief  introduction   to   the   business   context.   Since   the   current   situation   intends   to   provide   basic  knowledge  about  the  problem  area,  it  has  an  explorative  orientation  in  accordance  with  Lekvall  and  Wahlbin   (2001).   Gaining   knowledge   about   the   problem   area   allows   to   better   be   able   to  specify  the  task  for  an  upcoming  study  or  to  give  ideas  for  alternative  actions.  Hence,  determining  the  orientation  of  the  study  will  provide  a  greater  understanding  for  the  purpose  of  the  study  and  therefore  have  a  positive  impact  on  the  final  outcome  of  the  study.  (Lekvall  &  Wahlbin,  2001)    Damelio  (2011)  proposes  a  handful  of  methods  that  are  appropriate  for  different  stages  when  trying  to  obtain  the  knowledge  necessary  to  create  a  current  state  map,  some  of  which  are  used  in  this  study  and  described  further.  Initially,  information  is  collected  by  the  method  that  Damelio  (2011)  terms  as  the  content  review.  The  content  reviewed  in  this  case  is  internal  documents  in  form  of  formal  and  informal  training  materials,  policy  documents  and  work  instructions.  Contracts  are  also  studied  to  get  information  about  the  obligations  and  agreements  between  Ericsson,  ATM  and  other  members  of  the  supply  chain.  This  information  provided  by  Ericsson  is  essential  when  acquiring  a  basic  understanding  for  the  material  and  information  flow  and  also  fundamental  for  the  upcoming  stage,  when  the  studied  supply  chain  is  clarified  further  by  interviews.    As  stated  before,  the  background  to  the  current  situation  aims  to  give  an  understanding  for  the  reasons  behind  this  study  while  the  business  introduction  is  to  provide  basic  knowledge  about  Ericsson  and  their  global  supply  chains.  Also  some  basic  knowledge  about  the  customer  ATM  is  included  in  this  stage  to  be  able  to  define  an  overall  system.  Given  this  information,  the  current  state   deals   with   qualitative   information   that   is   of  more   general   interest,   but   also   qualitative  information  that  is  primarily  developed  for  this  study,  i.e.  it  consists  of  both  qualitative  primary  and  qualitative  secondary  data.  Primary  data  is  defined  as  information  that  is  collected  with  the  same  purpose  as  for  the  given  study,  while  secondary  data  is  generated  for  a  different  purpose  (Björklund  &  Paulsson,  2014).      To  obtain  primary  data,  Lekvall  and  Wahlbin  (2001)  prefers  personal  interviews  because  of  the  flexible  hearings  and  the  lack  of  restrictions.  Therefore,  the  respondents  interviewed  during  this  phase  are  met  in  person  to  the  extent  possible,  which  are  not  the  case  when  the  respondents  are  spread   across   the   world   and   personal   meetings   are   inefficient   and   time   consuming.   A  more  effective  and  cheaper  alternative  to  personal  interviews  are  the  telephone  interview  (Lekvall  &  Wahlbin,  2001),  which  is  used  in  this  phase  when  the  personal  interview  is  too  inefficient  because  

Page 75: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

METHODOLOGY  

     63  

of  the  geographical  distance.  The  respondents  are  selected  in  consultation  with  the  supervisor  at  Ericsson  to  ensure  that  adequate  information  is  gathered.  The  people  being  interviewed  in  this  phase  of  the  project  and  their  positions  are  presented  in  Appendix  B.    Due   to   this   phase   being   explorative,   unstructured   interviews   are   to   prefer.   Unstructured  interviews  imply  that  a  subject  or  several  subjects  are  chosen  prior  to  the  time  of  the  interview  and  that  there  are  not  any  prepared  questions  asked  during  the  interview.  (Lekvall  &  Wahlbin,  2001)  Note  that  this  phase  aims  to  provide  basic  knowledge  about  the  current  state  whilst  the  knowledge  about  the  problem  is  limited  in  this  part  of  the  study  and  predefined  questions  might  therefore  limit  the  scope  rather  than  giving  an  overall  view  of  the  current  situation.    To  manage  all   the  data   that   the   interviewing  generated,  each   interview  conducted  during   the  study   has   been   recorded   and   transcribed   in   accordance   with   Seidman   (2006).   The   author  emphasizes  the  importance  of  organizing  the  gathered  material  and  the  primary  method  for  doing  so  is  to  record  the  interviews  and  later  transcribe  them  into  text.  The  benefit  of  recording  the  interviews  is  that  it  reduces  the  risk  of  misinterpretations,  since  the  words  of  the  respondents  are  preserved.   If   something   is   not   clear   or   if   the   answers   are   questioned,   the   recording   can   be  checked   for   accuracy.   Furthermore,   the   recordings   can   be   used   to   evaluate   the   interview  techniques   that   are   used   and   improve   upon   them.   Recordings   also   benefit   the   respondents,  considering  the  assurance  that  the  answers  are  recorded  and  gives  confidence  that  the  answers  will  be  handled  responsibly.  The  recorder  can  seem  to  inhibit  the  respondents,  but  the  device  is  forgotten  rather  quickly  during  most  interviews.  (Seidman,  2006)  In  this  study,  the  recorder  has  been  placed  discreetly  to  be  as  least  intrusive  as  possible  for  the  respondents.      The  interviews  are  most  often  generating  an  enormous  amount  of  text,  making  the  transcribing  and  the  analysis  time-­‐consuming.  To  be  able  to  analyze  the  text,  it  is  important  to  reduce  the  vast  array  of  words,  sentences,  paragraphs  and  pages.  But  most   important   is   that  the  reduction  of  data  is  made  inductively  rather  than  deductively.  (Seidman,  2006)  The  transcripts  have  therefore  been  made  with  an  open  attitude,   seeking  what  emerges  as   important   from  the   text  and  not  trying  to  match  hypotheses  with  the  gathered  data.  To  reduce  the  transcribed  text,  the  important  paragraphs  are  marked  with  brackets  and  gets  the  further  attention.    5.2.2   Research  Purpose  The  purpose  of  the  study  has  been  formulated  based  on  the  background  to  the  problem  and  has  been  developed  with   the   help   of   the   supervisors,   both   at   the   university   and   at   Ericsson.   The  purpose  has  been  relatively  wide  since  the  start  of  the  project,   in  accordance  with  Lekvall  and  Wahlbin  (2001)  which  states  that  a  premature  and  narrow  formulation  of  the  purpose  may  lead  to  an  incorrect  or  incomplete  purpose.  This  is  also  due  to  that  the  aim  of  the  study  has  been  to  study   an   entire   supply   chain,   consisting   of   a   variety   of   knowledge   areas   whilst   the   initial  knowledge   of   lead   time   reduction   in   supply   chains   is   limited.  On   the   other   hand,   a   too  wide  purpose   may   lead   to   ambiguities   and   to   avoid   that   from   happening,   the   purpose   has   been  discussed  with  both   the   supervisors   and   the  opponents   during   the  project.   These  discussions  together  with  the  knowledge  gathered  during  the  study  allows  for  the  purpose  to  be  clarified  in  a  later  stage.    

Page 76: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

METHODOLOGY  

     64  

Together  with  the  purpose  are  some  directives  presented,  given  by  the  supervisor  at  Ericsson.  Lekvall   and   Wahlbin   (2001)   point   at   the   importance   of   distinguish   between   directives   and  delimitations,  since  the  directives  given  from  the  company  often  have  been  chosen  because  of  their  relevance  for  the  specific  project.  The  delimitations  made  by  the  investigators  are  instead  made  with  purpose  to  foster  an  increased  efficiency  of  the  project.  (Lekvall  &  Wahlbin,  2001)    5.2.3   Theoretical  Framework  The  first  step  in  the  planning  phase  was  the  generation  of  a  theoretical  framework.  As  stated  in  the   introductory   chapter,   there   are   some   requirements   regarding   the   use   of   literature   in   an  academic  study.  One  requirement  is  that  existing  literature  within  the  studied  area  has  to  serve  as  a  base  or  be  taken  into  account  in  the  study,  and  later  on  act  as  a  comparison  to  establish  the  results   of   the   study.   (Björklund   &   Paulsson,   2014)   A   theoretical   framework   is   a   collection   of  already  existing  knowledge,  theories  and  models  that  is  widely  accepted  and  chosen  to  be  used  in   the   study.  Accepted   knowledge   refers   to   the  most   favorable   theories   and  models   that   the  literature  has  to  offer  at  the  time.  (Lekvall  &  Wahlbin,  2001)  The  theoretical  framework  in  this  report  has  been  constructed  of  literature  within  different  fields  connected  to  the  purpose  of  this  study.      The  qualitative   secondary  data   that  have  been  used   to  build   the   theoretical   framework  were  collected  from  literature  studies,  see  Appendix  E.  The  method  for  the  literature  studies  can  be  divided  into  a  few  steps,  inspired  by  the  research  procedure  described  by  Patel  and  Davidsson  (2011).  The  first  step  was  to  study  fundamental  books  within  fields  connected  to  the  purpose  of  the  study.  For  example,  books  within  supply  chain  management  and  logistics.  Books  written  by  well-­‐known  authors  that  often  are  encountered  when  searching  for  literature  within  supply  chain  management  and  logistics  have  been  desirable  and  used  at  first  hand.  Studying  the  fundamental  books  have  not  only  given  an  insight  into  the  fields  of  study,  but  also  generated  input  and  ideas  of  areas  to  dig  deeper  into.  Examples  of  authors  whose  books  have  been  studied  are:  Douglas  M.  Lambert,  Martha  C.  Cooper,  Martin  Christopher,  James  R.  Stock  and  Janus  D.  Pagh.  In  addition,  literature  in  form  of  books  and  articles  from  previous  courses  has  been  used  when  searching  for  literature  during  this  step.      The  second  step  is  to  search  for  literature  in  databases,  on  keywords  connected  to  the  relevant  areas  identified  in  the  first  step.  The  database  that  mainly  has  been  used  is  the  “Business  Source  Premier”,  that  is  a  broad  economic  database  available  at  the  website  of  the  library  at  Linköping  University.  Examples  of  keywords  that  have  been  used  are  “supply  chain  strategies”,  “distribution  methods”,  “supply  chain  transparency”  and  “supply  chain  integration”.  In  accordance  with  Patel  and  Davidsson  (2011)  have  further  searches  on  synonyms  of  the  keywords  and  the  names  of  often  cited  authors  been  done.  To  facilitate  the  literature  review,  criteria  as  “full  text”  and  “references  available”  have  been  applied.  Both  long-­‐standing  and  modern  literature  have  been  searched  for  in  order  to  get  different  perspectives  of  the  literature  from  different  time  periods  and  to  get  a  mixture  of  well  proven  theories  with  recently  introduced  ones.  Furthermore,  the  primary  sources  been  used  in  an  as  great  extent  as  possible.  A  way  to  accomplish  this  is  to  use  of  the  snow-­‐ball  method  that  always  tries  to  seek  for  the  primary  source  in  order  to  avoid  biased  information.    

Page 77: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

METHODOLOGY  

     65  

After  collection  of  the  secondary  data,  the  most  relevant  theories  and  models  for  the  study  were  chosen.   This   is   the   third   step   and   was   based   on   what   literature   that   best   could   compose   a  theoretical  framework  that  gives  a  holistic  picture  of  supply  chain  management  and  logistics,  and  underlies  the  specification  of  task  and  analysis.  Moreover,  literature  from  different  authors  was  chosen   in  order   to   get  different  perspectives   and   to   increase   the   reliability   of   the   theoretical  framework,   in  accordance  with  the  triangulation  method  described  by  Björklund  and  Paulsson  (2014).   For   example,   the   collected   frameworks   for   how   to   analyze   supply   chains   were   first  compared  and  since  all  could  be  likened  with  each  other,  the  most  detailed  model  was  chosen  for  this   study.   Once   the   composing   literature   of   the   theoretical   framework   was   decided,   the  information  was  processed  and  written  down  to  suit  the  context  of  this  study.    5.2.4   Specification  of  Task  The  second  step  in  the  planning  phase  is  the  specification  of  task,  as  can  be  seen  in  Figure  22.  According   to   Lekvall   and   Wahlbin   (2001),   the   orientation   and   the   content   of   the   study   are  specified  during  this  phase.  The  background,  current  state  and  theoretical   framework  act  as  a  basis   in  order  to  be  able  to  specify  the  task  of  the  study.  As  stated  before,  the  purpose  of  the  study  is  relatively  wide  and  has  been  so  since  the  start  of  the  project.  Based  on  the  theoretical  framework   and   discussions   with   supervisor   and   opponents,   it   allows   for   the   purpose   to   be  clarified  further.  The  overall  system  that  was  developed  during  the  planning  phase  of  the  project  can  also  be  described  in  more  detail,  considering  the  theoretical  framework  and  the  delimitations  that  has  been  made.    Just  like  the  current  state,  the  specification  of  task  has  an  explorative  orientation  and  by  dividing  the  purpose  into  four  main  objectives,  a  structure  of  how  the  study  will  answer  the  purpose  was  enabled.  The  objectives  demonstrate  the  four  main  steps  that  will  answer  how  the  total  lead  time  can  be  reduced  in  the  studied  supply  chain.  The  selected  model  of  how  to  analyze  a  supply  chain  by  Taylor   (1997)   supports   these  objectives  but   required   some  modification   in  order   to   fit   the  study,  see  Figure  15.  The  objectives  were  further  specified  by  first  breaking  them  down  into  four  key  questions.  In  order  to  answer  these  key  questions,  they  were  respectively  broken  down  into  more  specific  questions,  or  sub  questions.  By  doing  so,  a  clear  structure  of  how  the  further  work  is   thought   to   be   carried   out   was   enabled.   Another   reason   for   divide   the   purpose   in   specific  questions  is  that  they  enable  to  delimit  the  study  even  further.  The  questions  in  the  specification  of  task  were  underpinned  and  motivated  by  the  theoretical  framework.      A  risk  when  dividing  the  purpose  into  a  number  of  specific  questions  is  that  they  might  not  be  sufficient  in  order  to  answer  the  purpose  though  some  aspects  might  be  forgotten.  In  order  to  minimize  this  risk,  support  was  taken  in  the  well-­‐proven  model  by  Taylor  (1997)  when  the  purpose  was  broken  down  into  the  four  main  objectives  that  later  was  further  broken  down  into  these  questions.            

Page 78: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

METHODOLOGY  

     66  

5.3   Current  State  Mapping  The   current   state  mapping   seeks   to   identify   facts   about   the   structure,   performance,   business  context   and   experienced   problems   for   the   studied   supply   chain.   This   phase   has   a   descriptive  approach  since  it  only  describes  the  current  state  and  does  not  try  to  find  the  reasons  behind  it.  Because  the  mapping  involves  an  in-­‐depth  study  of  an  individual  customer,  it  is  considered  as  a  case  study  research.  (Lekvall  &  Wahlbin,  2001)      To  increase  the  knowledge  about  the  overall  system  developed  in  the  planning  phase,  the  method  that  Damelio  (2011)  refers  to  as  a  content  review  is  applied  further  in  this  stage.  Initially,  internal  documents  are  reviewed  to  determine  the  total  lead  time  for  the  studied  supply  chain.  The  lead  times  in  the  material  flow  are  presented  at  a  high  level  and  based  on  historical  measurements  that  are  collected  in  an  internal  database.  The  current  state  mapping  is  therefore  partly  based  on  quantitative  primary  data.  The  time  period  for  the  studied  measurements  are  for  the  year  of  2015,  in  order  for  the  measurements  to  be  relevant  in  the  time  of  the  study  and  to  cover  the  demand  for  a   full  year.  The   lead   times   in   the   information   flow  are  also  at  a  high   level  and  based  on  a  number  of  customer  purchase  orders  during  the  same  year.  The  customer  purchase  orders  are  selected  by  the  Account  Supply  Responsible  at  EAL  that  works  directly  with  ATM  to  make  sure  that  the  data  is  representative  for  the  ATM  demand  during  2015.  The  information  gathered  during  the  content  review  is  important  as  the  knowledge  of  the  supply  chain  increases  before  any  one-­‐on-­‐one  interviews  are  conducted  (Damelio,  2011).    Erlach  and  Sheehan  (2016)  stress  the  importance  of  conducting  interviews  in  order  to  get  access  to  information  about  different  parts  of  the  supply  chain.  To  construct  a  draft  of  the  current  state,  a  series  of  interviews  are  conducted  with  key  persons  working  within  the  studied  supply  chain,  see  Appendix   C.   According   to   Lekvall   and  Wahlbin   (2001),   the   reliability   of   the   study   can   be  affected   by   contingencies   such   as   respondents   with   inadequate   knowledge   answering   the  interview  questions  at  random.  To  avoid  this  from  happening,  the  respondents  are  selected  in  consultation  with  the  supervisor  at  Ericsson  to  ensure  that  the  wanted  information  is  provided.  This  will  also  increase  the  validity  of  the  study  in  accordance  with  Björklund  and  Paulsson  (2014).  To   further   ensure   that   the   respondents   had   sufficient   knowledge  of   their   parts   of   the   supply  chain,  it  was  asked  during  the  interview  for  how  long  they  have  worked  within  the  supply  chain  and   to   what   extent.   In   this   way,   some   diffuse   responses   could   be   explained   by   the   lack   of  knowledge  and  thereby  discarded.    Personal  interviews  are  preferably  used  to  collect  primary  qualitative  data  in  case  studies  because  of  the  unlimited  possibilities  that  comes  with  the  flexible  hearing  such  as  timeframe,  number  of  questions,  question  formulations  (Lekvall  &  Wahlbin,  2001).  Therefore,  personal  interviews  are  conducted  to  the  extent  possible.  Damelio  (2011)  refers  to  personal   interviews  as  one-­‐on-­‐one  interviews,  which  works  best  for  the  mapping  if  the  interviewer  is  well-­‐prepared  and  familiar  with  the  work  because  of   the   limited   information   sought.   The  basic   knowledge  gathered   from   the  earlier  phases  together  with  the  content  review  serves  as  a  preparation  for  the  interviews  and  increases   the   chances   for   good  questionings.   As   stated  before,   a  more   effective   and   cheaper  alternative   to   personal   interviews   are   the   telephone   interview   (Lekvall   &   Wahlbin,   2001).  Telephone  interviews  are  also  used  in  this  phase  of  the  project  when  the  personal  interview  is  

Page 79: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

METHODOLOGY  

     67  

too  inefficient  because  of  the  geographical  distance.  According  to  Lekvall  and  Wahlbin  (2001),  a  risk  with  telephone  interviews  is  that  the  respondent  does  not  get  a  picture  of  how  long  time  the  interview  will  take  and  therefore  might  lose  the  interest  as  the  time  goes.  This  is  especially  a  risk  if  the  time  exceeds  the  specified  timeframe  set  by  the  interviewer  (Lekvall  &  Wahlbin,  2001).  By  sending  the  respondent  the  interview  questions  in  advance,  this  risk  is  avoided  since  he  or  she  can  estimate  the  duration  of  the  interview  on  their  own.      The  interviews  may  also  vary  depending  on  the  degree  of  structure  (Björklund  &  Paulsson,  2014).  For  this  phase,  a  combination  of  structured  and  semi-­‐structured   interviews   is  conducted  since  predetermined   questions   are   asked   in   order,   but   the   opportunity   to   formulate   questions  subsequently  is  possible.  The  predetermined  interview  questions,  presented  in  Appendix  D,  are  formulated  to  not  be  of  leading  nature  in  accordance  with  Björklund  and  Paulsson  (2014).  The  interview  questions  are  created  to  provide  answers  to  the  sub  questions  of  the  first  objective  and  before  the  interviews  take  place,  the  questions  are  checked  with  the  supervisor  at  Ericsson  to  ensure  that   the  questions  are   formulated   in  a  suitable  manner.  During  the   interviews,  several  respondents  are  asked  the  same  questions  to  make  sure  that  the  same  answers  is  obtained.  This  method  is  referred  to  as  evaluator-­‐triangulation  and  improves  the  reliability  by  providing  several  perspectives  (Björklund  &  Paulsson,  2014).  Even  some  respondents  are  asked  the  same  question  twice,   to   see   if   the   responses   differ.   To   further   increase   the   credibility   of   the   study,   all   the  interviews  are  recorded  and  if  any  answers  are  unclear,  the  specific  respondent  is  contacted  for  further  clarification.  In  addition,  both  authors  are  present  during  every  interview,  which  reduces  the  risk  of  misinterpretation  and  that  vital  information  is  avoided.  If  a  respondent  for  some  reason  is   not   capable  of   answering   a   specific   question   regarding   e.g.   any  detailed   information   about  activities  or  lead  times,  the  authors  need  to  find  a  respondent  that  can  support  with  the  sought  information.  This  is  done  by  asking  the  interviewees  if  they  can  recommend  a  person  that  can  support  with  the  missing  information.  In  those  cases,  the  person  is  contacted  by  either  e-­‐mail,  telephone  or  through  a  personal  meeting,  depending  on  the  geographical  distance.  To  manage  all  the  data  that  the  interviews  generated  during  this  phase,  the  method  described  by  Seidman  (2006)  in  Section  5.2.1  is  applied.    The  approach  of   the   current   state     aping   is   illustrated   in  Figure  23   and   the  methods   that  are  applied  for  each  sub  question  are  presented   in  Table  6.  Briefly  said,   the  sub  questions  for  the  current  state  mapping  is  answered  with  both  interviews  and  internal  documents,  except  for  the  last  question  about  the  perceived  problems  and  suggested  solutions  that  is  only  answered  with  interviews.   It   is   because   the   problems   experienced   by   the   supply   chain   members   and   their  suggested  solutions  are  not  documented  by  Ericsson.  Internal  documents  refer  to  e.g.  information  from  the  internal  database  at  Ericsson  and  on  customer  purchase  orders.  Two  or  more  methods  have   been   used   to   the   extent   possible   to   answer   the   same   sub   question   and   by   doing   so,   it  provides   several   different   perspectives   and   is   usually   called   triangulation,   which   raise   the  reliability  of  the  study  (Björklund  &  Paulsson,  2014).    

Page 80: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

METHODOLOGY  

     68  

 Figure  23.  Approach  of  the  first  objective.  Source:  Taylor  (p.4,  1997)  

Table  6.  Methods  to  answer  the  sub  questions  of  the  first  objective.  

Sub  questions   Interviews   Internal  documents  

1.1  Who  are  the  supply  chain  members  and  how  are  they  structured?   X   X  

1.2  What  activities  and  processes  can  be  identified  and  where  are  they  performed?   X   X  

1.3  What  distribution  methods  are  applied  and  where?   X   X  1.4  What  inventory  practices  are  applied  and  where?   X   X  1.5  How  is  information  managed?   X   X  1.6  What  is  the  total  lead  time  and  how  is  it  distributed?   X   X  1.7  What  strategies  are  applied  and  where?   X   X  1.8  What  problems  are  perceived  and  what  are  the  suggested  solutions?   X    

 5.4   Identifications  of  Potentials  for  Lead  Time  Reduction  The  identification  of  potentials  for  lead  time  reduction  seeks  to  answer  where  in  the  supply  chain  there  are  great  opportunities  for  lead  time  improvements.  In  accordance  with  Lekvall  &  Wahlbin  (2001),  this  phase  has  a  descriptive  approach  since  it  both  tries  to  identify  the  supply  chain  parts  with   not   reasonable   lead   times   and   also   clarify   relations   of   cause-­‐and-­‐effect,   meaning   how  various  problems  relate  and  affect  each  other.  Furthermore,  a  prioritization  is  made  of  what  parts,  problems  and  suggested  solutions  that  will  get  the  further  attention  in  the  study.  The  answers  to  the  sub  questions  in  this  phase  are  based  on  qualitative  and  quantitative  primary  data.        

Step%1%(Objective 1)Current state)mapping

Supply)chain)structures

The)business)context

Supply)chain)performance

Organizational)structures

Material)and)information)flow

Information)management

Time)basedperformance)indicators

Strategies

Experienced)problems

1.2)1.3)1.4

1.1

1.5

1.6

1.7

1.8

Page 81: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

METHODOLOGY  

     69  

The  identification  of  the  supply  chain  parts  with  potential  for  lead  time  reduction  started  with  categorizing  the  parts  as  having  reasonable  or  not  reasonable  lead  times,  and  also  as  constituting  significant  portions  of   the   total   lead   time  or  not.   This  was  determined  by  having  a  discussion  seminar  with  a  person  working  with  the  general  logistics  processes  at  Ericsson  and  has  a  good  insight  into  the  general  supply  chains  and  flows  of  material  and  information.  This  categorization  is  based  on  the  activities,  processes  and  lead  times  identified  during  the  current  state  mapping,  but  also  the  knowledge  and  experience  of  the  person  participating  in  the  discussion  seminar.  A  discussion  is  held  whether  the  lead  times  are  reasonable  or  not  in  terms  of  value  added  and  non-­‐value  added  time,  given  the  activities  and  processes  it  contains.  The  more  non-­‐value  added  time  a  supply  chain  part  contains  of,  the  greater  is  the  potential  for  improvement.  This  discussion  is  also  based  on  previous  interviews  with  people  working  with  the  supply  chain  parts,  in  order  to  take  into  consideration  their  opinions  of  how  reasonable  the  lead  times  are.  The  problems  with  great  potential  for  improvement  get  further  attention  whilst  the  others  are  disregarded.    The  next  step  is  to  analyze  the  perceived  problems  from  the  current  state  mapping,  in  order  to  determine  what  problems  that  are  connected  to  what  supply  chain  parts.  Since  there  is  a  risk  of  that  some  of  the  problems  might  cause  other  problems,  an  investigation  is  made  to  find  out  the  problems  that  can  be  categorized  as  root  causes.  In  turn,  the  root  causes  are  the  problems  that  will  get  the  effort  to  find  solutions  to  in  order  to  reduce  the  total  lead  time.  In  order  to  identify  the  root  causes  are  “Fishbone  diagrams”  used  for  each  supply  chain  part  categorized  as  having  great  potential  for  improvement.  The  diagram  is  a  well-­‐known  method  to  find  out  relationships  between  causes  and  effects.  It  is  important  to  always  try  to  find  and  improve  the  original  source  to  a  problem  instead  of  just  mitigate  the  symptom  of  the  problem.  By  finding  a  solution  to  the  root  causes,  it  may  prevent  the  problem  to  show  up  again.  (Oskarsson  et  al.,  2013)  Moreover,  the  identification  of  root  causes  is  based  on  the  discussion  seminar  and  on  previous  interviews  made  during  the  current  state  mapping.  Also  the  suggested  solutions,  identified  during  the  current  state  mapping,  are  being  connected  to  the  different  root  causes.  This  is  to  later  be  able  to  determine  what  solutions  that  might  shorten  the  total  lead  time.      Finally,  a  prioritization  was  made  of  what  supply  chain  parts,  problems  and  suggested  solutions  that  got   the   further  effort  and  attention   in   the  study.  Since  the  categorization  was  made   into  meaningful   groups   in   accordance   with   Taylor   (1997),   the   prioritization   was   focusing   on   the  categories  with  the  greatest  potential  for  lead  time  reduction.  The  prioritization  was  based  on  the  same  discussion  seminar  that  was  described  for  the  categorization.    In  summary,  the  question  regarding  the  supply  chain  parts  is  based  on  the  discussion  seminar  and  on  previous  interviews.  The  second  question,  regarding  the  root  cause  problems,  is  based  on  not  only   the   discussion   seminar   and   previous   interviews   but   also   the   Fishbone   diagram.   The   last  question  concerning  prioritization   is  based  on  only   the  discussion  seminar.  This   results   in   that  three   of   the   sub   questions   are   at   least   applying   two  methods,  meaning   that   triangulation   is  achieved  and  the  reliability  of  the  study  is  improved  (Björklund  &  Paulsson,  2014).  See  Figure  24  for  the  approach  of  the  second  objective  and  Table  7  for  a  visualization  of  the  methods  applied  during  this  phase.      

Page 82: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

METHODOLOGY  

     70  

 Figure  24.  Approach  of  the  second  objective.  Source:  Based  on  Taylor  (p.4,  1997)  

Table  7.  Methods  to  answer  the  sub  questions  of  the  second  objective.  

Sub  questions   Previous  interviews  

Discussion    seminar  

Fishbone    diagram  

2.1  For  what  parts  are  the  lead  time  not  reasonable  and  represents  a  significant  portion  of  the  total  lead  time?   X   X    

2.2  What  are  the  root  causes  for  the  excessive  lead  time?   X   X   X  

2.3  To  what  parts,  problems  and  solutions  will  the  effort  be  targeted?     X    

 5.5   Generation  of  Alternative  Solutions  The  generation  of  alternative  solutions  aims  at  come  up  with  solutions  that  will  decrease  the  total  lead  time  in  the  studied  supply  chain.  Since  it  seeks  to  provide  ideas  for  action,  this  phase  has  an  explorative  approach  (Lekvall  &  Wahlbin,  2001).  The  phase  takes  start  in  the  supply  chain  parts,  problems  and  solutions  that  have  been  prioritized  during  the  prior  stage.  First,  a  second  literature  review   was   conducted   in   order   to   collect   qualitative   secondary   data   regarding   theories   and  methods  that  may  lead  to  general  solutions  or  validate  the  prioritized  suggested  solutions.  Note  that  the  additional  literature  study  was  done  considering  that  the  existing  theoretical  framework  might  not  contain  alternative  solutions   to   the  potentials   that  are   identified  during  the  second  objective.  This   is   strengthened  by  Oskarsson  et  al.   (2013),  which  mean   that  existing   literature  should  be  used  when  trying  to  come  up  with  suggestions  for  solutions.  Moreover,  Björklund  &  Paulsson   (2014)   argue   that   it   is   an   academic   requirement   to   take   existing   literature   into  consideration.    Similar   to   the   initial   literature   review,   the   second   review   was   based   on   the   search   process  described  by  Patel  and  Davidsson  (2011),  except   from  the   first  step  that   is  disregarded   in   this  phase.  The  first  step  of  their  approach  seeks  to  provide  basic  knowledge  about  the  fields  of  the  study   and   generate   ideas   of   areas   where   to   deepen   the   knowledge.   At   this   stage,   the   basic  knowledge   was   considered   as   already   achieved   due   to   the   first   literature   review   and   that   a  narrower  research  can  be  done.  The  first  step  of  this  phase  was  therefore  to  search  for  literature  in   databases;  more   precisely   search   for   keywords   connected   to   the   identified   problems.   The  databases  used  were  mainly  “Business  Source  Premier”,  available  at  the  website  of  the  library  at  Linköping  University.  The  same  criteria  were  used  in  this  literature  research  as  for  the  first,  more  

Step%2%(Objective 2)Identificationof+

potentials+for+lead+time+reduction

Categorize

Prioritize

2.12.2

2.3

Page 83: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

METHODOLOGY  

     71  

precisely  full  text  and  references  available.  The  original  sources  were  used  to  the  extent  possible  in  order  to  avoid  biased  information.      Once  the  literature  review  was  completed  and  the  general  solutions  connected  to  the  potentials  were  collected,  solutions  specified  for  Ericsson  and  the  studied  supply  chain  were  developed.  By  adapting  the  general  solutions  to  the  current  situation  at  Ericsson  and  take  inspiration  from  the  suggested   solutions,   some   solutions   that   can   solve   the   problems  with   long   lead   times   in   the  current  state  were  developed  and  formulated.  In  summary,  the  approach  of  the  generation  of  the  alternative  solutions  are  illustrated  in  Figure  25  and  the  method  used  to  answer  the  sub  questions  are  presented  in  Table  8.    

 Figure  25.  Approach  of  the  third  objective.  Source:  Based  on  Taylor  (p.4,  1997)  

Table  8.  Methods  to  answer  the  sub  questions  of  the  third  objective.  

Sub  questions  Literature  review  

Previous  interviews  

3.1  What  general  alternatives  can  be  found  for  the  greatest  potentials  for  lead  time  reduction?   X    

3.2  How  can  the  general  alternatives  be  applied  to  the  studied  supply  chain?   X   X  

 5.6   Recommended  Solutions  and  Requirements  for  Implementation  This  phase   consists  of   two  major  parts:   evaluation  and   recommendation  as   the   first   part   and  requirements  for  implementation  as  the  second  part.  The  phase  can  be  related  to  the  predictive  study  that  Lekvall  and  Wahlbin  (2001)  mention  when  the  focus  is  to  provide  a  forecast  of  what  would  likely  occur  if  certain  specified  conditions  exist.    The  evaluation  and  recommendation  part  refers  to  evaluation  of  which  combination  of  solutions  that  are  most  beneficial  out  of  a   lead  time  perspective.   It  also  refers  to  determination  of  how  great  the  lead  time  reduction  will  be  with  the  recommended  solutions.  This  is  done  by  taking  into  consideration   how   the   solutions   relate   and   affect   each   other,   and   also   how  much   non-­‐value  added  time  that  can  be  eliminated,  expressed  as  quantitative  data.  The  impact  of  the  different  solutions   and   the   combination  of   solutions   include   consideration  of   qualitative  data  obtained  from  a  second  discussion  seminar,  with  the  same  person  working  with  logistics  at  Ericsson,  as  well  as  from  the  literature  research  and  former  interviews.  Moreover,  it  is  also  discussed  during  the  discussion   seminar   how   reasonable   each   solution   is   to   implement.   The   combination   of  

Step%3%(Objective 3)Generation)of)alternative)

solutions

Literature)review

Adaptation

3.1

3.2

Page 84: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

METHODOLOGY  

     72  

alternatives   with   the   most   beneficial   result   is   the   recommended   definite   solution   that   is  forwarded  to  Ericsson.    Finally,  the  implementation  part  seeks  to  answer  what  is  required  to  manage  an  implementation  of  the  recommended  solutions.  It  takes  into  consideration  what  is  required  from  e.g.  Ericsson,  ATM  and  the  suppliers,  but  also  what  structural  supply  chain  changes  that  is  needed.  Notice,  an  implementation  is  not  done  in  this  study  but  it  only  examines  the  requirements  for  one  if  Ericsson  decides  to  proceed  the  solutions.  It  also  discusses  the  time  horizon  for  the  implementation.  This  part  was  based  on  qualitative  data  in  form  of  what  the  person  from  the  discussion  seminar  as  well  as  the  people  from  the  current  state  interviews  said  about  requirements  for  implementing  the  solutions.  It  was  also  based  on  the  information  collected  from  the  literature  reviews  regarding  these  solutions.      The  approach  of  the  final  objective  is  visualized  in  Figure  26  and  the  methods  to  answer  the  sub  questions  are  presented  in    

 Figure  26.  Approach  of  the  fourth  objective.  Source:  Based  on  Taylor  (p.4,  1997)  

Table  9.  Methods  to  answer  the  sub  questions  of  the  final  objective.  

Sub  questions  Literature  review  

Previous  interviews  

Discussion  seminar  

4.1  What  combination  of  solutions  will  provide  the  greatest  lead  time  reduction  and  how  great  will  it  be?   X   X   X  

4.2  What  are  the  requirements  for  implementation?   X   X   X    5.7   Final  Phase  The  final  phase  consists  of  two  separate  parts,  namely  the  conclusions  and  the  discussion.  The  conclusions  are  a  summarization  of  the  final  recommendations  and  answers  to  the  purpose  of  the  study.  Hence,  this  section  only  contains  material  that  has  been  presented  previously  in  the  report   and   no   additional   information   is   therefore   added.   The   discussion   on   the   other   hand,  includes  a  reasoning  concerning  the  purpose  of  the  study  and  if  it  has  been  fulfilled  or  not.  It  also  highlights   other   contributions   of   the   study   apart   from   the   purpose.   Furthermore,   the   section  comprises   a   generalization   of   the   result   in   accordance   with   Björklund   and   Paulsson   (2014)  together  with  Lekvall  and  Wahlbin  (2001).  Bjöklund  and  Paulsson  (2014)  stress  the  importance  of  raising  the  level  of  abstraction  during  the  generalization  of  the  result  and  it  is  therefore  taken  into  account   for   the  discussion.  Finally,   recommendations  are  made  for   further  studies..  As  can  be  

Step%4%(Objective%4)Recommended(solutions(and(requirements(for(implementation

Evaluation(and(recommendation

Requirements(for(implementation

4.1

4.2

Page 85: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

METHODOLOGY  

     73  

seen,  three  methods  are  used  in  order  to  answer  both  questions.  That  improves  the  reliability  of  the  study  in  accordance  with  Björklund  and  Paulsson  (2014).    

 Figure  26.  Approach  of  the  fourth  objective.  Source:  Based  on  Taylor  (p.4,  1997)  

Table  9.  Methods  to  answer  the  sub  questions  of  the  final  objective.  

Sub  questions  Literature  review  

Previous  interviews  

Discussion  seminar  

4.1  What  combination  of  solutions  will  provide  the  greatest  lead  time  reduction  and  how  great  will  it  be?   X   X   X  

4.2  What  are  the  requirements  for  implementation?   X   X   X    5.8   Final  Phase  The  final  phase  consists  of  two  separate  parts,  namely  the  conclusions  and  the  discussion.  The  conclusions  are  a  summarization  of  the  final  recommendations  and  answers  to  the  purpose  of  the  study.  Hence,  this  section  only  contains  material  that  has  been  presented  previously  in  the  report   and   no   additional   information   is   therefore   added.   The   discussion   on   the   other   hand,  includes  a  reasoning  concerning  the  purpose  of  the  study  and  if  it  has  been  fulfilled  or  not.  It  also  highlights   other   contributions   of   the   study   apart   from   the   purpose.   Furthermore,   the   section  comprises   a   generalization   of   the   result   in   accordance   with   Björklund   and   Paulsson   (2014)  together  with  Lekvall  and  Wahlbin  (2001).  Bjöklund  and  Paulsson  (2014)  stress  the  importance  of  raising  the  level  of  abstraction  during  the  generalization  of  the  result  and  it  is  therefore  taken  into  account  for  the  discussion.  Finally,  recommendations  are  made  for  further  studies.      

Step%4%(Objective%4)Recommended(solutions(and(requirements(for(implementation

Evaluation(and(recommendation

Requirements(for(implementation

4.1

4.2

Page 86: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

METHODOLOGY  

     74  

   

Page 87: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Current  State  Mapping  

     75  

 

6   Current  State  Mapping  

The  chapter  presents  the  current  state  for  the  studied  supply  chain.  The  current  state  map  includes  a  description  of  the  supply  chain  structure,  the  supply  chain  performance  and  perceived  problems  and  suggested  solutions  from  people  working  within  different  parts  of  the  supply  chain.    

   

Page 88: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Current  State  Mapping  

     76  

6.1   Supply  Chain  Structure  This  section  describes  the  supply  chain  structure,  or  more  precisely  the  supply  chain  members,  activities   and   processes,   distribution   methods,   inventory   practices   and   how   information   is  managed.      6.1.1   Members  The  supply  chain  that  is  studied  in  this  project  consists  of  several  members,  which  can  be  divided  into  four  main  groups,  namely:  Suppliers,  Ericsson,  3PL-­‐providers  and  Customers  in  similarity  to  the  overall  system  presented  in  Section  2.6.  Starting  from  the  customer  side  of  the  supply  chain,  the  first  member  is  the  specific  customer  ATM.  ATM  has  an  order  desk  from  where  all  the  contact  with  Ericsson  is  managed  and  a  warehouse  for  storing  the  incoming  deliveries  of  materials  that  later  are  used  at  the  project  sites  (Ur  Rehman,  2016b).    The  members  classified  as  Ericsson  are  several.  The  member  closest  to  ATM  in  the  supply  chain  is  Ericsson  Algeria  (EAL)  and  is  a  local  subsidiary  to  Ericsson.  EAL  consists  of  a  local  sales  and  supply  office,  which  manages  the  contact  with  ATM  and  works  as  an  intermediary.  Furthermore,  there  is  an  order  desk,  a  control  tower  and  some  additional  strategic  functions  located  in  Kista,  which  are   referred   to  as  EAB.  Moreover,   the   supply   chain   contains  one  Ericsson  Supply  Site   (ESS)   in  Tallinn  and  one  Ericsson  Distribution  Center  (EDC)  in  Gothenburg.  (Ur  Rehman,  2016b)  There  is  also  one  site  material  hub  included  in  the  studied  supply  chain,  appurtenant  to  Ericsson,  which  is  located  in  Borås  (Pettersson,  2016b).      The  members  classified  as   suppliers   in   this   supply  chain  are   two  External  Manufacturing  Sites  (EMSs),  140  suppliers  for  electro  mechanic  components,  124  suppliers  for  site  material  and  one  Arrow  hub.  The  hub  is  located  in  Venlo  in  the  Netherlands  and  acts  as  an  intermediator  between  the   suppliers   of   electronic   components   and   Ericsson,   i.e.   Arrow   holds   buffers   for   Ericsson.  (Carlheimer,  2016b)  The  two  EMSs  are  Jabil  T-­‐Town  that  is  located  in  Hungary  and  also  Flex  Tczew  that  is  located  in  Poland  (Ianev,  2016b).      The  3PL-­‐providers  in  the  supply  chain  for  ATM  are  referred  to  different  service  providers  for  e.g.  transportation  and  installation.  It  is  for  instance  different  firms  that  manages  the  transportation  of   goods   between   different  members.   That   includes   transportation   by   truck,   boat   and   flight.  Moreover,   the   3PL-­‐providers   also   refer   to   application   service   providers,   which   manages   the  installation  at  the  projects  sites.  (Ur  Rehman,  2016b)  The  locations  of  the  main  members  of  the  studied  supply  chain  are  visualized  in  Figure  27.  Notice  that  the  component  suppliers  and  the  3PL-­‐providers   are   not   included   in   the   figure,   since   they   are   of   a   great   number   and   spread   out  differently.    

Page 89: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Current  State  Mapping  

     77  

   Figure  27.  The  location  of  the  members  in  the  studied  supply  chain.  

6.1.2   Activities  and  Processes  The  phase  for  the  initial  activities  and  processes  in  the  studied  supply  chain  is  called  the  pre-­‐sales  phase  and  starts  with  EAL  perceiving  an  opportunity  for  sales  from  the  customer  ATM.  The  person  accountable   for   the   customer   relations   is   the   Key   Account  Manager   (KAM)  who   also   has   the  ultimate  responsibility  for  the  contract  fulfillment.  The  approach  of  the  pre-­‐sales  phase  depends  if  the  opportunity  can  be  referred  to  an  already  existing  contract  or  if  a  new  contract  needs  to  be  established.  In  the  case  of  ATM,  a  five-­‐year  frame  contract  has  already  been  signed  and  the  terms  in  the  contract  cannot  be  changed,  unless  there  is  an  amendment.  To  handle  the  pre-­‐sales  phase,  the  KAM  appoints  a  Sales  Team  consisting  of  three  key  persons,  who’s  main  tasks  is  to  perform  a  qualification  of   the  opportunity,   create  an  appropriate  proposal  and  negotiate  with  ATM.  The  configuration  of  the  proposal  is  in  form  of  carts,  consisting  of  different  price  objects  and  is  created  in  the  Ericsson  Configuration  Portfolio  (ECP)  tool.  The  solution  is  then  transferred  manually  into  Verdi  by  a  solution  architect,  still  on  a  price  object  level,  and  sent  to  ATM  by  e-­‐mail.  The  tender  is  then  discussed  and  revised  gradually  with  ATM.      During  the  pre-­‐sales  phase,  the   local  Account  Supply  Responsible  (ASR)   is  supporting  the  KAM  and  the  Sales  Team  with  all  the  necessary  supply  inputs,  such  as  material  forecasts,  order-­‐ability  (obsolescent  material,  exemptions,  encryptions  etc.),  lead  time  verifications,  distribution  cost  and  delivery   planning,   supply   risk   analysis,   trade   compliance,   suppliers   readiness   and   third   party  

EDC,%SwedenGothenburg

ESS,%EstoniaTallinn

Ericsson%AB,%SwedenKista

ATM,%AlgeriaAlger

EAL,%Algeria

Arrow%hub,%the%NetherlandsVenlo

EMS%Flex,%PolandTzcew

EMS%Jabil,%HungaryT6Town

Site%material%hub,%SwedenBorås

Page 90: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Current  State  Mapping  

     78  

products  registrations.  The  pre-­‐sales  phase  results   in  a  signed  Customer  Purchase  Order  (CPO)  with  ATM,  which  is  handled  by  the  Sales  Team  at  EAL.  (Benrabah,  2016b)  Note  that  Ericsson  is  the  formal  order  taker  and  that  EAL  handles  the  pre-­‐sales  phase  on  behalf  of  Ericsson,  acting  as  an  intermediary  (Magnusson,  2016a).    Once  the  CPO  is  contracted  and  received,  the  local  processing  phase  is  initiated.  The  Sales  Team  at  EAL  secures  an  approved  early  start  because  of  the  L/C  deviation  and  EAB  starts  to  prepare  a  draft  for  the  L/C.  The  early  start  needs  to  be  approved  by  EAB  before  the  execution  phase  of  the  contract  can  start  (Benrabah,  2016b).  As  mentioned  in  the  business  introduction,  EAB  and  ATM  are  using  L/C  as  a  payment  term  for  reducing  the  risk  of  the  transactions.  Once  the  early  start  is  approved,  EAB  and  ATM  starts  to  negotiate  with  EAL  as  an  intermediate  in  order  to  agree  on  a  L/C  that  is  favorable  for  both  parties.  For  this  is  several  departments  and  functions  at  EAB,  EAL  and  ATM  involved.      Once  EAB  and  ATM  have  agreed  on  the  L/C  conditions,  EAB  sends  the  L/C  draft  to  both  the  EAB  bank  and  to  ATM,  see  Figure  28  below.  ATM  must  then  contact  their  bank  in  Algeria  and  apply  for  an  opening  of  the  L/C.  When  the  ATM  bank  has  approved  the  application,  they  send  the  L/C  to  the  EAB  bank,  referred  to  as  a  SWIFT.  The  EAB  bank  makes  sure  everything  looks  fine  and  scan  the  L/C  documents  to  see  if  any  changes  have  been  made  by  ATM  or  their  bank.  The  EAB  bank  then  updates  EAB  about  it  and  when  the  documents  at  all  four  parties  correspond  to  each  other,  the   L/C   is   made   operative,   which   means   that   goods   can   be   shipped   from   Ericsson   to   ATM.  (Holmqvist,  2016)    

 Figure  28.  The  L/C  process  between  EAB  and  ATM.    

1.#CPO

2.#ES

4.#L/C#request

3.#L/C#draft 5.#SWIFT

3.#L/C#draft

EALEricssonATM

Page 91: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Current  State  Mapping  

     79  

During  the  local  processing  phase  and  the  L/C  process,  the  Sales  Team  validates  the  assignment  specification  in  a  sales  tool  called  CRM360  based  on  the  deal  structure.  The  proposal  in  form  of  the  ECP  carts  are  refreshed  since  the  bill  of  material  might  contain  changes  and  to  be  able  to  order  the  solution,  the  price  objects  are  manually  translated  into  delivery  objects.  In  other  words,  the  sales  objects  are  expressed  as  objects  that  should  be  ordered  and  later  on  delivered  to  ATM.  The  prices   are   also   set   in   Verdi   as   per   the   contracted   price   list.   The   Project   Support   Professional  prepares  the  ONE  entry  form  that  retraces  the  deal  structure  and  reflects  the  billing  plan,  while  the   ASR   checks   the   structure   and   pricing   in   Verdi.   As   the   CPO   is   completed   with   additional  information  and  handed  over  to  the  Supply  Team  at  EAL,  the   local  handover  phase  is  fulfilled.  (Benrabah,  2016b)    As  the  local  handover  is  closed  and  the  early  start  is  approved,  all  the  documents  are  uploaded  in  Order  Office.  The  ASR  is  then  calling  for  a  handover  meeting  with  the  Supply  Team  at  both  EAL  and  EAB.  During  the  handover  meeting,  the  main  documents  are  reviewed,  discussed  and  if  any  adjustments  are  necessary,  it  is  corrected  just  after  the  meeting.  After  the  handover  meeting,  the  Supply  Team  at  EAB  creates  the  project  in  ONE  and  sends  the  value  contract  to  the  Supply  Team  at   EAL   in   order   for   them   to   release   the   Sales   Order   (SO).   The   Supply   Team   at   EAL   is   then  transferring  the  CPO  from  Verdi  into  ONE,  which  is  the  SAP  system  used  at  Ericsson,  and  notifies  EAB  when  the  SOs  are  created.  (Benrabah,  2016b).      The  SOs  that  EAB  receives  from  EAL  is  compared  with  the  CPO  in  Order  Desk  to  ensure  that  it  matches   (Benrabah,   2016b).   If   the   information   is   consistent,   the   Purchase   Orders   (POs)   are  released  by   the  order  desk   at   EAB   to   ESS   Tallinn,   EMS   Jabil   T-­‐town,   EMS  Flex   Tczew  and   site  material  suppliers  through  ONE.  If  the  site  material   is  picked  from  stock  at  the  hub  in  Borås,  a  Stock   Transfer  Order   (STO)   is   sent   instead,   since   EAB  have  ownership  of   the  hub.   EAB   is   also  sending   a   Distribution   Order   to   EDC   GBG.   (Ianev,   2016b).   The   Distribution   Order   consists   of  information  about  what  to  pick  and  pack,  which  customer  the  delivery  is  connected  to  and  when  the  truck  will  pick  up  the  goods  (Magnusson,  2016a).  Once  the  POs  and  STOs  are  released,  the  order  desk  at  EAB  is  monitoring  the  material  flow  until  the  goods  are  issued  at  EDC  GBG.      Both   ESS   Tallinn   and   the   two   EMSs   have   module   productions   based   on   forecasts.   After   the  production  sites  receive  the  forecasts  from  the  control  tower  at  EAB,  they  construct  individual  production  plans.  The  expected  delivery  dates  for  the  material  to  arrive  at  EDC  GBG  are  sent  back  to   EAB   and   if   the   order   acknowledgements   are   not   satisfactory,   a   pre-­‐escalation   is   made   to  improve  the  dates.  If  the  order  acknowledgements  still  are  not  satisfactory,  a  formal  escalation  is  placed   by   EAB.   (Benrabah,   2016;  Wilhelmsson,   2016)   The   information   and  material   flows   are  illustrated  in  Figure  29  and  will  be  described  further  in  the  following  text.    

Page 92: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Current  State  Mapping  

     80  

 Figure  29.  The  information  and  material  flow  in  the  studied  supply  chain.  

ESS  Tallinn  has  an  agreement  with  Arrow  that  orders  have  to  be  placed  a  certain  number  of  days  before  Arrow  can  assure  the  electronic  components  being  on  stock.  If  the  electronic  components  are   on   stock   as   the  order   arrives   at  Arrow,   the   components   are   prepared   for   delivery   to   ESS  Tallinn,  which  is  done  twice  a  week.  (Carlheimer,  2016b)  For  the  electro-­‐mechanic  components,  the  material  is  sent  directly  from  the  suppliers  with  a  frequency  that  is  determined  by  factors  such  as  the  geographical  distance  (Neuman,  2016b).  As  soon  as  the  electronic  components  from  Arrow  and   the   electro-­‐mechanic   components   from   the   suppliers   arrive   at   ESS   Tallinn,   the   incoming  goods  are  first   inspected.  Thereafter,  the  electronic  components  are  mounted  on  blank  circuit  boards  for  production  of  SMAs.  The  SMAs  are  then  constituting  as  cornerstones  for  the  radio  and  digital  module  production.  The  filter  units  are  also  parts  of  the  radio  units,  meaning  that  filters  need  to  be  produced  before  radio  units  can  be  produced.      The  module  production  at  ESS  Tallinn  has  separate  lines  for  the  radio,  digital  and  filter  units,  and  is  desired  to  be  continuously  active  and  produce  fixed  volumes.  (Zigulin,  2016)  The  variations  in  demand  are   instead  covered  by  the  two  EMSs:  EMS  Jabil  T-­‐Town  for  radio  units  and  EMS  Flex  Tczew  for  digital  units.  The  forecasted  modules  are  held  in  buffers,  which  are  primarily  used  when  the  POs  are  received.  Depending  on  if  the  customer  orders  only  modules  or  complete  RBSs,  the  modules  are  either  sent  to  EDC  GBG  with  ESS  Tallinn  as  transit  point  or  taken  into  node  production  at  ESS  Tallinn.   (Pallase,  2016)  When  a  node   is  produced,   it   is   loaded  with  a   customer   specific  software  and  then  inspected  to  make  sure  that  everything  works  fine.  After  the  inspection,  the  goods   are   ready   to   be   transported   to   EDC   GBG.   Hence,   the   module   production   is   based   on  forecasts  and  the  node  production  is  based  on  customer  orders.  (Zigulin,  2016)        

CPO

SO

DO

PO

POPO

PO

STO

PO

EALEricssonSuppliersDSPATM

Page 93: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Current  State  Mapping  

     81  

The  site  material  that  is  needed  to  complete  the  CPO  are  delivered  to  EDC  GBG  for  consolidation.  Approximately  90  %  of  all  the  site  materials  are  covered  by  the  pick  from  stock  hub  in  Borås.  The  supplier  base  for  site  material  consists  of  124  suppliers,  where  117  of  them  deliver  to  the  site  material  hub.  The  rest  are  purchased  directly  from  the  initial  site  material  suppliers.  It  may  refer  to  site  material   that   is  not  profitable  to  store   in  the  hub  because  of  size,  cost,   frequency,  etc.  (Pettersson,  2016b)    As  the  nodes,  modules  and  site  material  arrive  at  EDC  GBG  according  to  the  agreed  time  plan,  goods  received  (GR)  is  made.  The  goods  are  unloaded,  registered  in  the  system  and  put  on  storage  in  wait  to  be  consolidated  with  other  goods  included  in  the  CPO.  (Slotte,  2016)  An  incoterm  in  the  contract  with  ATM  is  the  Carriage  Paid  To  (CPT),  meaning  that  ATM  has  the  responsibility  to  insure  the  goods  before  it  can  be  delivered  from  EDC  GBG  (Ur  Rehman,  2016b).  Once  all  the  ordered  goods  have  arrived,  the  L/C  is  operative  and  the  insurance  is  guaranteed  by  ATM,  the  order   is  picked,  packed  and  stated  ready  for  delivery  in  ONE.  (Slotte,  2016)  However,  a  requirement  from  ATM   is   that   the  ordered  goods  are   inspected  before   the   transportation   is   called  off,  which   is  performed  by  an  external  company  (Ur  Rehman,  2016b).      After  the  certificate  of  quality  is  issued  and  the  goods  are  ready  for  shipment,  the  information  of  the  specific  shipment  is  sent  from  EAB  to  the  Distribution  Service  Provider  (DSP)  and  the  Supply  Team  at  both  EAL  and  ATM  in  order  to  start  the  customs  clearance.  Goods  issued  (GI)  is  made  as  the  DSP  collects  the  material  from  the  distribution  center  and  transport  it  to  ATM.  Time  slots  are  used   for   the   outbound   flow,   meaning   that   it   is   a   great   level   of   time   control   out   from   EDC  Gothenburg.   During   the   transport   to   ATM,   the   order  must   go   through   the   customs  where   a  further  inspection  is  performed  to  see  if  the  order  is  complete  and  can  be  transported  into  the  country.  (Ur  Rehman,  2016b)    6.1.3   Distribution  Methods  For  inbound  supply,  goods  are  usually  incoming  to  ESS  Tallinn  from  Arrow,  component  suppliers,  EMS  Jabil  T-­‐town  and  EMS  Flex  Tczew  by  truck,  but  also  by  boat  for  long  distance  transportations  e.g.  deliveries  from  China.  The  transportations  from  ESS  Tallinn  to  EDC  GBG  are  also  managed  mostly  by  truck.  (Carlheimer,  2016b;  Neuman,  2016b)  From  the  site  material  suppliers  and  from  the  hub  in  Borås  are  material  sent  by  truck.  Incoming  deliveries  to  the  hub  are  managed  by  either  truck  or  boat  depending  on  the  distance  to  the  supplier  (Pettersson,  2016b).        For  the  outbound,  the  goods  are  incoming  to  EDC  GBG  for  consolidation  of  deliveries  from  ESS  Tallinn  and  from  site  material  suppliers.  When  the  goods  are  consolidated  and  correspond  to  the  CPO,   the   goods   are   sent   to   the   customs   by   multi-­‐mode   transportation.   It   means   that   the  transportation  may  be  performed  differently  depending  on   factors   such  as  deadlines,  but   the  most   common   transportation   is   performed  half  way   by   truck   and  half  way   by   boat.   It   is   also  possible  to  transport  by  boat  all  the  way  from  Gothenburg  to  Algeria,  or  even  by  air.  That  is  a  question  of  cost  and  criticalness.  (Ur  Rehman,  2016b)  The  outbound  part  can  be  compared  to  the  regional  distribution  method  described  in  Section  3.6.    

Page 94: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Current  State  Mapping  

     82  

6.1.4   Inventory  Practices  Inventory  handling  is  managed  in  different  ways  in  different  parts  of  the  supply  chain.  The  Arrow  hub  holds  electronic  components  for  Ericsson  in  a  buffer  that  is  kept  between  an  agreed  minimum  and  maximum  level.  (Carlheimer,  2016b)  The  components  are  owned  by  the  suppliers  that  supply  the   hub,   until   they   are   delivered   to   a   production   site   (Kjellander,   2016).   There   is   no   VMI-­‐agreement  between  Ericsson  and  Arrow,  since  deliveries  are  performed  based  on  orders  from  ESS  Tallinn  and  the  two  EMSs  (Carlheimer,  2016b).  VMI  is  instead  applied  between  ESS  Tallinn  and  a  significant  part  of  the  suppliers  for  electro  mechanic  components.  Thus,  ESS  Tallinn  holds  buffers  of   electro  mechanic   components   and   this   is   due   to   the   volatile   customer   demand   that   often  results   in   inaccurate   forecasts.   According   to   Zigulin   (2016),   it   is   not   possible   to   practice   JIT  deliveries  as  long  as  the  forecasts  are  not  100  %  accurate.  Sometimes,  the  buffers  are  not  even  enough  to  cover  up  for  the  fluctuations  in  the  demand,  meaning  that  ESS  Tallinn  has  to  buy  on  order  from  the  suppliers,  resulting  in  longer  lead  times  (Neuman,  2016b).  ESS  Tallinn  also  buffers  radio  and  digital  units  to  cover  for  95-­‐98  %  of  the  total  demand.  With  filter  it  is  more  difficult  to  buffer  considering  that  each  filter  is  customized  with  different  band  widths.  (Zigulin,  2016)      The   two   EMSs   use   different  methods   compared   to   ESS   Tallinn.   For   instance,   EMS   Flex   Tczew  orders  the  material  so  it  will  be  available  on  site  two  weeks  before  the  planned  production  will  start.  By  doing  so,  the  goods  are  placed  on  stock  and  will  be  tied  to  a  specific  customer.  EMS  Jabil  T-­‐Town  on  the  other  hand,  applies  different  kind  of  buffer  strategies  depending  on  the  distance  to  each  supplier.  (Neuman,  2016b)    The  basic  idea  of  EDC  GBG  is  to  consolidate  the  incoming  goods  according  to  the  cross-­‐docking  method  and  thus  are  no  buffers  supposed  to  be  held.  However,  due  to  the  incoming  goods  from  several  sources  that  most  often  are  unsynchronized,  goods  are  forced  to  be  put  on  stock  at  EDC  GBG  in  wait  for  being  consolidated.  (Ur  Rehman,  2016b)    Regarding  the  site  material,  90  %  of  the  demand  is  buffered  in  the  pick-­‐from-­‐stock  hub  in  Borås.  VMI  is  applied  with  the  most  common  and  frequent  third-­‐part  suppliers,  otherwise  make-­‐to-­‐order  is  used.  For  the  third-­‐part  suppliers  that  deliver  directly  to  EDC  GBG,  the  goods  are  delivered  on  order.  There  are  also  agreements  with  some  of  the  third-­‐part  suppliers  implying  them  to  buffer  site-­‐material  to  a  certain  level  in  order  to  minimize  the  lead  times.  (Pettersson,  2016b)    6.1.5   Information  Management  There  are  several  systems  used  for  communication  and  information  sharing  in  the  studied  supply  chain.  Not  all  of  them  are  relevant  to  present  in  this  study,  but  four  that  are  frequently  used  are  ECP,  CRM360,  Verdi  and  ONE.  The  purpose  with  these  systems  is  described  below.      Ericsson  Configuration  Portfolio  (ECP):  supports  the  proposal  process  by  giving  customers  access  to   product   configuration   functionality   and   product   information   that   is   used   in   proposals  (Radenholt,  2016).      

Page 95: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Current  State  Mapping  

     83  

CRM360:  is  the  Ericsson  opportunity  tool  that  is  used  by  its  subsidiaries  for  managing  different  business  opportunities.  All  the  opportunities  received  by  EAL  are  added  into  CRM360,  making  it  possible  to  follow  the  status  of  them.  For  example,  CRM360  can  tell  if  it  is  a  new  opportunity  or  if  a  contract  already  has  been  signed  with  the  customer.  (Özdogru,  2016)    Verdi:  is  the  Ericsson  proposal  tool  and  supports  the  pre-­‐sales  process  and  provides  input  to  the  supply   process.   The   purpose   of   Verdi   is   to   optimize   the   sales   and  marketing   and   the   supply  processes  by:      

•   Supporting  the  entire  Ericsson  product  portfolio  •   Enabling  access  to  correct  information  (product  data,  configuration  support  and  prices)  in  

a  user  friendly  way  •   Electronic  interfaces  instead  of  manual  transfer  data  •   Speed  up  and  facilitate  the  proposal  process  •   Support  for  workgroups  and  re-­‐use  data  by  storing  information  for  a  specific  proposal  in  

a  common  database    

(Benrabah,  2016b;  Lindberg,  2016;  Özdogru,  2016)    ONE:  is  synonymous  with  SAP  and  is  the  ERP-­‐system  used  at  Ericsson.  The  purpose  of  ONE  is  to  facilitate  all  transactions  and  the  order  management.  Given  this,  all  transactions  and  orders  are  registered  and  handled  in  ONE.  (Aglert,  2016)    6.2   Supply  Chain  Performance  –  Lead  Times  This  section  presents  the  lead  times  that  have  been  identified  in  the  studied  supply  chain.  In  some  of  the  supply  chain  parts  is  the  lead  time  varying  in  an  interval,  depending  on  different  reasons.  Because  of  this,  the  lead  times  are  in  the  following  text  presented  both  in  an  interval  and  also  as  they  are  in  a  normal  state.  This  is  to  provide  a  broader  basis  for  the  evaluation  of  the  solutions  in  the  end  of  the  report.  Since  the  Proof  of  Delivery  (PoD)  from  Ericsson  to  ATM  is  at  the  customs  and  there  are  not  enough  data  after  that  point,  the  lead  times  from  the  customs  to  the  project  site   are  not   taken   into   consideration   in   this   study.   The   lead   times   for   the   information   flow   is  illustrated  in  Figure  30  and  described  further  below.        

Page 96: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Current  State  Mapping  

     84  

 Figure  30.  The  lead  times  in  the  information  flow.  

The  duration  of  the  pre-­‐sales  phase  is  denoted  as  T0  and  can  vary  between  one  month  up  to  more  than   a   year,   depending   on   the   complexity   of   the   deal,   the   customer   priorities,   the   customer  budget  etc.  Once  the  contract  is  signed,  the  time  it  takes  for  the  Sales  Team  at  EAL  to  create  the  additional  documents  to  the  CPO  until  it  is  handed  over  to  the  Supply  Team  at  EAL  is  14-­‐49  days.  This   lead   time   is   referred   to  as  T1  and  consists  of   local  processing  of  documents,   inputs   from  several  stakeholders  and  designing  the  solution,  which  in  average  time  takes  28  days.  The  local  handover  is  mainly  dependent  on  the  workload,  the  dexterity  of  each  stakeholder,  the  complexity  of  the  solution  and  the  time  plan  of  the  project.  (Benrabah,  2016b)      After  the  Supply  Team  at  EAL  receives  the  CPO,  a  handover  meeting  is  held  with  EAB  where  the  scope  of  the  project  and  some  financial  aspects  are  reviewed  and  discussed.  The  time  it  takes  for  the  handover  meeting  is  1-­‐2  days  and  referred  to  as  T2.  The  general  time  it  takes  for  Ericsson  to  place  the  orders  to  the  manufacturing  units,  i.e.  ESS  Tallinn,  EMS  Jabil  T-­‐town  and  EMS  Flex  Tczew,  and  the  site  material   suppliers   is  2-­‐3  days  and  referred  to  as  T3.   (Benrabah,  2016b)  As  stated  before,  ESS  Tallinn  has  to  place  an  order  to  Arrow  a  certain  number  of  days  before  the  desired  delivery  time  in  order  for  Arrow  to  ensure  having  the  electronic  components  on  stock.  This  lead  time  is  numbered  as  T4  and  is  agreed  to  be  17  days.  (Carlheimer,  2016b)  The  lead  times  for  the  material  flow  is  illustrated  in  Figure  31  and  described  further  below.      

CPO

SO

DO

PO

POPO

PO

STO

PO

T0

T1T2

T3

T4

EALEricssonSuppliersDSPATM

Page 97: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Current  State  Mapping  

     85  

 Figure  31.  The  lead  times  in  the  material  flow.    

The  average  storage  time  in  Arrow  for  the  electronic  components  is  referred  to  as  T5  and  is  26  days.  The  time  it  takes  for  the  components  to  be  taken  out  from  Arrow,  transported  to  ESS  Tallinn,  EMS   Jabil   T-­‐Town   or   EMS   Flex   Tczew   and   put   into   production   is   numbered  T6a   and   takes   in  average  26  days.  Notice  that  this   lead  time  is  also  consisting  of  the  waiting  time  at  any  of  the  production   sites.   The   time   it   takes   from   the   electro  mechanic   component   suppliers   until   the  production  starts  is  referred  to  T6b  and  can  take  as  much  as  up  to  two  weeks,  but  are  for  most  of  the  time  in  buffer  at  the  production  sites  and  therefore  not  experienced  by  the  customers.  The  electro  mechanic  components  that  are  buffered  at  the  production  sites  are  dimensioned  based  on  forecasts  and  because  of  forecast  deviations,  there  can  sometimes  be  material  and  capacity  constraints  that  will  be  experienced  by  the  customer  in  form  of  longer  lead  times.  The  delivery  precision   from   the   suppliers   for   electro   mechanic   components   is   estimated   to   be   80-­‐85   %.  (Pallase,  2016)    Next  up  is  the  module  production,  numbered  T7a,  and  refers  to  the  time  from  when  the  SMA  production  starts,  until  the  module  is  put  on  stock  at  ESS  Tallinn  or  taken  directly  into  the  node  production.  This  time  includes  production  at  ESS  Tallinn,  EMS  Jabil  T-­‐Town,  EMS  Flex  Tczew  and  also  the  transportation  from  the  EMSs  to  ESS  Tallinn.  This  process  takes  4-­‐9  days  depending  on  where  the  production  takes  place,  the  tact  time  etc.  (Tomba,  2016).  Since  ESS  Tallinn  produces  the  largest  volumes  compared  to  EMS  Jabil  T-­‐Town  and  EMS  Flex  Tczew  that  only  cover  variations  in  demand,  the  lead  time  in  the  normal  case  is  4  days.  T7b  refers  to  the  average  buffer  lead  time  of  finished  modules  at  ESS  Tallinn  and  is  20  days.  The  node  production  is  numbered  T7c  and  takes  just  one  day  including  the  final  testing  (Josepson,  2016).          

T8c

T5

T6a

T7a

T7bT7c

T8a

T9

T10

T8b

T6b

EALEricssonSuppliersDSPATM

Page 98: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Current  State  Mapping  

     86  

The  transportation  from  ESS  Tallinn  to  GR  at  EDC  Gothenburg  is  denoted  T8a  and  takes  3  days  (Tamme,  2016).  The  lead  time  from  the  site  material  suppliers  that  delivers  directly  to  EDC  GBG,  i.e.  that  do  not  deliver  to  the  site  material  hub,  is  in  normal  cases  7  days  and  is  referred  to  as  T8b.  This   lead  time  might   in  some  cases  be  significantly   larger   if   there   is  an  order  on   low  frequent  components,  which  then  can  be  up  to  50  days.  It  takes  in  general  3  days  for  the  goods  from  the  site  material  hub  in  Borås  to  be  delivered  to  EDC  GBG  and  this  time  is  denoted  as  T8c.  (Pettersson,  2016b)      The  lead  time  from  GR  to  GI  at  EDC  GBG  is  referred  to  as  T9  and  takes  in  average  32  days.  From  the  data  that  the  lead  times  are  based  on  could  also  an  interval  from  7-­‐50  days  be  identified.  Just  making  the  GR  and  GI  take  around  four  hours  respectively.  The  time  from  GI  at  EDC  Gothenburg  until  the  goods  arrive  at  the  customs  in  Algeria  is  denoted  T10  and  takes  15  days.  The  lead  times  for  the  presented  activities  and  processes  in  the  studied  supply  chain  are  summarized  in  Table  10  below.    

Table  10.  Lead  times  for  different  activities  and  processes  in  the  studied  supply  chain.  

Number   Activities  &  Processes  Lead  Time    (days)  

Normal  Lead  Time  (days)  

T0   Pre-­‐sales   30-­‐365   30-­‐365  T1   Local  processing   14-­‐49   28  T2   Handover   2-­‐3   3  T3   Ordering   1-­‐2   2  T4   Component  ordering   17   17  T5   Component  Arrow   26   26  T6a   Arrow  outbound   26   26  T6b   Electro  mechanic  outbound   0-­‐14   0  T7a   Module  production   4-­‐9   4  T7b   Module  buffer   20   20  T7c   Node  production   1   1  T8a   ESS  outbound   3   3  T8b   Site  material  outbound   7-­‐50   7  T8c   Site  material  hub   3   3  T9   EDC   7-­‐50   32  T10   EDC  Outbound   15   15  

   The  L/C  process  illustrated  in  Figure  28  is  performed  in  parallel  to  the  material  and  information  flow  described  above,  starting  from  when  the  CPO  is  signed  and  handed  over  to  the  Supply  Team  at  EAL.  The  time  it  takes  for  the  Supply  Team  at  EAL  to  get  an  approval  of  an  early  start  and  for  EAB  to  send  the  L/C  draft  to  ATM  and  the  EAB  bank  is  between  one  to  two  weeks.  As  ATM  receives  the  L/C  draft,  it  takes  one  to  two  months  for  them  to  go  to  their  bank  and  apply  for  the  L/C  to  be  

Page 99: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Current  State  Mapping  

     87  

opened.  Thereafter  is  the  SWIFT  performed,  i.e.  the  ATM  bank  sends  the  L/C  to  the  EAB  bank  and  the  documents  corresponds  to  each  other,  making  the  L/C  operative  and  is  general  taking  one  to  two  weeks.    As  stated  in  the  introduction  of  the  report,  a  directive  in  the  study  is  to  only  examine  the  lead  time  perceived  by  the  customer.  Therefore,  the  lead  times  that  are  presented  below  are  the  ones  that  are  perceived  by  ATM.  As  a  result,  the  Pre-­‐Sales  (T0),  Component  ordering  (T4),  Component  Arrow  (T5),  Arrow  outbound  (T6a)  and  the  Module  buffer  (T7b)  are  disregarded.  T0  is  disregarded  since   it  occurs  before  ATM  places   the  actual  purchase  order.  T4  and  T5  are  disregarded  since  Arrow   holds   buffers   that   are   great   enough   to   cover   the   demand   and   these   lead   times   are  therefore  not  experienced  by  ATM.  The  reason  for  T6a  being  disregarded   is  because   it  mainly  constitutes  of  buffer  lead  time  of  components  at  the  production  sites  that  are  sent  from  Arrow.  Almost   the   same   reasoning   applies   for   T7b   since   it   refers   to   a   buffer   lead   time.   T6b   is   not  disregarded  since  ATM  may  perceive  that   lead  time  if  the  production  waits  for   ingoing  electro  mechanic  components.          The  total  lead  time  in  the  studied  supply  chain  is  presented  for  three  cases,  namely:  the  best,  the  normal  and  the  worst  case  scenario.  This  is  because  of  the  lead  times  that  vary  in  a  great  interval,  and  also  since  it  is  considered  interesting  for  the  reader  to  be  provided  with  the  total  lead  times  in   the  different  cases.   In  best   case  does  ATM  perceive  14  days  of   local  processing,  2  days   for  handover,  1  day  ordering,  1  day  node  production,  3  days  for  inbound  to  EDC  Gothenburg,  7  days  at   ADC  GBG   and   finally   15   days   from  EDC  GBG   to   the   customs   in   Algeria.   In   such   cases,   it   is  assumed  that  the  right  modules  are  on  stock  in  the  production.  That  means  that  the  lead  time  in  best  case  is  43  days.    In  average  does  ATM  perceive  28  days  of  local  processing,  3  days  for  handover,  2  days  ordering,  1  day  node  production,  3  days  for  inbound  to  EDC  GBG,  32  days  at  EDC  GBG  and  then  15  days  to  the  customs.  In  this  case,  it  is  also  assumed  that  the  node  production  can  pick  modules  from  the  module   buffer.   This   since   the   buffers   are   thought   to   cover   95-­‐98  %   of   the   demand   and   also  because  ATM  in  a  great  extent  orders  RBSs  with  standard  modules.  That  means  that  the  lead  time  in  normal  case  is  84  days.      In  worst  case  scenario,  based  on  the  data  from  2015,  ATM  perceives  49  days  of  local  processing,  3  days  for  handover,  2  days  ordering,  14  days  in  waiting  for  components  in  the  production,  9  days  in  module  production,  1  day  in  node  production,  3  days  for  inbound  to  EDC  GBG,  50  days  at  EDC  GBG  and  finally  15  days  to  the  customs.  The  reason  for  the  inbound  to  EDC  GBG  is  set  to  3  days,  although  site  material  outbound  is  50  days  in  worst  case,  is  because  that  time  is  added  to  the  time  at  EDC  GBG  instead.  The  time  at  EDC  GBG  starts  ticking  when  the  first  delivery  has  arrived,  which  happens   after   3   days.   This   means   that   the   lead   time   in  worst   case   is   146   days.   The   above  presented  total  lead  times  in  the  three  different  cases  are  presented  in  Table  11  below.            

Page 100: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Current  State  Mapping  

     88  

Table  11.  The  customer  order  lead  time  in  the  best,  normal  and  worst  case  scenario.      

Scenario   Lead  Time  (Days)  Best  case   43  Normal   84  

Worst  case   146    6.3   Business  Context  –  Strategies  This  section  describes  the  strategies  applied  in  the  supply  chain  in  terms  of  the  Customer  Order  Decoupling  Point  (CODP),  postponement,  speculation,  lean  and  agile.      The  CODP  is  today  at  the  node  production  at  ESS  Tallinn.  From  there,  make-­‐to-­‐order  is  applied  for  products   from   the  existing  product  portfolio   and  engineer-­‐to-­‐order   if   the   customer  has   some  special  request.  (Kjellander,  2016)  This  can  be  compared  with  the  form-­‐postponement  concept,  described  in  Section  3.8.  Though  deliveries  from  ESS  Tallinn  to  EDC  GBG  are  performed  on  order,  which  indicates  a  time-­‐postponement  strategy.  Also  the  deliveries  out  from  EDC  GBG  apply  time-­‐postponement  since  deliveries  are  only  performed  when  the  complete  CPO  is  fulfilled.    The  inbound  of  site-­‐material  can  be  divided  into  two  flows,  one  passing  through  the  hub  and  the  other  going  direct  from  supplier  to  EDC  GBG  (Pettersson,  2016b).  When  components  are  stored  in  the  hub,   it   indicates  on  place-­‐speculation  and  form-­‐speculation  between  suppliers  and  hub.  Since  it  is  a  pick-­‐from-­‐stock  hub,  time-­‐postponement  is  applied  between  the  hub  and  EDC  GBG.  For  the  second  flow,  it  is  time-­‐postponement  between  suppliers  and  EDC  GBG,  and  either  form-­‐postponement  or  form-­‐speculation  at  the  suppliers.      After  the  CODP,  if  not  including  the  site-­‐material  part,  there  is  no  buffering  in  the  studied  supply  chain  and  thus  no  place-­‐speculation  strategy  in  that  part.  At  the  inbound  part,  from  component  suppliers  to  ESS  Tallinn,  place-­‐speculation  is  used  when  buffering  at  Arrow  and  at  ESS  Tallinn.  That  implies   that   also   form-­‐speculation   is   used.   Between   Arrow   and   ESS   Tallinn   there   is   a   time-­‐postponement.  The  buffering  of  radio  and  digital  units  at  ESS  Tallinn  show  on  form-­‐speculation.  Regarding  the  terms  lean  and  agile,  Ericsson  has  a  wanted  strategy  of  being  lean  before  the  CODP  and  agile  after   it.  Today,   it   is  hard  to  see  this  separation  between  lean  and  agile   in  the  supply  chain.  (Kjellander,  2016)    6.4   Experienced  Problems  and  Suggested  Solutions  The   interviews  held  during   the  current  state  mapping  have  resulted   in  a  number  of   identified  problems,  perceived  by  people  working  with  different  parts  of  the  supply  chain.  These  problems  are  described  throughout  the  text  below  together  with  some  suggested  solutions.  Notice  that  there   is   sometimes   more   than   one   problem   described   under   each   section.   This   since   the  respondents  often  mentioned  more  than  one  problem,  that  often  had  a  clear  relationship.  The  identified   problems   are   in   total   of   43   and   described   in   Sections   6.4.1   -­‐   6.4.14   and   finally  summarized  in  Section  6.4.15.    

Page 101: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Current  State  Mapping  

     89  

6.4.1   Numerous  Manual  Handovers  The  bottleneck   in  the   information  flow  is  the   local  processing  phase,  when  the  CPO  is  handed  over  from  the  Sales  Team  to  the  Supply  Team  at  EAL.  The  main  reason  for  the  excessive  lead  time  is  perceived  to  be  the  big  workload  and  the   information  that  has  to  be  collected  from  several  stakeholders,  which  often  are  involved  in  several  projects  at  the  same  time.  It  can  mean  to  wait  for  approval  of   the  early  start,  validation  of   the  assignment   id,   the  ONE  entry   form  or   for   the  solution  to  be  ready.  Many  of  the  tasks  performed  during  the  local  processing  are  managed  in  different  systems  that  are  incompatible  with  each  other  and  as  a  consequence,  there  are  a  lot  of  information  shared  by  e-­‐mail.  (Benrabah,  2016b;  Özdogru,  2016)  The  suggested  solution  for  this  problem  would  be  to  provide  the  right  information  at  the  right  time  (Benrabah,  2016b).      Another  perspective  of  the  local  processing  phase  is  that  some  activities  can  be  performed  by  EAL  before  the  CPO  is  sent  from  ATM.  By  doing  so,  the  experienced  lead  time  from  when  ATM  places  the  order  until  the  goods  are  delivered  will  be  reduced.  (Lindberg,  2016;  Magnusson,  2016a)  Verdi  is  a  system  for  sending  proposals  to  customers,  consisting  of  price  objects  that  can  be  updated  during   the   negotiations.   The   translation   of   price   objects   into   delivery   objects   can   as   well   be  performed  and  updated  before  the  CPO  has  arrived  to  EAL.  (Lindberg,  2016)    The  problem  with  manual  handovers   is   supported  by  Forsberg   (2016)   that  highlights   the   local  processing  as  the  most  time  consuming  part,  or  to  be  more  precisely  the  translation  from  price  objects   into  delivery  objects.  The  price  objects  need   to  be  manually   translated   into  orderable  product  packages  before  the  contracted  solution  can  be  ordered  and  delivered,  which  is  a  time  consuming   process   that   results   in   high   costs   and   longer   lead   times   for   Ericsson.   The  manual  handovers  are  not  only  an   issue  during  the   local  processing,  but  are  a  general  problem   in  the  supply  chain  and  can  be  identified  during  tendering,  contracting,  forecasting,  ordering,  delivery  and  invoice.  (Forsberg,  2016)  The  incompatibility  between  different  processes  and  systems  in  the  current  supply  chain  is  causing  many  manual  translations  and  handovers.  For  instance,  there  is  a  poor  transparency  between  Ericsson  and  the  region,  since  there  is  no  support  system  that  let  the  local  company  integrate  with  Ericsson’s  processes.  It  would  therefore  be  desirable  to  increase  the  integration  between  systems  and  processes  throughout  the  entire  supply  chain.  (Forsberg,  2016;  Radenholt,  2016)    6.4.2   CPO  Bound  to  Product  Numbers  In   most   cases,   Ericsson   uses   their   internal   product   numbers   when   doing   business   with   the  customers,  i.e.  the  customers  place  orders  on  specific  product  numbers,  resulting  in  CPOs  with  a  high   level  of  detail   (Högberg,  2016).  This   is   the  case   for  ATM,  which  places  orders  on  specific  product  numbers  and  the  high  level  of  detail  increases  the  complexity  of  the  local  processing  and  the   development   of   the   solution   (Benrabah,   2016b).  Working  with   internal   product   numbers  towards  the  customer  results  in  CPOs  that  are  bound  to  a  certain  solution,  including  products  that  only   can   be   replaced   if   the   form,   fit   and   function   are   the   same.   That  means,   if   a   product   is  obsolescence  and  a  revision  that  is  smaller  in  size  is  available,  it  cannot  be  used  in  the  solution  and  therefore  has  to  be  renewed.  It  would  be  desirable  for  Ericsson  to  have  an  identification  of  the   solutions   that   are   not   bound   to   the   product   numbers   and   in   this   way   be  more   flexible.  (Högberg,  2016)  

Page 102: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Current  State  Mapping  

     90  

6.4.3   Incomplete  Documents  There   are   usually   no   problems   for   Ericsson   to   release   the   POs   to   the   first-­‐tier   suppliers,   but  occasionally  information  is  missing.  For  example,  it  can  be  quotations  for  site  material  products  that  are  absent  or  exemptions  for  products  that  are  not  ready.  This  is  seen  as  a  minor  problem  since  it  rarely  occurs  but  once  it  happens,  it  contributes  to  a  slower  information  flow  and  a  longer  total  lead  time.  (Benrabah,  2016b)    6.4.4   Several  Product  Catalogues                      The  material  that  is  needed  for  a  solution  is  ordered  from  several  product  catalogues,  e.g.  site  material   in   one   catalogue,   filters   in   another   catalogue   etc.,   and   at   least   five   POs   are   sent   to  different  suppliers.  These  POs  are  only  related  to  each  other  through  the  CPO  and  can  therefore  only  be  associated  by  persons  with  access  to  the  CPO.  Today,  there  are  no  automated  traceability  from  tender  to  contract  to  order,  which  has  resulted  in  a  lot  of  manually  backtracking  to  get  the  orders  right.  It  would  be  favorable  to  have  only  one  big  product  catalogue  that  the  material   is  ordered   from.  That  would  give  one   identity  of   the  solution,  which   in   turn  would   facilitate   the  traceability  in  the  supply  chain.  (Högberg,  2016)    6.4.5   Capacity  or  Material  Constraints  at  ESS  Tallinn  In  the  production  at  ESS  Tallinn  there  are  sometimes  problems  connected  to  capacity  or  material  constraints.  Material  might  not  be  available  on  time,  which  lead  to  that  the  production  cannot  start  on  time.  On  the  other  hand,  it  happens  that  the  material  is  available  earlier  than  expected,  resulting  in  increased  buffer  levels  and  tied  up  capital.  It  may  also  be  a  question  of  not  having  enough  capacity  available,  such  as  technical  competence  to  produce  what  is  ordered.  A  reason  for  the  stated  problems  is  perceived  to  be  the  long  lead  times,  from  when  the  forecast  is  made  until  the  material  is  available  in  the  production.  (Tomba,  2016)      6.4.6   Unsynchronized  Incoming  Deliveries  to  EDC  GBG  The   incoming   deliveries   of   nodes   and   site   material   to   EDC   GBG   are   often   unsynchronized,  meaning  that  goods  are  waiting  for  an  unnecessary  long  time.  A  reason  for  this  is  considered  to  be  that  the  persons  responsible  for  the  nodes  and  site  material  have  no  visibility  into  each  other’s  flows,  possible  shortages  etc.  (Pettersson,  2016b;  Slotte,  2016;  Wilhelmsson,  2016)  This  is  further  compounded   by   the   diverse   flow   of  modules,   nodes   and   site  material   from   several   different  suppliers.  A  solution  to  the  problem  would  be  to  manage  an  improved  transparency  between  the  incoming  flows  and  supply  chain  members.  Moreover,  this  would  be  a  minor  problem  if  it  was  possible  to  split  the  CPO  into  two  CPOs,  one  for  the  nodes  and  one  for  site  material.  By  doing  so,  the  nodes  could  be  sent  to  ATM  without  the  site  material  and  vice  versa.  (Pettersson,  2016b)  The  latter  solution  is  suspected  not  to  be  accepted  by  the  customer  since  it  is  preferable  to  get  the  whole  order  at  the  same  time  (Benrabah,  2016b).        

Page 103: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Current  State  Mapping  

     91  

6.4.7   Volatile  Working  Load  at  EDC  GBG  The  volatile  customer  demand  affects  the  work  load  at  EDC  GBG,  which  can  shift  with  1  000  %  in  one  week  and  costs  a  lot  of  money  for  Ericsson.  In  best  case,  EDC  GBG  knows  what  day  the  trucks  will  arrive,  but  sometimes  only  what  week  the  delivery  is  expected.  It  can  also  happen  that  over  a  dozen  trucks  arrive  at  the  same  time.      At  this  part  of  the  supply  chain,  a  solution  could  be  to  control  the  incoming  flows  to  EDC  GBG  and  even  out   the  workload.   It  would  help  a   lot   to   implement  a  system  that  controls   the   incoming  deliveries  so  that  only  a  limited  number  of  trucks  that  can  deliver  at  the  same  time,  i.e.  during  predefined  time  slots.  Then,  each  truck  needs  to  book  one  of  the  time  slots  when  the  expected  delivery  of  the  goods  will  take  place.  This  will  prevent  that  too  many  trucks  deliver  at  the  same  time   and   also   facilitate   the   planning   significantly.   (Slotte,   2016)   Also   Kristoffersson   (2016)  mentions  the  difficulties  with  planning  at  EDC  GBG.  She  points  at  that  only  60  %  of  the  incoming  trucks   to  EDC  GBG  are  preannounced,  which  means   that   they   in   those   cases  has   information  about  the  supplier,  delivery  date,  number  of  packages,  shipping  ID  and  carrier.  It  would  facilitate  if  the  deliveries  in  a  greater  extent  were  preannounced,  and  she  also  points  at  the  need  for  time  slots  that  Slotte  (2016)  mentioned.      Another  perceived  problem  connected   to  EDC  GBG   is   that  most  deliveries  out   from  EDC  GBG  occur  at  the  end  of  the  working  week.  The  rest  of  the  week  is  normally  much  calmer,  meaning  that  it  is  an  imbalance  of  the  workload.  Even  though  the  deliveries  might  leave  the  wharf  at  EDC  GBG  on  Thursday  or  Friday,  the  goods  are  often  just  transferred  to  another  wharf  in  Gothenburg.  There,  the  goods  can  be  waiting  in  several  days  for  containers  or  trucks  to  be  fully  loaded  before  shipped  away.  (Slotte,  2016)    6.4.8   CODP  Located  Early  in  the  Supply  Chain  A  perceived  issue  in  the  supply  chain  is  that  the  material  becomes  bound  to  the  customer  too  early  in  the  supply  chain,  i.e.  the  CODP  is  located  too  far  from  the  customer.  This  results  in  several  inventories  of  restricted  material  and  makes  the  material  flow  inflexible.  Instead,  it  is  desired  to  bind  the  material  to  the  customer  as  late  as  possible  and  thereby  be  able  to  move  the  unrestricted  material   in   the   supply   chain   and   become  more   flexible   towards   shortages   etc.   An   additional  problem  is  that  there  is  no  clear  division  between  lean  and  agile  at  the  CODP,  which  contradicts  Ericsson’s  strategy  of  being  lean  before  the  point  and  agile  after  it.  (Kjellander,  2016)      To   solve   this   problem,   Ericsson   is   currently   about   to   introduce   supply   hubs   in   each   region  (Kjellander,  2016).  The  supply  hubs  will  replace  todays  EDCs  and  the  basics  of  the  concept  is  to  move  the  CODP  to  the  hub  and  closer  to  the  customer  in  order  to  become  more  flexible,  tie  up  less   capital   and   at   the   same   time   offer   a   shorter   lead   time.   The   idea   is   to   move   the   node  production  from  the  ESSs  to  the  supply  hub,  and  at  the  current  production  sites  only  produce  modules.  The  production  sites  will  mainly  produce  standard  modules,  which  replenishes  the  pick-­‐from-­‐stock  inventory  located  in  the  hub.        

Page 104: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Current  State  Mapping  

     92  

Since  the  CODP  will  be  at  the  hub,  the  inventories  of  modules  will  be  unrestricted  and  are  linked  to  a  customer  first  when  an  order  income.  A  prerequisite  for  this  is  to  agree  on  a  limited  product  portfolio  for  each  region,  since  the  current  portfolio  is  too  extensive  to  be  covered  by  each  supply  hub.  The  regional  portfolio  refers  to  all   the  products  that  the  customers   in  the  specific   region  purchases,  and  therefore  needs  to  be  updated  each  quarter  with  forecasted  buffer  levels.  If  the  customer  wants  to  go  outside  the  agreed  portfolio,  there  will  be  a  side  flow  that  will  have  longer  lead  times.  (Forsberg,  2016)    The  supply  hub  will  also  require  system  changes,  since  the  IT  infrastructure  of  today  is  configured  for  module  and  node  production  at  ESS  Tallinn  and  not  at  EDC  GBG.  The  ordering  operations  need  to  change  and  some  additional  support  systems  for  the  supply  hub  are  also  required  for  it  to  work  efficiently.  Moreover,  new  competences  and  some  behavioral  changes  are  needed.  Since  there  will  be  an  unrestricted  pick  from  stock  inventory,  it  will  require  good  forecasts  made  by  the  region.  It  is  also  important  to  ensure  a  close  collaboration  between  Ericsson,  the  local  company  and  the  customer   in   the  order  and  delivery  planning  processes.   Finally,   to   fully   take  advantage  of   the  supply  hub  concept  with  a  reduced  lead  time,  it  requires  that  the  goods  can  be  shipped  from  the  hub  when  it  is  ready.  Meaning  that  e.g.  no  insurance  or  financial  operations  prevent  the  delivery  to  be  managed  on  time.  (Forsberg,  2016)    6.4.9   Complex  L/C-­‐Process  The  letter  of  credit  (L/C)  is  also  causing  some  problems  for  Ericsson  and  ATM.  It  is  often  a  long  process  to  first  get  the  L/C  opened  by  the  bank  and  then  to  make  it  operative.  Since  all  involved  departments  at  EAB  and  the  customer  ATM  must  agree  on  the  L/C  draft,  it  sometimes  requires  a  long  negotiation.  (Holmqvist,  2016)    The  sub  process  between  ATM  and  the  Algerian  bank  is  for  the  most  cases  time-­‐consuming  and  EAB  has  difficulties  to  accelerate  it  since  it  is  an  external  process.  (Holmqvist,  2016)  One  reason  is  that  ATM  delays  this  process  on  purpose  because  they  do  not  need  the  material  at  the  moment  and  instead  uses  EAB  for  storing  of  the  goods.  Once  the  L/C  is  operative,  given  that  the  material  is  ready  at  EDC  GBG,  ATM  knows  that  the  goods  will  arrive  within  15  days  and  thereafter  have  to  store  the  goods  in  their  warehouse.  This  is  a  problem  connected  to  the  long  customer  order  lead  time  and  the  fact  that  the  customer  does  not  trust  that  Ericsson  can  deliver  within  agreed  lead  times.  As  a  result,  ATM  places  an  order  with  a  margin  of  lead  time  and  the  material  may  therefore  arrive  at  EDC  GBG  before  the  planned  installation  can  be  made  at  the  project  site.  (Ur  Rehman,  2016b)    Ericsson  will  only  get  paid  if  the  goods  that  are  delivered  to  the  customer  fully  correspond  to  what  is  specified  in  the  L/C.  Therefore,  it  is  very  important  to  be  meticulous  during  the  creation  and  the  opening  of   the  L/C,   to  make  sure   that  everything   is  done  correctly   from  the  start.  Sometimes  when   the   L/C   is   sent   from   the  ATM  bank   to   the  EAB  bank,   the   latter  bank  notices   that   some  changes  have  been  made  in  the  documents  compared  to  the  ones  they  got  at  first.  It  may  be  very  small  changes,  e.g.  a  number  that  someone  by  mistake  has  changed.  In  those  cases,  the  L/C  is  sent  back  to  ATM  that  in  turn  has  to  get  a  new  approval  by  their  bank,  which  may  take  a  lot  of  unnecessary  time.  Hence,  the  L/C  process  includes  a  lot  of  demanding  paper  work.  (Holmqvist,  

Page 105: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Current  State  Mapping  

     93  

2016)  When  the  L/C  process  gets  prolonged,  goods  are  often  waiting  at  EDC  GBG  for  the  L/C  to  be  operative.  In  extreme  cases,  the  goods  have  been  waiting  for  over  100  days.  This  is  because  shipments  cannot  be  made  until  Ericsson  is  sure  to  get  paid,  which  is  when  all  the  documents  at  both  banks  fully  correspond  to  each  other.  If  it  takes  this  much  time,  then  it  does  not  matter  how  short  the  lead  time  is  for  the  material  inbound  part  considering  that  the  material  still  must  wait  for  the  L/C  to  be  operative.  (Ur  Rehman,  2016b;  Özdogru,  2016)      A  suggested  solution  to  shorten  the  L/C  process  is  to  work  with  proactivity  towards  the  customer  and   the   banks.   As   mentioned   before,   EAL   is   the   one   that   have   the   direct   contact   with   the  customer.  EAB  is  therefore  in  need  of  the  local  company  to  establish  a  close  collaboration  with  ATM,  to  avoid  time  waste  during  the  opening  process  between  ATM  and  the  bank.  It  would  also  be  good  if  the  ATM  bank  could  send  a  copy  of  the  L/C  to  EAB,  before  it  is  sent  to  the  EAB  bank.  By  doing  so,   it  would  be  possible  for  EAB  to  make  changes  faster  and  not  involve  their  bank  until  later.  (Holmqvist,  2016)      However,  even  when  the  L/C  is  operative  there  are  sometimes  goods  waiting  at  EDC  GBG  because  some  products  are  missing  to  fulfill  the  entire  CPO.  The  goods  are  not  allowed  to  pass  the  customs  if  the  delivery  does  not  fully  correspond  to  the  CPO.  It  happens  that  99  %  of  an  order  is  ready  for  shipment  at  EDC  GBG  but  is  put  on  stock  because  it  has  to  wait  for  the  remaining  1  %.  (Ianev,  2016b)      6.4.10   Diverse  Flows  A  perceived  problem  in  the  current  supply  chain  is  the  diverse  flow  that  is  caused  by  the  wide  product  portfolio  of  BURA,  which  becomes  more  extensive  as  the  customer  base  grows.  The  RBSs  have  different  frequencies  so  that  the  signals  will  not  collide,  meaning  that  the  customers  assign  a  certain  frequency  and  the  more  users   in  the  world,   the  more  variants  there  will  be  of  RBSs.  (Kjellander,  2016)      The  product  portfolios  of  electronic  components,  electro  mechanic  components  and  site  material  are  also  extensive,  contributing  to  the  diverse  flows  and  the  excessive  lead  times.  ATM  has  the  possibility  to  order  from  a  wide  product  portfolio  with  some  low-­‐frequent  products  that  are  not  buffered  and  contributes  to  the  excessive  lead  time.  The  site  material  that  is  ordered  rarely  can  have  a  lead  time  of  eight  to  ten  weeks,  from  EAB  placing  an  order  until  the  goods  are  received  at  EDC  GBG.  It  is  common  with  duplicates  in  the  site  material  portfolio,  meaning  that  there  are  site  materials  with  exactly  the  same  functions,  but  in  different  brands  or  in  different  colors,  that  are  available  and  orderable  for  the  customers.  (Pettersson,  2016b)  A  solution  for  the  wide  product  portfolios  would  be  to  reduce  the  number  of  product  variants  as  much  as  possible.  This  could  be  done   by   using   standardized   product   portfolios   that   Ericsson   and   the   customers   agree   on  (Kjellander,   2016;   Pettersson,   2016b).   ATM   is   considered   as   a   demanding   customer,   partly  because  of   the   long  bill  of  material  with  different  products,  which  could  be  prevented  with  a  narrower  and  predetermined  product  portfolio  (Benrabah,  2016b).    

Page 106: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Current  State  Mapping  

     94  

6.4.11   Volatile  Customer  Demand  A  major   problem   for   Ericsson   is   the   volatile   customer   demand   (Neuman,   2016b;  Ur   Rehman,  2016b;   Slotte,   2016).  Due   to   filter   and   nodes   being   produced  on  make-­‐to-­‐order,   it   is   hard   to  dimension   the   capacity   accurately   (Neuman,   2016b).   The   forecast   is   not   good   enough   in   the  current  situation  and  does  not  correspond  to  the  actual  demand  (Ianev,  2016b;  Neuman,  2016b).  This  is  something  common  for  ATM  (Benrabah,  2016b)  and  a  key  to  handle  this  problem  is  to  work  with  market   intelligence.  This   to  get  as  much   information  as  possible   in  an  early   stage  of   the  project   in   order   to   get   material   to   where   it   is   needed.   Also   working   with   standard   product  portfolios  can  help  solving  this  problem.  (Neuman,  2016b)    6.4.12   Changing  Delivery  Dates  Another  problem  is  connected  to  the  requested  delivery  dates.  Within  the  supply  chain  there  are  several   different   planning   points   that   each   plan   their   capacity   based   on   when   they   will   get  deliveries.  For  example,  a  delivery  date  is  requested  for  the  customer  and  to  be  able  to  deliver  that  date,  EDC  GBG  needs  to  have  all  the  material  a  certain  number  of  days  before.  Since  they  get  deliveries  from  different  locations,  there  are  separate  planning  works  going  on  for  e.g.  ESS  Tallinn  and  each  site  material   supplier.   In   turn,  ESS  Tallinn  gets   their  material   from  several   suppliers,  leading  to  different  planning  points  there  as  well.  A  problem  that  affects  the  synchronization  of  different  deliveries   is   that   the   first   requested  delivery  date   is   changed   several   times  during   a  project,  which  leads  to  a  continuously  change  of  the  planning  throughout  the  supply  chain.  The  dates  may  change  because  someone  cannot  deliver  the  requested  date  or  because  someone  can  deliver   earlier.   This   complicates   the   synchronization  of   different   flows,   e.g.  material   flow  and  capacity  flow  in  terms  of  ASPs,  to  both  production  units,  EDC  GBG  and  the  project  site.  For  this  to  be  synchronized,  the  dates  have  to  correspond  to  each  other.  (Aglert,  2016)  Also  Forsberg  (2016)  states  the  problem  with  changing  delivery  dates  and  points  at  the  volatile  lead  times  as  a  reason  for  bad  synchronization  between  the  material  and  the  capacity  flows.  According  to  him,  the  ASPs  can  in  general  only  trust  the  predetermined  delivery  dates  in  10  %  of  the  cases.      6.4.13   Rebuild  in  Regions  Ericsson   has   noticed   that   there   are   rebuilds   performed   in   the   regions,   e.g.   at   the   customer  warehouse.  This  problem  causes  duplication  of  efforts  and  longer  lead  times.  The  customers  are  in  some  cases  unable  to  order  what  is  needed  at  the  project  sites.  The  problem  arises  from  the  packaging  regulations  at  Ericsson,  which  states  that  products  from  different  business  units  cannot  be  configured  or  assembled  before  shipment  from  the  EDCs.  It  should  be  possible  to  configure  the  wanted  functionality  and  capacity  for  a  whole  site  and  also  to  decide  on  what  should  be  kept  together  in  a  delivery  point  of  view.  (Högberg,  2016)      When  studying  a  CPO  from  ATM,  it  can  be  seen  that  the  order  contains  products  of  both  RBSs  and  Mini-­‐links  that  are  supposed  to  be  assembled  together,  but  belongs  to  different  business  units  and  therefore  cannot  be  configured.  Most  likely,  that  means  that  the  actual  configuration  must  instead  be  performed  in  the  customer  warehouse  or  at  the  project  site.  In  other  words,  it  takes  duplication   of   efforts   as   the   RBSs   needs   to   be   assimilated   once   again   to   add   the  Mini-­‐links.  (Edwertz,  2016)    

Page 107: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Current  State  Mapping  

     95  

6.4.14  Waiting  for  Insurance  of  Goods  Before  Shipment  A  recurring  problem  at  EDC  GBG  is  that  goods  that  are  ready  for  shipment,  must  wait  for  ATM  to  insure  the  goods  for  transportation.  Ericsson  and  ATM  are  using  the  CPT  incoterm,  which  stands  for  carriage  paid  to.  It  means  that  Ericsson  pays  for  the  transport  to  an  agreed  point,  in  this  case  it  is  the  port  of  destination,  and  ATM  pays  for  the  insurance  of  the  goods.  (Benrabah,  2016b)  The  reason  for  ATM  being  responsible  for  the  insurance  of  the  goods  is  because  they  want  to  support  their   local   Algerian   insurance   companies.   Ericsson   has   a   global   insurance   that   cover  transportation  of  goods  and  might  as  well  account  for  the  insurance  in  this  case.  (Ur  Rehman,  2016b)    6.4.15   Summary  of  experienced  problems  and  suggested  solutions  The  above  problems  that  were  perceived  by  different  members  in  the  studied  supply  chain  and  their  suggestions  for  solutions  are  summarized  in  Table  12.  Notice  that  all  problems  do  not  have  a   suggested   solution   and   that   some   problems   have  more   than   one.  Moreover,   some   of   the  problems  might   be   caused  by   each   other   and  will   therefore   be   examined   further   in   the   next  chapter  to  identify  the  root  causes.      

Table  12.  The  identified  problems  and  suggested  solutions.  

Experienced  Problem   Suggested  Solution  Stakeholders  involved  in  several  projects    Many  stakeholders  involved  during  local  processing    

Big  workload  during  local  processing    Several  incompatible  systems  used   Integrate  systems  and  processes  Activities  concerning  both  engineering  and  order  flow  during  the  local  processing  

Activities  can  be  performed  by  EAL  before  the  CPO  is  received  

Many  time  consuming  handovers   Integrate  systems  and  processes  

Orders  on  high  level  of  detail   Identification  of  the  solution  without  detailed  product  numbers  

Complex  solution   Identification  of  the  solution  without  detailed  product  numbers  

Incomplete  documents    Several  product  catalogues   Use  one  big  product  catalogue  Capacity  constraints  at  ESS  Tallinn    Material  constraints  at  ESS  Tallinn    Long  lead  times  between  forecast  start  until  material  ready  in  the  production    

Incoming  flows  unsynchronized    Bad  transparency   Integrate  systems  and  processes  Volatile  customer  demand    Difficult  to  plan  the  work  load  at  EDC  GBG    

Page 108: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

Current  State  Mapping  

     96  

Volatile  workload  at  EDC  GBG   Time  slots  Preannounced  incoming  deliveries  

Uncontrolled  incoming  deliveries  to  EDC  GBG   Time  slots  Preannounced  incoming  deliveries  

CODP  located  early  in  the  supply  chain     Supply  hub  Several  restricted  inventories   Unrestricted  stock  Inflexible  material  flow    No  clear  division  between  lean  and  agile   Supply  hub  L/C  not  operative    Many  parties  need  to  agree  on  the  L/C      Long  L/C  negotiation    ATM  go  to  the  Algerian  bank    ATM  places  order  too  early    ATM  does  not  trust  the  EAB  lead  times   Closer  collaboration  between  EAL  and  ATM  Mistakes  made  during  the  L/C  process   Work  proactive  Documents  do  not  correspond   Work  proactive  Demanding  paper  work  during  the  L/C  process   Work  proactive    

Diversified  flows    Wide  product  portfolio   Standardized  product  portfolio  Low  frequent  material   Standardized  product  portfolio  Duplicate  products   Standardized  product  portfolio  ATM  has  a  long  BoM   Standardized  product  portfolio  

Forecast  deviations   Market  intelligence  Standardized  product  portfolio  

Changing  delivery  dates    Volatile  lead  times    Rebuild  in  region    Insurance  not  ready  when  good  are  ready  for  shipment    

The  division  of  responsibilities  of  the  insurance    

             

Page 109: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

IDENTIFICATION  OF  POTENTIALS  FOR  LEAD  TIME  REDUCTION  

     97  

 

7   IDENTIFICATION  OF  POTENTIALS  FOR  LEAD  TIME  REDUCTION  

The  chapter  includes  an  identification  of  potentials  for  lead  time  reduction  based  on  the  current  state   map.   At   first,   a   categorization   is   made   for   different   parts   of   the   supply   chain   and   the  experienced   problems.   The   categorization   is   fundamental   for   the   following   prioritization   that  determines  which  parts,  problems  and  suggested  solutions  that  can  be  considered  as  potentials  for  lead  time  reduction  and  thus  get  the  further  attention.    

   

Page 110: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

IDENTIFICATION  OF  POTENTIALS  FOR  LEAD  TIME  REDUCTION  

     98  

7.1   Categorization  In  this  section,  an  evaluation  is  made  regarding  whether  the  supply  chain  parts  presented  in  the  current  state  mapping  have  reasonable  lead  times  or  not.  The  lead  times  for  the  different  parts  are  also  compared   to   the   total   lead   time   in  order   to  determine   if   they   represent  a   significant  portion.  As  a  result,  the  supply  chain  parts  that  get  the  further  attention  is  determined.  Moreover,  the   perceived   problems   identified   during   the   current   state  mapping   are   analyzed   in   order   to  connect   them   to   the   supply   chain   parts   that   get   the   further   attention.   The   relations   of   the  problems  are  also  analyzed  to  find  the  root  causes,  i.e.  the  problems  that  cause  the  excessive  lead  times  and  need  to  be  solved.      7.1.1   Reasonableness  and  Portion  of  Total  Lead  Time  The  following  evaluation  regarding  reasonableness  and  significance  is  based  on  the  lead  times  in  the  worst  case  scenario  that  was  presented  earlier  in  Section  6.2.  The  worst  case  lead  times  are  analyzed  since  it  will  include  most  of  the  problems  presented  in  Section  6.4,  which  would  not  be  the   case   for   the  normal   or   best   case   scenario.   In   best   case   and  normal   case   scenario,   all   the  identified  problems  are  not  experienced  and  thus  not  included  in  the  lead  times.  Therefore,  the  worst  case  lead  times  are  used  to  be  able  to  solve  all  problems  that  cause  the  long  lead  times  in  the  supply  chain.    The  lead  time  for  the  local  processing,  which  is  the  time  it  takes  the  Sales  Team  to  hand  over  the  CPO  to  the  Supply  Team  at  EAL,  takes  49  days  in  a  worst  case  scenario.  It  accounts  for  34  %  of  the  total  lead  time  and  therefore  represents  a  significant  portion  of  the  time  that  ATM  experiences.  Considering  the  activities  being  performed  during  the  local  processing  and  that  the  part  consists  of   a   large   amount   of   non-­‐value   added   time,   it   is   categorized   as   not   reasonable   (Magnusson,  2016b).  The  handover  of  the  SOs  from  the  Supply  Team  at  EAL  to  the  Supply  Team  at  Ericsson  takes  three  days  and  thus  represents  2  %  of  the  total  lead  time.  It  is  a  minor  portion  of  the  time  ATM  experiences  and  is  also  reasonable  in  terms  of  the  activities  and  processes  being  performed  (Magnusson,  2016a).  The  lead  time  for  the  ordering,  which  refers  to  the  time  it  takes  Ericsson  to  release  the  POs  to  the  first-­‐tier  suppliers,  takes  two  days  and  thus  accounts  for  1  %  of  the  total  lead  time.  Hence,  the  process  does  not  constitute  a  significant  part  of  the  total  lead  time  and  is  considered  as  reasonable  since  it  is  assumed  to  consist  of  a  relatively  minor  portion  of  non-­‐value  adding  time  (Magnusson,  2016b).    The  production  at  ESS  Tallinn  and  the  two  EMSs  takes  in  worst  case  24  days,  which  represents  17  %  of  the  total  lead  time  ATM  experiences.  It  is  considered  as  a  significant  portion  of  the  total  lead  time   and   is   also   unreasonable,   since   it   consists   of   a   large   amount   of   non-­‐value   adding   time  considering  the  activities  and  processes  carried  out  (Magnusson,  2016b).  Once  the  final  assembly  is  performed,  the  goods  are  transported  to  EDC  GBG,  where  it  is  unloaded  and  registered.  This  part  is  referred  to  as  EDC  Inbound  and  takes  three  days,  which  accounts  for  2  %  of  the  total  lead  time  experienced  by  ATM.  It  is  not  considered  as  a  significant  portion  of  the  total  lead  time  and  is  also  reasonable  in  terms  of  the  activities  being  performed  (Magnusson,  2016b).  Observe  that  there  are  incoming  flows  that  have  longer  lead  times  than  three  days,  but  since  the  lead  time  at  EDC  GBG  starts  to  count  when  the  first  material  has  arrived,  these  lead  times  will  assign  to  the  measurement  for  EDC  GBG.  

Page 111: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

IDENTIFICATION  OF  POTENTIALS  FOR  LEAD  TIME  REDUCTION  

     99  

For  EDC  GBG  to  put  the  received  goods  into  storage,  consolidate  a  Delivery  Order  and  then  make  GI   takes   50   days   in   a   worst   case   scenario.   This   represents   34   %   of   the   total   lead   time   ATM  experiences,  which  is  considered  as  a  significant  portion  and  also  not  reasonable  considering  the  activities  being  performed  (Magnusson,  2016b).  The  lead  time  for  EDC  Outbound  refers  to  the  time  from  GI  to  the  arrival  of  the  goods  at  the  customs  in  Algeria,  which  takes  15  days.  It  accounts  for  10  %  of  the  total  lead  time  ATM  experiences,  which  is  not  significant  and  is  also  considered  as  reasonable  due  to  the  geographical  distance  of  the  transport  (Magnusson,  2016b).    In  Table  13   below,   the   categorization  of   the   lead   times   for   the  different   supply   chain  parts   is  presented.  Whether  the  lead  times  being  reasonable  or  unreasonable  and  significant  or  minor  is  summarized.  Moreover,  if  the  supply  chain  parts  get  any  further  attention  in  the  report  is  also  presented.    

Table  13.  Categorization  of  the  supply  chain  parts.      

Number   Activities  &  Processes  

Lead  Time  (days)  

%  Of  Total   Reasonable   Significant   Further  

Effort  T1   Local  Processing   49   34   No   Yes   Yes  T2   Handover   3   2   Yes   No   No  T3   Ordering   2   1   Yes   No   No  T7   Production   24   17   No   Yes   Yes  T8   EDC  Inbound   3   2   Yes   No   No  T9   EDC  GBG   50   34   No   Yes   Yes  T10   EDC  Outbound   15   10   Yes   No   No  

 7.1.2   Causes  and  Effects  The  perceived  problems  identified  during  the  current  state  mapping  are  in  this  section  linked  to  the  parts  of  the  supply  chain  that  get  the  further  effort,  i.e.  the  parts  with  not  reasonable  lead  times   and   that   constitute   significant   parts   of   the   total   lead   time.   These   parts   are   the   local  processing,   the  production   and   the  EDC  GBG.   The  problems  are  not  only   linked   to   the   three  supply  chain  parts,  but  also  to  each  other  in  order  to  identify  what  problems  that  are  the  root  causes   to   the   excessive   lead   times.   The   root   causes   are   bolded   in   the   following   text   for   the  convenience  of  the  reader.      Local  Processing  The   first   phase   in   the   supply   chain  with   an   excessive   lead   time   is   the   local   processing   in   the  information  flow.  The  significant  lead  time  is  assumed  to  be  caused  by  several  reasons.  One  of  the  reasons  is  perceived  to  be  the  complex  solutions  that  are  engineered  for  ATM,  which  in  turn  are  partly  because  of  long  Bill  of  Material.  The  long  Bill  of  Material  is  made  possible  because  of  the  wide  product  portfolios  of  both  RBSs  and  site  materials,  which  ATM  has  the  ability  to  order  from.  The  complex  solutions  are  also  perceived  to  be  caused  by  the  detailed  CPOs,  i.e.  the  orders  on   a   high   level   of   detail.   The   CPOs   contain   information   of   the   solutions   in   terms   of   product  

Page 112: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

IDENTIFICATION  OF  POTENTIALS  FOR  LEAD  TIME  REDUCTION  

     100  

numbers,  making  the  administrative  work  performed  detailed  and  are  therefore  time  consuming.  Another  root  cause  for  the  solution  being  complex  is  that  several  product  catalogues  are  used.        Another  main  reason  for  the  long  duration  of  the  local  processing  phase  is  experienced  to  be  the  large  number  of  time  consuming  handovers.  One  reason  for  the  time  consuming  handovers  is  the  many  stakeholders  involved.  One  cause  for  this  in  the  current  situation  is  that  the  part  where  the  solution  is  engineered  for  ATM,  is  carried  out  in  this  phase.  In  other  words,  activities  concerning  both  the  engineering  and  the  order  flow  are  performed.  The  handovers  are  often  performed  manually,   which   takes   time,   since   the   Sales   Team   and   Supply   Team   at   EAL  work   in   different  systems,  both  within  and  between  the  teams,  that  are  not   incompatible  with  each  other.  This  contributes   to   them   communicating   via   e-­‐mail   for  most   of   the   time,  making   the   information  transfer  inefficient,  and  therefore  is  a  root  cause  the  several  incompatible  systems  used.      Another  main  reason  for  the  long  lead  times  in  the  local  processing  phase  is  perceived  to  be  the  big  workload.  Stakeholders  are  often  involved  in  several  projects  and  is  considered  to  be  the  root   cause   of   the   heavy   workload   and   the   long   lead   time.   Some   projects   will   have   to   be  deprioritized  and  thereby  delay  the   local  processing  for  the  concerned  projects.  See  Figure  32  below   for  a   Fishbone  diagram   for   the   local  processing  phase.   The  diagram  visualizes  how   the  problems  are  connected  to  each  other.  The  bolded  problems  are  seen  as  root  causes.    

 Figure  32.  The  reasons  for  long  lead  times  in  the  local  processing  phase.    

Long%LTLocal%Processing

Complex%solutions

Long%BoM

Many%time%consuming%handovers

Many%stakeholdersinvolved

Activities(concerningboth(engineering(and(order(flow

Wide(productportfolio

Order(on(high(level(of(detail(

Big%workload

Stakeholders(involvedin(several(projects

Several(incompatiblesystems used

Several(products(catalogues

Page 113: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

IDENTIFICATION  OF  POTENTIALS  FOR  LEAD  TIME  REDUCTION  

     101  

To  summarize,  the  root  causes  for  the  long  lead  times  in  the  local  processing  phase  are  collected  in  Table  14  below.    

Table  14.  Root  causes  for  the  long  lead  time  in  the  local  processing  phase.  

Supply  Chain  Part   Root  Causes  Local  Processing          

Wide  product  portfolio  Orders  on  high  level  of  detail  Several  product  catalogues  Activities  concerning  both  the  engineering  and  the  order  flow  are  performed  Several  incompatible  systems  are  used  Stakeholders  are  often  involved  in  several  projects  

 Production  The  second  part  of  the  supply  chain  that  contributes  to  an  excessive  lead  time  is  the  production  at   ESS   Tallinn,   EMS   Jabil   T-­‐town   and   EMS   Flex   Tczew.   A   common   main   reason   for   the   long  production  lead  time  is  material  constraints,  meaning  that  material  is  not  available  at  the  right  time.  This  is  in  turn  caused  by  several  reasons,  there  one  of  them  is  incorrect  forecasts.  The  root  causes   to   the   forecast   deviations   are   also   several.   The   first   is   considered   to   be   the   volatile  demand  from  the  customers,  the  second  is  the  long  lead  times  from  forecast  until  the  material  is  available  at  the  production  and  the  third  is  the  wide  product  portfolio  of  Ericsson.  Material  constraints   may   also   refer   to   situations   when   production   is   waiting   for   some   low   frequent  components  that  are  rarely  ordered  and  thus  not  buffered.  The  root  cause  for  this  is  the  wide  product   portfolio.   A   further   reason   for   the   material   constraints   is   the   diversified   flows   of  components,  with  the  root  causes  being  the  wide  product  portfolio  and  also  that  there  is  no  clear  division  between  lean  and  agile  in  the  supply  chain.      Another  main  reason  for  long  lead  times  in  the  production  is  capacity  constraints,  in  form  of  not  having   the   right   capacity   available   when   it   is   needed.   Just   as   for   the   problem  with  material  constraints,  this  is  mainly  related  to  a  lack  in  the  forecast.  The  root  causes  for  this  is  therefore  also  considered   to  be   the  volatile  demand   from  customers  and   the   long   lead   times  between  forecast  until  the  material  is  available  at  the  production.      Furthermore,  an  additional  main   reason   for   long   lead   times   in   the  production   is   the   inflexible  material   flow  that   is  caused  by  the  several  restricted   inventories   in  the  supply  chain.  The  root  cause  for  this  is  assumed  to  be  that  the  CODP  is  located  early  in  the  supply  chain.              

Page 114: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

IDENTIFICATION  OF  POTENTIALS  FOR  LEAD  TIME  REDUCTION  

     102  

See  Figure   33   below   for   a   Fishbone  diagram  of   the  production  phase   that   visualizes   how   the  problems  are  connected  to  each  other.  The  bolded  problems  are  seen  as  root  causes.    

 Figure  33.  The  reasons  for  long  lead  times  in  the  production.    

To  summarize,  the  root  causes  for  the  long  lead  times  in  the  production  phase  are  presented  in  Table  15.    

Table  15.  Root  causes  for  the  long  lead  time  in  the  production.  

Supply  Chain  Part   Root  Causes  Production          

Volatile  customer  demand  The  long  lead  times  from  forecast  until  the  material  is  available  at  the  production  Wide  product  portfolio  There  is  no  clear  division  between  lean  and  agile  in  the  supply  chain  CODP  located  early  in  the  supply  chain  

       

Long%LTProduction

Material%constraints

Volatile(demand

Capacity%constraints

Forecast%deviations Forecast%deviations

Volatile(demand

Long(lead(times Long(lead(times

Low%frequent%components

Wide(product(portfolio

Diversified%flows

Wide(product(portfolio

No(clear(division(between(lean/agile

Wide(product(portfolio

Inflexible%material%flow

Several%restrictedinventories

CODP(locatedearly(in(the

SC

Page 115: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

IDENTIFICATION  OF  POTENTIALS  FOR  LEAD  TIME  REDUCTION  

     103  

EDC  GBG  The  third  supply  chain  part  with  an  excessive  lead  time  is  EDC  GBG,  that  is  caused  by  several  main  reasons.  One  problem  perceived  by  several  respondents  are  that  incoming  flows  to  EDC  GBG  most  often  are  unsynchronized.  A  root  cause  for  this   is  the  bad  transparency  between  site  material  suppliers,  ESS  Tallinn  and  EDC  GBG.  Another  root  cause  is  the  uncontrolled  incoming  deliveries  to   EDC   GBG.   A   further   root   cause   is   the   changing   delivery   dates   in   the   supply   chain,   which  contributes  to  volatile  lead  times  and  unsynchronized  flows.  This  since  the  final  delivery  date  may  be  agreed  differently  for  e.g.  ESS  Tallinn  and  different  site  material  suppliers,  which  leads  to  them  perform   the   delivery   at   different   times.   Another   reason   for   the   unsynchronized   flows   is   the  diversified  flows  of  site  material.  The  root  causes  for  this  are  the  wide  product  portfolio  of  mainly  site  material,  and  also  that  there  is  no  clear  division  between  lean  and  agile  in  the  supply  chain.  A  further  reason  for  the  unsynchronized  flows  is  that  some  site  materials  are  low  frequent  and  ordered  rarely.  The  root  cause  for  this  is  also  the  wide  product  portfolio.        A  second  main  reason  for  long  lead  times  at  the  EDC  GBG  is  that  it  is  difficult  to  plan  the  working  capacity   due   to   the   volatile  workload.   The   identified   root   causes   for   this   is   the  uncontrolled  incoming  deliveries  to  EDC  GBG  and  the  volatile  demand  from  customers  that  contributes  to  the  difficulties  with  planning  the  work.    A  third  main  reason  for  the  long  lead  times  at  the  EDC  GBG  is  the  waiting  for  an  operative  L/C.  A  reason  for  this  is  that  there  is  sometimes  a  long  negotiation  while  creating  the  L/C  draft,  because  many  parties  need  to  agree  before  ATM  can  apply  for  an  opening  of  the  L/C.  Another  reason  is  all  the  documents  that  have  to  100  %  correspond  to  each  other.  Sometimes  a  small  mistake  has  been  done  by  someone  because  of  the  demanding  paper  work,  which  contributes  to  an  extended  process.  A  further  reason  is  that  it  takes  a  long  time  for  ATM  to  go  to  their  bank  to  get  an  approval  of  opening  the  L/C.  They  postpone  this  activity  because  they  do  not  need  the  material  right  away  since  they  have  placed  the  order  too  early.  The  root  cause  for  this  problem  is  that  ATM  does  not  trust  the  lead  time  promised  by  Ericsson.      A  fourth  main  reason  for   long  lead  times  at  the  EDC  GBG  is  the  waiting  for  ATM  to  insure  the  goods.  The  root  cause  for  this   is  considered  to  be  an  inappropriate  division  of  responsibilities  between  Ericsson  and  ATM.        See  Figure  34  below  for  a  Fishbone  diagram  for  the  EDC  GBG  phase.  The  diagram  visualizes  how  the  problems  are  connected  to  each  other.  The  bolded  problems  are  seen  as  root  causes.    

Page 116: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

IDENTIFICATION  OF  POTENTIALS  FOR  LEAD  TIME  REDUCTION  

     104  

   Figure  34.  The  reasons  for  long  lead  times  at  EDC  GBG.  

To  summarize,  the  root  causes  for  the  long  lead  times  in  the  EDC  GBG  phase  are  presented   in  Table  16.  

Table  16.  Root  causes  for  the  long  lead  time  at  EDC  GBG.  

Supply  Chain  Part   Root  Causes  EDC  GBG              

Bad  transparency  Wide  product  portfolio  Changing  delivery  dates  Volatile  customer  demand  Uncontrolled  incoming  deliveries  There  is  no  clear  division  between  lean  and  agile  in  the  supply  chain  Many  parties  need  to  agree  ATM  does  not  trust  the  lead  time  promised  by  Ericsson  Demanding  paper  work  Division  of  responsibilities  

 

Long%LTEDC%GBG

Incoming%flowsunsynchronized

Bad$transparency Diversified%flows

Wide$product$portfolio

Difficult%to%plan%the%work%load

Volatile%work%load

Uncontrolled$incomingdeliveries

L/C%not%operative

Negotiation

Many$parties$need$to$agree

ATM%go%to%bank

Orders%too%early

ATM$does$nottrust$EAB$LT$

Documents%do%not%correspond

Mistakes%made

Volatile$demand

Low%frequentSite%material

Wide$product$portfolio

Changing$delivery$dates

No$clear$division$between$lean/agile

Uncontrolled$incomingdeliveries

Demandingpaper$work

Insurance%not%ready

Division$of$responsibilities

Volatile%lead%times

Page 117: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

IDENTIFICATION  OF  POTENTIALS  FOR  LEAD  TIME  REDUCTION  

     105  

7.2   Prioritization  In  this  section  are  the  supply  chain  parts,  the  perceived  problems  and  the  suggested  solutions  that  will  get  the  further  attention  presented.  As  presented  in  Table  13,  the  supply  chain  parts  that  will  get  the  further  effort  are  the  local  processing,  the  production  and  EDC  GBG.  This  is  since  the  parts  have  not  reasonable  lead  times  and  that  all  of  them,  in  a  worst  case  scenario,  constitute  significant  portions  of  the  total  lead  time.      As  mentioned  before,  the  lead  time  for  the  production  is  in  normal  cases  reasonable  and  are  then  not   constituting   a   significant   portion   of   the   total   lead   time.   However,   when   there   are   some  material  or  capacity  constraints,  the  production  may  show  up  as  a  great  bottleneck  in  the  supply  chain.   The   local   processing   and   EDC   GBG   are   in   the   average   case   being   not   reasonable   and  constitute  significant  portions  of  the  total  lead  time.  By  shortening  the  lead  times  for  these  three  supply  chain  parts,  it  is  assumed  to  have  a  great  effect  on  the  total  lead  time  and  are  therefore  prioritized  in  this  study.      Moreover,  the  root  causes  for  the  long  lead  times  in  the  prioritized  supply  chain  parts  are  also  prioritized  for  further  studies.  These  were  presented  in  the  previous  section  and  are  summarized  in  Table  17  below.  Efforts  will  be  taken  to  find  solutions  to  the  root  causes,  both  inspired  from  the  literature  and  from  the  suggested  solutions  mentioned  by  the  respondents  during  the  current  state  mapping.  Therefore,  the  solutions  that  have  been  suggested  for  the  root  causes  are  also  prioritized  for  further  studies  in  the  upcoming  section.  These  solutions  are  included  in  Table  17.  To   summarize   the   prioritization,   three   supply   chain   parts,   17   root   causes   and   ten   suggested  solutions  will  get  the  further  attention  of  the  study.                                            

Page 118: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

IDENTIFICATION  OF  POTENTIALS  FOR  LEAD  TIME  REDUCTION  

     106  

Table  17.  The  identified  potentials  for  lead  time  reduction.    

Supply  Chain  Part   Root  Causes   Suggested  Solution  Local  Processing              

Wide  product  portfolio   Standardized  product  portfolio  Orders  on  high  level  of  detail   Identification  of  the  solution  

without  detailed  product  numbers  Several  product  catalogues   Use  one  product  catalogue  Activities  concerning  both  the  engineering  and  the  order  flow  are  performed  

Activities  can  be  performed  by  EAL  before  the  CPO  is  received  

Several  incompatible  systems  are  used  

Integrate  systems  and  processes  

Stakeholders  are  often  involved  in  several  projects  

 

Production        

Volatile  customer  demand    Long  lead  times  from  forecast  until  the  material  is  available  at  the  production  

 

Wide  product  portfolio   Standardized  product  portfolio  There  is  no  clear  division  between  lean  and  agile  in  the  supply  chain  

Supply  hub  

CODP  located  early  in  the  Supply  Chain  

Supply  hub  

EDC   Bad  transparency   Integrate  systems  and  processes  Wide  product  portfolio   Standardized  product  portfolio  Changing  delivery  dates    Volatile  customer  demand    Uncontrolled  incoming  deliveries   Time  slots  

 Preannounced  incoming  deliveries  

There  is  no  clear  division  between  lean  and  agile  in  the  supply  chain  

Supply  hub  

Many  parties  need  to  agree    ATM  does  not  trust  the  lead  time  promised  by  Ericsson  

Closer  collaboration  between  EAL  and  ATM  

Demanding  paper  work   Work  proactive  Division  of  responsibilities    

     

Page 119: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

GENERATION  OF  ALTERNATIVE  SOLUTIONS  

     107  

 

8   GENERATION  OF  ALTERNATIVE  SOLUTIONS  

The   chapter   contains   a   second   literature   review   that   is   based   on   the   potentials   for   lead   time  reduction.  The  literature  review  results   in  a  number  of  general  solutions  that  are  modified  and  applied  to  the  supply  chain  described  in  the  current  state  mapping.  

   

Page 120: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

GENERATION  OF  ALTERNATIVE  SOLUTIONS  

     108  

8.1   General  Solutions  In  this  section,  a  number  of  general  solutions  are  presented  and  discussed.  The  general  solutions  are  gathered  from  the  literature  and  are  inspired  from  the  prioritized  root  causes  and  suggested  solutions   that  were   presented   in   Section   7.2   and   Table   17.   There   are   in   total   eight   different  general  solutions  presented  during  this  chapter.      8.1.1   CODP  Strategy  The  first  general  solution  is  referred  to  as  the  CODP  strategy  and  the  three  root  causes  together  with   the   suggested   solution   that   have   substantiated   it   are   presented   in   Table   18   below.  Afterwards,  the  CODP  strategy  is  described  in  more  detail.    

Table  18.  The  three  root  causes  and  the  suggested  solution  that  have  substantiated  the  first  general  solution.    

General  Solution   Root  Cause   Suggested  Solution  CODP  Strategy   No  clear  division  between  

lean  and  agile  in  the  supply  chain  

Supply  hub  

CODP  located  early  in  the  Supply  Chain  

Supply  hub  

Long  lead  times  from  forecast  until  the  material  is  available  at  the  production  

 

 Despite  the  continuing  trend  to  globalize  products,  Christopher  (2011)  means  that  there  still  exist  significant  local  differences  in  the  customer  demands  that  should  be  recognized.  Even  in  compact  markets   like  western   Europe   there   are   substantial   differences   in   the   customer   requirements,  where   some   global   products   would   not   be   longstanding   because   of   the   high   degree   of  standardization.  A  strategy  that  is  increasingly  being  adopted  in  order  to  achieve  the  benefits  of  standardization  whilst  meeting  the  local  demand  is  the  concept  of  postponement.  (Christopher,  2011)    In  this  context,  the  idea  of  postponement  is  to  design  products  using  standardized  components  and  modules.  By  doing  so,   the  customization  can  be  performed  close   to   the  customer  and/or  when  the  customer  demand  is  known.  The  customization  is  usually  performed  in  the  local  market,  in   a   distribution   center   or   by   a   3PL-­‐service   provider.   (Christopher,   2011)   This   type   of  postponement  can  be  likened  with  form  postponement,  mentioned  by  Van  Hoek  (1998)  in  Section  3.8,  as  where  the  final  manufacturing  step  is  delayed  until  the  customer  orders  are  received.  The  point   of  which   the   customization   is   postponed   can  be   compared  with   the  CODP  described   in  Section  3.8.3,  i.e.  the  point  where  products  are  linked  to  specific  customer  orders  and  where  the  strategic   stock   that   supplies   the  customers   is   located.  Activities  before   the  CODP  are   forecast  driven  and  activities  after  the  CODP  are  order  driven.  (Mason-­‐Jones  et  al.,  2000)  Since  customers  increasingly   demand   short   lead   times   in   combination   with   customized   products,   it   implies  

Page 121: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

GENERATION  OF  ALTERNATIVE  SOLUTIONS  

     109  

performing  fewer  and  faster  activities  at  the  same  time  as  performing  some  activities  according  to  the  individual  requirements  (Wang,  Lin,  &  Liu,  2010).  Wang  et  al.  (2010)  argues  that  in  order  to  reduce  lead  time,  companies  require  to  put  efforts  on  optimizing  the  product  flow  as  well  as  working  with  positioning  and  minimization  of  buffers.      As  mentioned  in  Section  3.8.3  by  Towill  &  Christopher  (2002),  a  leagile  strategy  is  made  possible  because  of  the  CODP.  That  means  that  a  lean  strategy  is  applied  for  the  upstream  flow,  from  the  CODP,   to  maximize  the  efficiency  through  standardization  and  economies  of  scale.   In   turn,  an  agile  strategy  is  applied  for  the  downstream  flow  in  order  to  be  flexible  and  responsive  to  the  actual  customer  demand.  (Towill  &  Christopher,  2002)  This  can  be  likened  with  applying  a  Make-­‐to-­‐Stock  (MTS)  approach  upstream  and  a  Make-­‐to-­‐Order  (MTO)  approach  downstream  from  the  CODP,  explained  by  Hallgren  &  Olhager   (2006).  The  authors   refer   to  MTS  as   replenishment  of  semi-­‐finished  goods  or  modules  at  the  CODP,  and  MTO  as  the  final  configuration  to  a  customer  order.  Hallgren  &  Olhager   (2006)  highlight   that  MTS   focuses  on  productivity,   reduce  cost  and  maintaining  stock  availability  at  the  CODP,  while  MTO  focuses  on  flexibility,  reliability  and  short  lead  times.  To  be  able  to  provide  a  great  responsiveness  with  short  lead  times,  it  requires  that  the  right  material  is  available  at  the  CODP  (Hallgren  &  Olhager,  2006).        The  postponement  of  the  CODP  allows  for   inventory  to  be  held  at  a  generic   level,   resulting   in  fewer  stock  keeping  variants  and  a  smaller  total  inventory  level.  Because  the  inventory  is  generic  and  therefore  unrestricted,  the  ability  to  be  flexible  will  be  greater.  (Christopher,  2011;  Lee,  et  al.,  1993)  The  forecasts  will  also  be  more  accurate  since  it  is  easier  to  forecast  at  a  generic  level  than  for  finished  products,  which  is  especially  relevant  for  global  markets  where  local  forecast  deviations  will   be   greater   than   for   the  worldwide   volume.   To   fully   exploit   the   advantages   of  postponement  it  often  requires  that  products  and  processes  are  designed  and  engineered  in  a  way  that  as  few  standard  components  and  modules  as  possible  can  be  combined  to  solutions  that  satisfies  the  customers’  requirements  for  variety.  (Christopher,  2011)    Christopher  (2000)  stresses  the  importance  of  distinguish  between  the  material  and  information  decoupling  point.  The  material  decoupling  point  is  described  by  Christopher  (2000)  as  the  point  where  the  strategic  inventory  is  held  and  can  be  compared  to  the  CODP  that  Mason-­‐Jones  et  al.  (2000)  defines.  The  material  decoupling  point  should  be  located  as  far  downstream  the  supply  chain  as  possible,  i.e.  as  close  to  the  final  customer  as  possible.  The  information  decoupling  point  is  the  furthest  point  to  which  information  on  actual  demand  penetrates  and  should  be  located  as  far  upstream  the  supply  chain  as  possible,  i.e.  as  close  to  the  supplier  as  possible.  (Christopher,  2000)   In   practice,   the   material   and   information   decoupling   points   usually   coincide   (Olhager,  2012).              

Page 122: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

GENERATION  OF  ALTERNATIVE  SOLUTIONS  

     110  

8.1.2   Reduce  the  Complexity  of  the  Product  Portfolio  The  second  general  solution  is  to  reduce  the  complexity  of  the  product  portfolio  and  the  three  root  causes  and  the  suggested  solution  that  have  substantiated  it  are  listed  in  Table  19  below.  Thereafter  is  the  general  solution  described  in  more  detail.    

Table  19.  The  three  root  causes  and  the  suggested  solution  that  have  substantiated  the  second  general  solution.  

General  Solution   Root  Causes   Suggested  Solutions  Reduce  the  complexity  of  the  product  portfolio  

The  wide  product  portfolio   Standard  product  portfolio  Volatile  customer  demand    Long  lead  times  from  forecast  until  the  material  is  available  at  the  production  

 

 The  extent  of  the  offered  product  portfolio  has  a  significant  impact  on  the  complexity  of  a  supply  chain.  In  most  cases,  the  range  of  products  and  services  that  companies  offer  the  market  has  a  tendency  to  grow  rather  than  decrease.  The  excessive  product  portfolios  seem  to  be  caused  by  the   rate   at   which   new   products   and   variants   are   introduced   that   outpace   the   rate   at   which  existing  products  and  variants  are  phased  out.  A  general  conclusion  is  that  the  more  variants  that  are  added  to  the  product  portfolio,  the  lower  the  demand  will  be  per  variant.  As  a  result,  it  affects  the  forecasting,  which  becomes  more  difficult  at  the  individual  variant   level  and  the  increased  forecast  deviations  will  typically  result  in  large  inventory  levels.  (Christopher,  2011)  Also,  as  the  product  variety  increases,  the  more  complex  will  the  product  configuration  activities  be.  This  in  turn,  results  in  an  intense  information  exchange  among  company  departments  that  is  time  and  resource  consuming,  affecting  the  order  acquisition  and  fulfillment  process  negatively.  (Forza  &  Salvador,  2006)    The  complexity  of  individual  products  can  also  affect  the  supply  chain  in  a  great  extent.  As  early  as   at   the   drawing   board,   when   deciding   between   choices   of   material   and   components,   the  performance  of  the  supply  chain  will  be  determined  by  the  design  of  the  product.  For  example,  the  ability  to  respond  to  changes  in  demand  can  be  impeded  if  components  are  specified  that  has  long   replenishment   lead   times.   The   complexity   of   a   product   is   driven   by   the   number   of  components   and   subassemblies   as   well   as   the   commonality   across   the   bills   of   materials   for  different  products.  Bills  of  materials  with  poor  commonality  are  in  general  causing  less  flexibility  to  vary  volumes  and  product  mixes.  (Christopher,  2011)    The  subsequent  complexity  can  be  avoided  to  some  extent  by  involving  logistics  and  supply  chain  planners   early   in   the   design   process.   For   example,   Motorola   is   a   multinational   tele-­‐communications  company  that  often  had  poor  commonality  across  the  bills  of  materials  and  for  a  single  mobile  phone,  there  could  be  over  100  variants.  Because  of  the  large  number  of  variants  there  were  forecasts  deviations  of  97  %  in  all  of  their  cases.  (Christopher,  2011)  To  resolve  this  problem,  Motorola  started  to  screen  their  products   for  complexity.  The  company  generated  a  

Page 123: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

GENERATION  OF  ALTERNATIVE  SOLUTIONS  

     111  

complexity   index  based  on  complexity-­‐associated   factors   such  as   the  number  of   components,  degree  of  commonality,  lead  time  for  supply  etc.  The  products  that  were  considered  as  complex  according  to  the  index  will  have  more  of  an  impact  on  the  entire  supply  chain  and  is  not  proceed  with.   A   result   of   the   complexity   index   and   the   attempt   to   use   as   many   industry   standard  components  as  possible,  were  that  some  products  decreased  the  number  of  possible  components  by  three  times.  (Whyte,  2003)    Another  example  is  the  food  process  company  Heinz,  which  analyzed  their  product  portfolio  and  discovered  several  products  that  hardly  were  consumed  and  did  not  attract  any  customers.  Heinz  decided  to  reduce  their  stock-­‐keeping  units  from  30  000  to  20  000,  which  resulted  in  cut  costs  for  manufacturing,   packaging,   raw  materials   and   procurement.   Similar,   the   industrial   equipment  manufacturer  Navistar  International  went  from  offering  thousands  of  components  to  only  offer  16   pre-­‐engineered   modules.   The   ordering   process   shortened   from   days   to   hours   and   the  customers  placed  120  %  more  orders  than  initially  forecasted.  The  reason  that  profitability  often  stagnate  as  companies  increases  the  pace  of  product  innovation  is  because  of  the  complexity  it  brings.  It  is  required  to  find  the  appropriate  balance  between  innovation  and  complexity  in  order  to  create  more  efficient  operations  and  profitable  relationships  with  customers.  (Gottfredson  &  Aspinall,  2005)    8.1.3   Reduce  the  Non-­‐Value  Adding  Time  and  the  Number  of  Handovers  The  third  general  solution  is  to  reduce  the  non-­‐value  adding  time  and  the  number  of  handovers.  The  two  root  causes  and  the  suggested  solution  that  have  substantiated  the  general  solution  are  listed  in  Table  20  below.  Furthermore,  the  solution  will  be  described  during  the  section.    

Table  20.  The  two  root  causes  and  the  suggested  solution  that  have  substantiated  the  third  general  solution.  

General  Solution   Root  Causes   Suggested  Solutions  Reduce  the  non-­‐value  added  time  and  the  number  of  handovers    

Activities  concerning  both  the  engineering  and  the  order  flow  are  performed  

Activities  can  be  performed  by  EAL  before  the  CPO  is  received  

Stakeholders  are  often  involved  in  several  projects  

 

 An   often   occurring   reason   for   organizations   being   slow   to   respond   to   market   and   business  changes   is  because  of  a  great  amount  of  handovers.  When  things  get  passed  from  function  to  function,  it  results  in  a  lengthened  process  that  impairs  the  responsiveness.  Moreover,  the  longer  a  process  and  the  more  steps  and  handovers  it  contains,  the  more  complexity  it  will  bring.  In  turn,  the   complexity   increases   the   likelihood   of   getting   an   outcome   that   mismatches   the   planned  outcome.   Making   things   more   simple   is   the   obvious   remedy   for   complexity   problems,   and  solutions  may  be  found  by  questioning  why  things  are  done  the  way  they  are.  (Christopher,  2011)        

Page 124: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

GENERATION  OF  ALTERNATIVE  SOLUTIONS  

     112  

In  similar  to  Christopher  (2011),  Oskarsson  et  al.  (2013)  describe  in  Section  3.9.2  that  non-­‐value  adding  time  should  be  targeted  when  trying  to  reduce  lead  time.  Non-­‐value  adding  time  refers  to  the  time  that  does  not  contribute  with  any  value  for  the  customer,  e.g.  the  time  when  an  order  is  waiting  to  be  handled.  The  authors  present  a  number  of  actions  for  lead  time  reduction  and  one  of  them  is  to  prepare  as  much  as  possible  in  order  to  not  slow  down  the  flows  in  the  supply  chain.  Liker   and   Meier   (2006)   argue   in   a   similar   way,   that   it   may   require   some   non-­‐value   adding  preparation  in  order  to  avoid  distractions   in  the  value-­‐added  work.   It  could  mean  to  bring  the  necessary  tools  to  the  place  where  the  value-­‐added  work  is  later  to  be  performed.  (Liker  &  Meier,  2006)    8.1.4   Improve  Synchronization  The  fourth  general  solution   is  to   improve  the  synchronization  and  the  root  cause  and  the  two  suggested   solutions   that   have   substantiated   it   are   listed   in   Table   21   below.   How   the  synchronization  can  be  improved  in  general  is  described  in  the  following  text.    

Table  21.  The  root  cause  and  the  two  suggested  solutions  that  have  substantiated  the  fourth  general  solution.  

General  Solution   Root  Causes   Suggested  Solutions  Improve  synchronization    

Uncontrolled  incoming  deliveries  

Time  slots      Preannounced  incoming  deliveries    

 As  mentioned  in  Section  3.7.4  by  Gattorna  (1998),  cross-­‐docking  is  the  practice  when  goods  are  incoming   from   several   destinations   and   then   reloaded,   at   the   point   of   cross-­‐docking,   to   new  outgoing   trucks   without   being   stored.   Cross-­‐docking   can   eliminate   activities   from   the   order  picking  and  storage  operations  at  the  main  warehouse,  resulting   in  reduced  material  handling  and  storage  costs  and  at  the  same  time  realize  transport  efficiencies  (Buijs,  Vis,  &  Carlo,  2014).  Buijs  et  al.  (2014)  highlights  the  importance  of  synchronization  in  cross-­‐docking  networks,  stating  that  the   lack  of  storage  buffer   inside  a  cross-­‐dock  requires  that  related  operations  need  to  be  carefully   synchronized.   This   is   further   supported   by   Oskarsson   et   al.   (2013),   that   argue   for  improved  synchronization  when  trying  to  shorten  the  lead  time  in  supply  chains.  By  managing  a  high  degree  of  synchronization,  the  authors  mean  that  the  non-­‐value  adding  time  between  two  activities  can  be  reduced  or  fully  eliminated  and  thereby  improve  the  efficiency.    A  distribution  center  is  often  designed  with  several  strip  doors  and  stack  doors.  Strip  doors  refer  to  the  doors  where  any  incoming  fully  loaded  truck  parks  and  gets  unloaded,  and  stack  doors  to  where  empty  trucks  collect  goods  for  any  specific  destination.  An  occurring  problem  with  cross-­‐docking  is  that  the  number  of  trucks  waiting  to  be  served  exceeds  the  number  of  available  dock  doors.  By  scheduling  the  cross-­‐docking  activities  with  timing  and  sequencing  in  mind,  the  waiting  

Page 125: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

GENERATION  OF  ALTERNATIVE  SOLUTIONS  

     113  

times  of  shipments  and  trucks  can  be  minimized.  Sometimes  when  cross-­‐docking,  some  incoming  trucks  are  not  assigned  to  a  specific  outgoing  truck.  By  scheduling  the  assignment  of  goods  to  outgoing  trucks,  the  workload  will  be  facilitated.  Also  the  workforce  managing  the  cross-­‐docking  activities  must  be  scheduled  in  order  to  align  inbound  and  outbound  flows.  (Buijs  et  al.,  2014)    Luo  &  Noble  (2012)  suggest  to  assign  strip  doors  to  the  origins  and  stack  doors  to  the  destinations.  The  shipments  are  assigned  to  the  outgoing  trucks  and  the  departure  times  are  determined.  A  prerequisite   is   though   that   the   arrival   times   for   the   incoming   trucks   are   known   and   that   the  incoming  trucks  are  served  right  when  they  arrive.  Chmielewski,  Naujoks,  Janas  &  Clausen  (2009)  also  propose  to  assign  the  stock  doors  to  destinations  and  also  scheduling  the  incoming  trucks  in  order  to  minimize  the  waiting  time  in  the  inbound  flow.  Stephan  &  Boysen  (2011)  argue  that  pre-­‐determination  of  strip  and  stack  doors  often  lead  to  a  lack  in  operational  performance  and  may  only   be   required   when   information   regarding   inbound   deliveries   is   poor.   Unlike   the   authors  above,  Miao,  Lim  &  Ma  (2009)  assume  that  the  dock  doors  at  a  distribution  center  may  be  used  as  both  strip  and  stack  doors.  It  is  the  availability  and  the  predetermined  arrival  and  departure  times  for  all  trucks  that  determines  it.      Fredholm  (2006)  states  in  Section  3.7.4  that  the  prerequisites  for  cross-­‐docking  are  an  IT-­‐system  that  connects  the  involved  parties  and  a  transparency  of  what  deliveries  consists  of  and  when  they   will   arrive.   It   also   requires   that   each   package   has   a   bar-­‐code   connecting   it   to   the   right  customer  order  (Christopher,  2011;  Fredholm,  2006).      8.1.5   Product  Configurator  The   fifth   general   solution   is   a   product   configurator,   and   the   two   root   causes   and   the   two  suggested   solutions   that   have   substantiated   it   are   listed   in  Table   22   below.   Thereafter   is   the  concept  of  a  product  configurator  described.    

Table  22.  The  two  root  causes  and  the  two  suggested  solutions  that  have  substantiated  the  fifth  general  solution.  

General  Solution   Root  Causes   Suggested  Solutions  Product  configurator    

The  orders  on  high  level  of  detail    

Identification  of  the  solution  without  detailed  product  numbers  

Several  product  catalogues   Use  one  product  catalogue    Forza  and  Salvador  (2006)  describes  efficient  customization  in  terms  of  product  configurations.  The   authors   describe   the   product   configuration   process   and   highlights   the   importance   of  translating  the  customer  demand  efficiently  and  correctly.  It  is  not  an  easy  task,  given  that  the  language  used  by  the  customer  to  describe  the  product  most  often  differs  from  the  language  used  by  the  company.  However,  sometimes  it  happens  that  the  customer  speaks  the  same  language  as   the   company   and   can  place  orders   on   a   high   level   of   detail.   In   turn,   this   results   in   limited  configuration  options  for  the  company  and  reduces  the  flexibility.  The  authors  suggest  that  the  

Page 126: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

GENERATION  OF  ALTERNATIVE  SOLUTIONS  

     114  

first  fundamental  step  towards  product  configuration  is  to  interpret  the  customer  need  in  terms  of   functionality,   technical   parameters   and   expectancies   and   translate   the   measures   into   a  commercial   product   description.   The   commercial   description   describes   the   product   that   the  customer  is  willing  to  buy  with  characteristics  as  materials,  prices,  delivery  terms,  packaging  etc.  These  characteristics  are  then  used  by  the  company  to  determine  a  specific  product  variant  from  the  company’s  product  catalogue.  (Forza  &  Salvador,  2006)    The  idea  is  that  the  customer  bases  the  acquisition  order  on  the  commercial  description  and  after  completing  the  order  entry,  the  commercial  descriptions  must  be  translated  by  the  company  into  a  technical  description.  Most  often,  the  commercial  descriptions  of  the  products  are  not  enough  for  producing  the  variant  and  therefore  a  technical  description  for  manufacturing  is  necessary.  In  cases   where   there   is   a   great   product   variety,   the   translation   becomes   difficult   since   the  parameters  in  the  technical  description  depend  on  the  parameters  in  the  commercial  description.  This   difficulty   increases   the   time   and   resources   consumed   during   the   order   acquisition   and  fulfilment   process.   When   the   complexity   of   the   tasks   increases,   traditional   approaches   for  product   configurations   show   serious   deficiencies.   A   suggested   solution   is   to   rationalize   the  product  families  in  order  to  offer  a  product  that  allows  for  configuration  and  also  implement  a  product  configurator.  (Forza  &  Salvador,  2006)    Haug,   Hvam   and   Mortensen   (2011)   mention   product   configurators   as   the   most   successful  applications  of  artificial  intelligence  principles,  supporting  products  that  require  engineering  work  for  each  customer  order.  The  product  configurators  can  come  with  a  large  number  of  software  packages,  which  in  turn  consists  of  several  general  and  special  functions.  It  is  therefore  important  for  companies  to  select  a  software  that  supports  their  customization  strategy.  (Forza  &  Salvador,  2006)  Generally,   the  configurators  cause  fewer  handovers  and  automate  much  of   the  work   in  terms  of  the  human  expertise  in  the  sales  and  design  process,  resulting  in  significant  lead  time  reductions  and  saved  man-­‐hours.  There  are  several  case  studies  in  where  the  lead  time  have  been  reduced  by  implementing  a  product  configurator.  For  example,  Hong,  Xue,  Tu  and  Xiong  (2008)  that  observed  a  customer  lead  time  be  reduced  from  eight  to  three  weeks  and  also  Hvam,  Malis,  Hansen  and  Riis  (2004)  together  with  Hvam,  Pape  and  Nielsen  (2006)  that  experienced  an  overall  delivery  time  for  a  complete  system  be  reduced  from  400  to  16  days.      However,  to  create  a  product  configurator  is  often  a  time-­‐consuming  project  that  can  be  risky.  Even  though  there  can  be  major  lead  time  reductions,  it  might  not  be  profitable  if  the  costs  of  achieving  this  are  too  high.  (Haug  et  al.,  2011)  The  costs  of  a  configurator  increases  with  product  complexity,   the  number  of  product   families,   the  degree  of  customization  per  product  and  the  number  of  product  parts  to  be  customized  (Forza  &  Salvador,  2006).              

Page 127: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

GENERATION  OF  ALTERNATIVE  SOLUTIONS  

     115  

8.1.6   Improve  Visibility  and  Transparency  The  sixth  general  solution  is  to  improve  visibility  and  transparency,  and  the  three  root  causes  and  the  two  suggested  solutions  that  have  substantiated  it  are  listed  in  Table  23  below.  Thereafter,  the  general  solution  is  described  in  more  detail.    

Table  23.  The  three  root  causes  and  the  two  suggested  solutions  that  have  substantiated  the  sixth  general  solution.  

General  Solution   Root  Causes   Suggested  Solutions  Improve  visibility  and  transparency    

Several  incompatible  systems  are  used  

Integrate  systems  and  processes  

Bad  transparency   Integrate  systems  and  processes  

Changing  delivery  dates      As  stated  by  Stevens  (1989),  companies  strive  to  integrate  their  supply  chains  and  a  full  system  visibility  is  an  important  characteristic  to  do  so.  Steinfield  et  al.  (2011)  also  state  the  importance  of  having  an  end-­‐to-­‐end  transparency,  but  mention  a  general  barrier  to  be  the  use  of  different  communication  and  information  sharing  systems  within  the  supply  chain.  Companies  that  strive  to  reduce  lead  time  have  often  been  very  successful  with  generating,  sharing  and  use  information  (Stalk  &  Hout,  1990).  MacLean  &  Rebernak  (2007)  states  in  Section  3.10.2  that  “there  is  no  better  way  to  build  trust  among  stakeholders  than  through  transparency”.  Also  Oskarsson  et  al.  (2013)  highlights  the  importance  of  managing  an  efficient  communication  and  also  focus  on  improving  it  when  trying  to  reduce  lead  time.    Mentioned  in  Section  3.10.1  by  Skjott-­‐Larsen  et  al.  (2007),  information  systems  can  generally  be  of  two  different  types:  intra-­‐firm  and  inter-­‐firm.  Intra-­‐firm  is  within  the  company  and  inter-­‐firm  allows  the  company  to  integrate  with  its  suppliers  and  customers.  Maybe  the  most  well-­‐known  intra-­‐firm  system  is  the  ERP-­‐system  that  manages  for  instance  inventory,  order  processing  and  financial  payments.  Since  intra-­‐firm  systems  do  not  give  a  holistic  view  of  the  supply  chain,  inter-­‐firm  systems  may  be  more  successful  to  use  when  dealing  with  logistics  in  supply  chains.  These  systems  are  more  capable  of  managing  supply  chain  management  since  they  enable  coordination  with  suppliers  and  customers  in  one  system.  Christopher  (2011)  argues  that  internal  operations  become  much  more  efficient  as  a  result  from  supply  chain  IT-­‐solutions.  They  enable  a  company  to  identify  customer  demand  earlier  and  thus  being  able  to  plan  and  schedule  better  and  more  efficient  utilize  the  production  and  transport  capacity.    Moreover,   it   was   described   in   Section   3.10.1   by   Fredholm   (2006)   that   companies   can   share  information  with  each  other  in  different  ways,  e.g.  by  e-­‐mail  or  by  EDI  transmissions.  EDI  refers  to  standardized  electronic  file  transferring  of  e.g.  purchase  orders,  inventory  documents,  shipping  documents  and  payment  documents.  This  is  an  effective  way  of  handle  administrative  activities  that  makes  it  possible  to  decrease  lead  time,  but  a  problem  is  the  high  degree  of  variations  of  EDI-­‐standards   being   used.   Companies   doing   business   together   preferably   agree   on   common  

Page 128: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

GENERATION  OF  ALTERNATIVE  SOLUTIONS  

     116  

standards   (Fredholm,   2006),   otherwise   it   will   often   be   errors   and   delays   in   the   information  exchange.  This  is  also  a  problem  when  companies  only  use  individual  intra-­‐firm  systems,  since  the  information  has  to  be  rekeyed  when  passing  from  point  to  point.  (Steinfield  et  al.,  2011)  Skjott-­‐Larsen  et  al.  (2007)  highlights  in  Section  3.10.2  the  bullwhip  effect  as  a  visibility  and  coordination  problem  by  referring  to  Forrester  (1961).    Steinfield  et  al.  (2011)  discusses  some  possible  solutions  that  may  lead  to  a  better  transparent  and  coordinated  chain.  One  is  the  use  of  vertical  industry  data  and  process  standards,  which  may  lead  to  a  greater  understanding  and  a  reduction  of  barriers  between  different  parties  in  the  supply  chain.  However,  Steinfield  et  al.  (2011)  highlights  that  the  implementation  of  these  standards  may  not  be  sufficient  if  they  are  made  on  a  point-­‐to-­‐point  basis,  meaning  that  the  flow  of  information  will  not  be  seamless  if  some  parties  stop  using  the  standards.  A  consequence  to  this  is  the  need  for   implementation  of   separate   connections   between  different   partners,  which  might   lead   to  problems  such  as  the  bullwhip  effect  because  of  delays  and  errors  in  the  sequential  information  transmissions.  (Steinfield  et  al.,  2011)      Instead  of  having   these  point-­‐to-­‐point  connections   in   the  supply  chain,  Steinfield  et  al.   (2011)  proposes  the  use  of  coordination  hub-­‐systems,  also  referred  to  as  supply  chain  software  by  Skjott-­‐Larsen  et  al.   (2007).  The  purpose  of  coordination  hubs   is   to  make   information  simultaneously  available,  instead  of  sequential,  to  all  parties,  which  will  support  a  higher  degree  of  transparency  (Steinfield  et  al.,  2011).  Coordination  hubs  are  standard  based  IT  platforms  that  are  available  to  use   for  business-­‐to-­‐business   transactions  by  organizations   that   collaborate  with  each  other   in  some  way  and   they  can   support   the  collaboration,   communication  and  coordination  between  them.  (Lynne  &  Quang,  2012)  Steinfield  et  al.  (2011)  distinguish  between  two  different  types  of  coordination  hubs:  private  and  shared.    Private  coordination  hubs  are  developed  by  larger  and  dominant  companies  in  supply  chains  who  then  invite  business  partners  to  take  use  of  them.  The  idea  of  these  private  coordination  hubs  is  to  use  an  IT-­‐architecture  that  increases  data  and  process  standards  without  using  point-­‐to-­‐point  communication.  If  a  company  introduce  new  standards  in  its  IT-­‐architecture  and  different  ERP-­‐systems  are  used  in  different  parts  of  the  business,  it  may  be  costly  in  terms  of  time  and  money  to  get  these  systems  to  conform  with  the  new  standards.  The  private  coordination  hub  can  then  work  as  a  platform  that  coordinates  the  transfer  of  standardized  messages  between  the  systems.  It  may  also  be  possible  to  connect  to  the  platform  in  different  ways,  depending  on  a  company’s  current  technology.  The  downside  with  this  kind  of  coordination  hub  is  that  it  is  limited  to  the  partners  that  the  company  invites,  because  they  want  to  control  that  their  competitors  not  will  take  advantage  of  information  that  can  be  sensitive.  This  means  that  some  suppliers  might  still  face   high   costs   when   they   are   forced   to   use   different   technologies   depending   on   if   they   do  business  that   is  connected  to  the  dominant  company  or  not.  As  a  result,  there  will  be  a   lower  degree  of  adoption  to  the  new  set  standards  by  smaller  companies.  (Steinfield  et  al.,  2011)  The  problem  with  information  transparency  in  the  whole  supply  chain  will  therefore  not  be  fully  fixed,  though  coordination  hubs  are  most  beneficial  when  they  are  used  by  all  business  partners.  (Lynne  &  Quang,  2012)      

Page 129: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

GENERATION  OF  ALTERNATIVE  SOLUTIONS  

     117  

Shared   coordination  hubs   instead   appear   to   provide   a   greater   information   transparency   than  private  coordination  hubs,  because  they  can  be  used  by  any  supplier  to  any  other  party  using  the  hub.  This  will  reduce  some  barriers  that  before  have  prevented  the  use  of  standards  and  there  will  be  a  higher  degree  of  adoption  by  smaller  members  in  the  supply  chain.  The  idea  of  shared  coordination  hubs  is  basically  to  generate  simplifications  in  trades  and  at  the  same  time  secure  a  greater  control  and  security.  This  can  for  instance  be  made  through  redesigning  processes  and  use   open   standards   when   transporting   goods,   and   use   innovative   IT   when   transmission  information  between  partners.  An  example   is   the  use  of  Electronic  Product  Code   Information  System   data   standards  which   enables   each   partner   in   the   supply   chain,   each  with   their   own  conforming  system,  to  make   information  available   for   its  partners  on  a  need-­‐to-­‐know  basis.  A  unifying  component  then  handles  the  transmission  between  each  partners  conforming  system.  A  freight   company   can   for   example   share   logistical   data  with   its   partners   in   a   transparent  way.  (Steinfield   et   al.,   2011)   However,   Fredholm   (2006)   means   that   there   is   a   great   challenge   to  integrate  all  parties’  systems,  in  the  extent  that  is  needed  to  really  be  able  to  share  information  throughout  the  supply  chain.  This  due  to  many  systems  are  not  prepared  to  be  integrated  and  companies   therefore   will   face   high   costs   when   redesigning   them.   Another   challenge,   and   a  prerequisite  for  fully  integration,  is  that  information  continuously  must  be  updated  within  each  system  and  that  a  high  quality  standard  of  the  information  has  to  be  secured.  (Fredholm,  2006)  Lynne   &   Quang   (2012)   argue   that,   for   coordination   hubs   to   be   possible,   there   should   be   a  cooperation  between  all  business  partners  to  develop  the  data  and  process  standards.        8.1.7   Proactive  L/C  and  Alternative  Payment  Methods  The  seventh  general  solution  is  to  work  proactive  with  the  L/C  and  consider  alternative  payment  methods.  The  three  root  causes  and  the  two  suggested  solutions  that  have  substantiated  it  are  listed  in  Table  24  below.  The  general  solution  is  thereafter  explained  in  more  detail.    

Table  24.  The  three  root  causes  and  the  two  suggested  solutions  that  have  substantiated  the  seventh  general  solution.  

General  Solution   Root  Causes   Suggested  Solutions  Proactive  L/C  and  alternative  payment  methods    

Demanding  paper  work   Work  proactive  Many  parties  need  to  agree    ATM  does  not  trust  the  lead  time  promised  by  Ericsson  

Closer  collaboration  between  EAL  and  ATM  

 Susmus  and  Baslangic  (2015)  describes  a  number  of  different  payment  methods  that  are  used  in  the  international  trade.  One  of  the  payment  methods  is  L/C,  which  is  a  conditional  bank  guarantee  that  protects  both  the  seller  and  the  buyer  against  all  risks  and  is  therefore  the  most  used  method  in  foreign  trade  applications  (Susmus  &  Baslangic,  2015).  To  ensure  a  faultless  L/C  process,  it  is  necessary   for   companies   to   develop   the   skills   to   proactively   manage   situations   that   causes  discrepancies  (Mehta,  2005).      

Page 130: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

GENERATION  OF  ALTERNATIVE  SOLUTIONS  

     118  

There  are  mainly  four  situations  that  usually  causes  discrepancies   in  L/Cs.  The  first  situation  is  when   the   L/C   itself   is   defective.   Secondly,   it   can   be   caused   by   lack   of   knowledge   or   mis-­‐interpretations  of  the  Uniform  Customs  and  Practices  for  Documentary  Credits  (UCP).  The  third  situation  is  when  the  internal  procedures  are  inefficient  or  absent.  Finally,  the  discrepancies  can  be  caused  by  the  absence  of  necessary  resources,  e.g.  funds,  technology  and  skills.  These  critical  situations   can  be  handled  by  mastering  discrepancy   rectification  and  grow  knowledge  of  UCP  management,  L/C  terms  negotiation  management,  shipment  management  and  documentation  management.  (Mehta,  2005)      A   relatively   new   payment  method   is   the   Bank   Payment  Obligation   (BPO)   and   is   predicted   to  change  the  way  companies  manage  their  global  supply  chains,  at  least  in  high  risk  markets  (Green,  2012).  After  having  conducted  a  study  of   the   import  and  export   terms   in  Turkey,  Susmus  and  Baslangic  (2015)  conclude  that  BPO  will  replace  payment  methods  as  L/C  in  the  upcoming  future.  BPO  has  more  or  less  the  same  function  as  L/C,  except  that  the  process  is  automated.  In  other  words,  the  time  consuming  document  management  and  exchange  process  will  be  avoided  and  BPO  will  therefore  be  a  more  rapid  and  simpler  alternative  to  L/C.  (Green,  2012)      Although,   BPO   has   its   downsides.   Susmus   and   Baslangic   (2015)   refer   to   Göleç   (2015)   when  highlighting  the  weaknesses  and  threats  for  BPOs.  The  first  weakness  is  that  BPO  is  a  new  method  in  the  market  and  therefore  has  a  limited  use.  Secondly,  the  method  requires  system  integration  between  the  company,  the  banks  and  the  customer.  The  threat  is  that  the  method  may  cause  potential  legal  concerns  in  some  countries  because  of  the  electronic  form.  (Göleç,  2015)      The  payment  term  BPO  is  expected  to  be  adopted  more  widely  over  the  world  as  the  international  trade   and   communications   increases   and  as   the   technology   and  banking  develops   (Susmus  &  Baslangic,   2015).   Green   (2012)   argues   that   standardized   rules   released   by   the   International  Chamber  of  Commerce  (ICC)  would  help  to  boost  the  use  of  BPO,  since  acceptance  takes  time.  Recently,   ICC  released  guidelines   for  banks   to  help   them  with   their  BPO-­‐related  business.  The  guidelines  are  expected  to  increase  the  number  of  local  and  international  banks  using  BPO  as  a  payment  method.  (Torquato,  2016)    8.1.8   Selection  of  Incoterms  The  eighth  general  solution  is  the  selection  of  incoterm  and  the  root  cause  that  has  substantiated  it   is   listed   in  Table   25  below.   Furthermore,   different   types   of   incoterms   are   described   in   the  following  text.    

Table  25.  The  root  cause  that  has  substantiated  the  eight  general  solution.  

General  Solution   Root  Causes   Suggested  Solutions  Selection  of  incoterms   Division  of  responsibilities        

Page 131: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

GENERATION  OF  ALTERNATIVE  SOLUTIONS  

     119  

To  facilitate  commercial  transactions  for  companies  doing  business  in  global  trade,  International  Chamber  of  Commerce  (ICC)  has  created  a  set  of  terms  referred  to  as  International  Commercial  Terms  or  Incoterms  (Cook,  2014).  The  Incoterms  are  often  included  in  supply  contracts  and  are  international  standards  that  allocates  the  responsibilities  for  freight  costs  and  risk  undertakings  between  the  seller  and  the  buyer  (Jonsson,  2008).  Using  the  appropriate  Incoterm  can  benefit  both  sellers  and  buyers  worldwide.  However,  the  terms  are  often  misunderstood  or  overlooked  by  the  companies.  The  buyer  and  seller  must  recognize  the  risks  and  costs  associated  for  both  of  them,  and  the  key  is  to  use  Incoterms  that  work  best  for  the  supply  chain  and  that  meets  the  intentions  of  both  parties.  The  newest  version  of  Incoterms  consists  of  eleven  rules  that  can  be  categorized  based  on  the  method  of  delivery.  The  following  four  rules  can  be  used  regardless  of  the  type  of  transport.  (Cook,  2014)      Carriage   and   Insurance   Paid   to   (CIP)   indicates   that   the   seller   accounts   for   the   costs   of   the  transport  and  insurance  of  the  goods  to  the  agreed  place.  The  risk  is  transferred  to  the  buyer  as  the  goods  is  handed  over  to  the  first  carrier.  Carriage  Paid  To  (CPT)  implies  that  the  seller  accounts  for  the  costs  of  the  transportation  to  the  named  place  of  destination  and  the  risk  is  passed  on  to  the  seller  as  the  goods  is  handed  over  to  the  first  carrier.  Notice  that  the  buyer  is  responsible  for  the  insurance  of  the  goods.  Delivered  at  Place  (DAP)  is  used  when  the  seller  accounts  for  the  costs  of   the   transportation   to   the  named  place   and  undertakes   all   risks   until   the  buyer   is   ready   to  unload  the  goods.  Delivered  at  Terminal  (DAT)  means  that  the  seller  accounts  for  the  costs  of  the  transportation  to  the  terminal  at  port  or  place  of  destination.  The  seller  undertakes  all  risks  until  the  goods  are  unloaded  at  the  terminal.  (Cook,  2014;  International  Chamber  of  Commerce,  2016)  The  terms  described  above  and  their  meanings  are  summarized  in  Table  26.    

Table  26.  Incoterms  for  multimodal  transports.  Source:  Based  on  Cook  (2014)  and  International  Chamber  of  Commerce  (2016)  

Incoterm   Carriage   Insurance   Transfer  of  Risk  CIP   Paid  by  the  seller  to  the  

named  place  Paid  by  the  seller  to  the  named  place  

When   the   goods   are  handed  over  to  the  first  carrier  

CPT   Paid  by  the  seller  to  the  named  place  

Paid  by  the  buyer   When   the   goods   are  handed  over  to  the  first  carrier  

DAP   Paid  by  the  seller  to  the  named  place  

Paid  by  the  seller  to  the  named  place  

When   the   goods   are  ready   for  unloading  by  the  buyer  

DAT   Paid  by  the  seller  to  the  named  terminal  

Paid   by   seller   to   the  named  terminal  

When   the   goods   are  unloaded  by  the  seller  

   

Page 132: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

GENERATION  OF  ALTERNATIVE  SOLUTIONS  

     120  

8.2   Ericsson  Specific  Solutions  In   this   section   are   the   general   solutions   applicability   for   the   current   situation   discussed   and  adapted  to  fit  the  studied  supply  chain.  The  adapted  solutions  are  referred  to  as  Ericsson  specific  solutions   and   are   listed   in   Table   27   below,   together   with   the   general   solution   that   has  substantiated  each  of   them.  Moreover,   the  root  causes  that  can  be  solved  with  each  Ericsson  specific  solution  are  summarized  in  the  end  of  the  section  that  the  solution  is  described  in.        

Table  27.  The  connection  between  the  general  solutions  and  the  Ericsson  specific  solutions.  

Ericsson  Specific  Solution   General  Solution  Regional  Supply  Hub   CODP  Strategy  Regional  Product  Portfolio   Reduce  the  Complexity  of  the  Product  

Portfolio  Prepare  for  Activities  During  Pre-­‐Sales   Reduce   the  Non-­‐Value   Adding   Time   and   the  

Number  of  Handovers  Time  Slots   Improve  Synchronization  Product  Configurator   Product  Configurator  End-­‐to-­‐End  Integration   Improve  Visibility  and  Transparency  Proactive  Management  and  Future  Bank  Payment  Methods  

Proactive  L/C  and  Alternative  Payment  Methods  

Changing  Incoterm  to  CIP,  DAP  or  DAT   Selection  of  Incoterms    8.2.1   Regional  Supply  Hub  A  perceived  problem  explained  by  Kjellander  (2016)  is  that  the  material  becomes  bound  to  the  customer  too  early  in  the  supply  chain,  i.e.  the  CODP  is  located  too  early.  This  results  in  restricted  inventories  at  many  locations,  which  inhibits  Ericsson  to  be  flexible  with  their  material  flows.  A  solution  that  was  introduced  by  Kjellander  (2016)  and  explained  by  Forsberg  (2016)  is  the  supply  hub.  The  concept  refers  to  locate  a  hub  in  each  region,  RMED  for  this  study,  that  will  supply  the  whole   region   with   products.   Christopher   (2011)   states   that   it   generally   exist   significant   local  differences   in   customer   requirements,   which   makes   it   difficult   to   meet   demands   on  customization.  Therefore,  it  will  be  favorable  with  a  predefined  product  portfolio  within  RMED.  The  whole  region  needs  to  agree  on  the  products  and  components  composing  it  and  it  will  be  updated  each  quarter  (Forsberg,  2016).  This  is  in  line  with  Christopher  (2011)  that  highlights  the  possibility   of   satisfy   the   customer   requirements   for   variety   with   the   combination   of   as   few  standard  components  and  modules  as  possible.      The  supply  hub  concept  means  to  move  the  node  production  from  ESS  Tallinn  to  the  supply  hub,  which  will  be  made  to  order.  The  ESSs  and  EMSs  will  instead  mainly  produce  standard  modules,  i.e.   RUs,   DUs   and   FUs,   and   be   based   on   forecasts.   The   standard   modules   will   continuously  replenish  a  pick   from  stock   inventory  at   the  supply  hub.   (Forsberg,  2016)  This  means  that   the  CODP  is  postponed  to  the  hub,  which  is  in  line  with  Christopher  (2011)  that  argues  that  the  CODP  should  be   located  as   close   to   the  customer  as  possible.  The  pick   from  stock   inventory  will  be  

Page 133: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

GENERATION  OF  ALTERNATIVE  SOLUTIONS  

     121  

unrestricted,  meaning  that  the  material  is  not  bound  to  a  specific  customer  and  thereby  foster  a  greater  flexibility  in  accordance  with  Christopher  (2011)  and  Lee  et  al.  (1993).  By  moving  the  CODP  to   the   supply  hub  and  apply  an  unrestricted   stock,   it   allows  Ericsson   to  be   responsive  and   to  customize  products  with  less  tied  up  capital  in  the  supply  chain.  This  is  supported  by  Mason-­‐Jones  et  al.  (2000)  who  mean  that  activities  before  the  CODP  should  be  forecast  driven  and  the  ones  after  the  CODP  order  driven.  Another  benefit  with  the  supply  hub  is  that  it  results   in  a  clearer  division  between   lean  and  agile   in  the  supply  chain,  which   is   in   line  with  Towill  &  Christopher  (2002).   By   having   standardized   flows   before   the   hub,   it   leads   to   a   greater   efficiency   and  economies  of  scale.  In  turn,  by  being  more  agile  and  flexible  after  the  hub,  it  allows  Ericsson  to  be  more  responsive  to  ATMs  demand.      The  customer  can  still  order  products  that  is  not  included  in  the  portfolio,  but  in  those  cases  it  requires  a  separate  material  flow  that  will  have  longer  lead  times  (Forsberg,  2016).  As  stated  by  Hallgren  &  Olhager  (2006),  being  able  to  be  responsive  with  short  lead  times  requires  that  the  right  material   is  available  in  the  hub.  This  will  be  managed  by  the  predefined  regional  product  portfolios,  but  also  sets  demand  on  great  forecasts  in  order  to  have  the  right  quantities  on  stock.  The  forecasts  will  however  be  easier  to  manage  since  unrestricted  stocks  are  applied,  which  is  in  line  with  Christopher  (2011).  Other  prerequisites  to  implement  the  supply  hub  is  to  make  sure  to  have  the  right  IT  infrastructure  to  manage  all  activities  connected  to  the  hub.  It  is  important  to  ensure  a  closer  collaboration  between  Ericsson,  the  local  company  and  the  customer  in  the  order  and  delivery  planning  processes.  It  also  requires  that  the  goods  can  be  shipped  when  they  are  ready,  meaning  that  no  insurance  or  financial  aspects  prevent  it.  (Forsberg,  2016)    To  summarize,  three  root  causes  are  expected  to  be  solved  by  implementing  a  regional  supply  hub  in  the  studied  supply  chain  and  they  are  all  listed  in  Table  28  below.      

Table  28.  The  root  causes  that  are  solved  with  the  first  Ericsson  specific  solution.  

Ericsson  Specific  Solution   Root  Causes  Solved  Regional  Supply  Hub   No  clear  division  between  lean  and  agile  in  the  

supply  chain  CODP  located  early  in  the  Supply  Chain  Long   lead   times  between   forecast   start   until  material  is  available  in  the  production  

 8.2.2   Regional  Product  Portfolio  A  common  root  cause  for  several  of  the  identified  problems  in  the  supply  chain  is  the  fact  that  Ericsson  has  a  wide  product  portfolio.  This  is  in  line  with  Christopher  (2011)  that  argues  that  the  size  of  the  product  portfolio  has  a  significant  impact  on  the  complexity  of  a  supply  chain.  Since  ATM  has  the  possibility  to  order  from  a  wide  portfolio  with  many  duplicates  or  similar  products,  it  contributes  to  some  products  being  low  frequent  and  the  diversified  flows  of  material.  Some  site  materials  might  even  have  an  order  to  delivery  lead  time  of  eight  to  ten  weeks.      

Page 134: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

GENERATION  OF  ALTERNATIVE  SOLUTIONS  

     122  

A   solution   to   this,   that   is   desired   by   e.g.   Pettersson   (2016b),   Kjellander   (2016)   and  Benrabah  (2016),  would   be   to   limit   the   portfolio  with   as   few   variants   as   possible.   Since   each   customer  demand  different  types  and  variants  of  products,  mainly  due  to  the  different  frequency  bands,  it  would  not  be  possible  to  agree  on  a  portfolio  for  the  entire  customer  base.  Instead  should  each  region  agree  on  a  product  portfolio   that   is   common   for  all   customers  within   that   region.   The  portfolio  should  contain  both  radio  and  site  material,  but  with  as  few  unique  product  numbers  and  variants  as  possible  to  meet  the  customer  demand.  Generally,  a  poor  commonality  between  different  components  in  a  portfolio  lead  to  a  lower  degree  of  flexibility,  why  it   is   important  to  consider  the  portfolio  carefully  to  make  sure  that  the  components  can  be  combined  in  a  flexible  way.  This  is  in  line  with  Christopher  (2011),  that  to  foster  a  high  degree  of  customization  close  to  the  customer,  products  should  be  designed  and  engineered  so  as  few  standard  components  and  modules  can  be  combined  in  a  varied  way  that  satisfies  the  demands.  Furthermore,  the  regional  product   portfolio   should  be   created   in   association  with   logistics   and   supply   chain   planners   in  order  to  reduce  the  amount  of  components  with  long  lead  times.  This  can  be  likened  with  the  situation  of  Motorola,  presented  by  Whyte  (2003)  in  Section  8.1.2.      A  narrower  product  portfolio  would  also  facilitate  the  forecasting  for  Ericsson  towards  ATM.  This  is  in  line  with  Christopher  (2011)  that  states  that  the  forecasting  becomes  more  difficult  as  the  variance   of   products   increases,   which   also   may   lead   to   larger   inventory   levels.   Phasing   out  products  from  the  portfolio  will  also  reduce  the  BoM  that  ATM  demands,  which  will  facilitate  the  local   processing   phase   in   form  of   a   less   complex   process  when   designing   the   solution.   It   has  already  been  proved  by  companies   that   reduced  variations  and  usage  of   standard  modules   in  product   portfolios   are   successful,   which   was   described   by   Whyte   (2003)   together   with  Gottfredson  and  Aspinall  (2005)  in  Section  8.1.2.    To  summarize,  three  root  causes  can  be  solved  by  implementing  a  regional  product  portfolio  for  RMED  and  they  are  listed  in  Table  29  below.    

Table  29.  The  root  causes  that  are  solved  with  the  second  Ericsson  specific  solution.  

Ericsson  Specific  Solution   Root  Causes  Solved  Regional  Product  portfolio   Wide  product  portfolio  

Volatile  customer  demand  Long   lead   times  between   forecast   start   until  material  is  available  in  the  production  

 8.2.3   Prepare  for  Activities  During  Pre-­‐Sales  According  to  Benrabah  (2016b),  Forsberg  (2016)  and  Özdogru  (2016),  the  local  processing  phase  is   perceived   as   the   bottleneck   in   the   information   flow   due   to   the   great   amount   of   manual  handovers.  This  is  supported  by  Christopher  (2011)  that  mentions  large  number  of  handovers  as  a  common  cause  for  organizations  being  slow  to  market.  Benrabah  (2016b)  believes  that  the  right  information  provided  at  the  right  time  would  reduce  the  time  spent  on  the  local  processing  phase,  which   might   be   easier   said   than   done   considering   the   complexity   that   comes   with   many  

Page 135: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

GENERATION  OF  ALTERNATIVE  SOLUTIONS  

     123  

handovers  in  accordance  with  Christopher  (2011).  Forsberg  (2016)  and  Radenholt  (2016)  mean  that   integrated  systems  and  processes  would  facilitate  the  complexity  of  the  handovers  and  is  therefore   an   interesting   solution   to   this   problem,   but   is   provided   as   an   individual   solution   in  Section  8.2.6.    However,   Lindberg   (2016)   and   Magnusson   (2016)   describe   a   solution   that   will   decrease   the  number  of  handovers  during  the  local  processing  phase  and  by  doing  so,  shorten  the  customer  order   lead   time.   Instead  of   translating   the  price  objects   into  delivery  objects  after   the  CPO   is  received   by   EAL,   it   should   be   done   prior   to   the   local   processing   phase,   i.e.   during   pre-­‐sales.  According  to  Christopher  (2011),  it  will  make  Ericsson  more  responsive  to  the  market  as  the  local  processing  will   consist   of   fewer  handovers   and  be   less   complex.   Both   Liker   and  Meier   (2006)  together  with  Oskarsson  et  al.  (2013)  argue  for  preparations  in  terms  of  preparing  as  much  as  possible  before  the  value-­‐adding  work  is  being  performed.  The  translation  from  price  objects  into  delivery  objects  can  for  ATM  be  considered  as  a  non-­‐value  adding  activity  as  the  order  is  waiting  to  be  handled.  In  obedience  with  Liker  and  Meier  (2006)  together  with  Oskarsson  et  al.  (2013),  the  translation  should  instead  be  performed  before  the  CPO  is  received  by  EAL  and  thereby  make  the  Verdi  solution  ready  for  ordering  as  the  CPO  arrives.    To   summarize,   one   root   cause   can  be   solved  by  preparing   the  Verdi   solution  before   the  CPO  arrives  and  it  is  presented  in  Table  30  below.      

Table  30.  The  root  cause  that  is  solved  with  the  third  Ericsson  specific  solution.  

Ericsson  Specific  Solution   Root  Causes  Solved  Prepare  for  Activities  During  Pre-­‐Sales   Activities  concerning  both  the  engineering  and  

the  order  flow  are  performed      8.2.4   Time  Slots  The  problem  with  uncontrolled  incoming  deliveries  to  EDC  GBG  would  preferably  be  solved  with  a  system  that  can  manage  a  greater   level  of  control.  Since  EDC  GBG  works  as  a  cross-­‐docking  facility   and   thus   have   no   buffers,   it   is   particularly   important   with   synchronization,   which   is  supported   by   Buijs   et   al.   (2014)   and   Oskarsson   et   al.   (2013).   Today,   there   is   a   lack   in   the  transparency  since  the  people  at  EDC  GBG  often  only  get  the  information  of  what  week,  or  in  best  case   what   day   a   delivery   will   occur.   This   contradicts   to   what   Fredholm   (2006)   states,   that   a  prerequisite  for  cross-­‐docking  is  to  know  when  a  truck  will  deliver  and  what  the  delivery  consists  of.  Also  Luo  &  Noble  (2012)  and  Chmielewski  et  al.  (2009)  stresses  the  importance  of  scheduling  the  incoming  trucks.              

Page 136: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

GENERATION  OF  ALTERNATIVE  SOLUTIONS  

     124  

It  is  desired  by  both  Kristoffersson  (2016)  and  Slotte  (2016)  to  have  an  IT-­‐system  where  each  truck  can  be  booked  to  manage  their  delivery  during  one  of  a  number  of  predefined  time  slots,  i.e.  time  windows.  By  controlling  the  inflows,  it  would  even  out  the  number  of  incoming  trucks  over  time  and  also  facilitate  the  planning.  This  is  in  line  with  Buijs  et  al.  (2014)  that  argue  that  cross-­‐docking  activities  should  be  scheduled  with  timing  and  sequencing  in  mind.  Since  time  slots  are  already  used  for  the  outbound  flow  from  EDC  GBG,  the  method  is  proved  to  work  although  the  inbound  part   is  more   complex.   If  using   time   slots   for  both   sides  of   the  EDC,  a  greater   synchronization  between  the  trucks  for   inbound  and  the  ones  for  outbound  will  also  be  managed.  An  inbound  delivery  can  beforehand  be  assigned  to  an  outgoing  truck,  which  will  also  facilitate  the  workforce  planning  at  EDC  GBG  in  accordance  with  Buijs  et  al.  (2014).        To  summarize,  one  root  cause  can  be  solved  by  implementing  time  slots  and  it  is  presented  in  Table  31  below.      

Table  31.  The  root  cause  that  is  solved  with  the  fourth  Ericsson  specific  solution.  

Ericsson  Specific  Solution   Root  Causes  Solved  Time  Slots   Uncontrolled  incoming  deliveries    8.2.5   Product  Configurator  The  problem  of  Ericsson  using  their  internal  product  numbers  in  the  business  with  ATM  would  most   likely   be   solved   by  working   towards   a  more   efficient   product   customization.   Instead   of  placing   orders   on   specific   product   numbers,   ATM   should   base   the   acquisition   order   on   the  commercial  description,  i.e.  materials,  prices,  packaging  etc.,  that  in  turn  can  be  matched  with  products   in   the  Ericsson  catalogue,   in  accordance  with  Forza  and  Salvador   (2006).  As  a   result,  Ericsson  can  determine  the  product  variants  with  a  greater  flexibility  and  will  not  be  limited  in  their  choice  of  components.  The  solution  will  also  be  more  flexible  considering  that  the  solution  can  be  created  per  site,  customer  etc.   instead  of  per  product  catalogue  as   for  today.   It  would  mean   that   ATM   could   place   orders   on   the   solution   identification   rather   than   on   specific  component  numbers,  which  is  the  case  of  today  according  to  Benrabah  (2016)  and  thereby  meet  the  expressed  desire  by  Högberg  (2016).    Since  Ericsson  has  a  considerable  number  of  customers  with  various  requirements  in  addition  to  ATM,  the  complexity  of  the  order  acquisition  and  fulfilment  process  will  be  great  in  consistent  with  Haug  et  al.  (2011).  To  manage  the  complexity,  Forza  and  Salvador  (2006)  suggest  companies  to   rationalize   their   product   families   and   implement   a   product   configurator.   In   the   current  situation,  the  local  processing  consists  of  several  manual  handovers  and  accounts  for  a  significant  part  of  the  total  lead  time.  In  accordance  with  Haug  et  al.  (2011),  the  implementation  of  a  product  configurator   would   cause   fewer   handovers   and   automate  much   of   the  work   in   terms   of   the  required   human   expertise   when   generating   solutions.   It   would   not   only  make   the   fulfilment  process  more  effective,   it  would  also  facilitate  the  order  acquisition.  Hence,  resulting   in  saved  man-­‐hours  and  a  reduced  lead  time  for  the  local  processing  as  well  as  for  the  entire  supply  chain.    

Page 137: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

GENERATION  OF  ALTERNATIVE  SOLUTIONS  

     125  

To  summarize,  two  root  causes  can  be  solved  by  implementing  a  product  configurator  based  on  a  catalogue  consisting  of  the  whole  assortment  of  Ericsson.  The  root  causes  are  listed  in  Table  32  below.    

Table  32.  The  root  cause  that  is  solved  with  the  fifth  Ericsson  specific  solution.  

Ericsson  Specific  Solution   Root  Causes  Solved  Product  Configurator    

Orders  on  high  level  of  detail  Several  product  catalogues  

 8.2.6   End-­‐to-­‐End  Integration  It   is  made  clear  that  there   is  a  need  for  a  greater  transparency  and  visibility  within  the  supply  chain.   As   mentioned   by   Benrabah   (2016)   and   Özdogru   (2016),   there   are   several   manual  handovers  during  the  local  handover  process  because  things  are  handled  in  different  systems  that  are   not   incompatible   and   integrated   to   each   other.   Also   Forsberg   (2016)   pointed   at   the   bad  transparency   as   a   problem,   which   according   to   him   is   caused   by   a   lot   of   manual   work   and  numerous   manual   handovers   between   different   systems   and   processes.   This   is   in   line   with  Steinfield  et  al.  (2011)  that  mean  that  a  general  barrier  for  transparency  in  supply  chains  is  the  usage  of   different   systems   for   communication   and   information   sharing.   This   causes   long   lead  times  since  the  information  needs  to  be  manually  translated  from  system  to  system  (Radenholt,  2016),  which  is  supported  by  Steinfield  et  al.  (2011).  Forsberg  (2016)  highlighted  the  translation  from  price  objects  to  delivery  objects  as  the  most  time  consuming,  but  also  stated  that  there  are  a   lot   of   manual   handovers   during   tendering,   contracting,   forecasting,   ordering,   delivery   and  invoicing.   Both   Forsberg   (2016)   and   Radenholt   (2016)   points   at   the   need   of   an   integration  between  systems  and  processes  throughout  the  entire  supply  chain.  This  is  in  line  with  Stevens  (1989)  and  Steinfield  et  al.  (2011)  that  state  the  importance  of  having  an  End-­‐to-­‐End  transparency  in  the  supply  chain.  This  is  further  supported  by  Stalk  &  Hout  (1990),  MacLean  &  Rebernak  (2007)  and  Oskarsson  et  al.  (2013).    To  manage  a  great  transparency  in  the  supply  chain,  there  is  a  need  for  an  inter-­‐firm  IT-­‐system  that  enables  a  company  to  manage  coordination  with  its  suppliers  and  customers  (Skjott-­‐Larsen  et  al.,  2007).  One  type  are  the  ones  referred  to  as  coordination  hubs  by  Steinfield  et  al.  (2011),  which   are   IT   platforms   for   business-­‐to-­‐business   transactions   that   make   information  simultaneously  available  to  involved  parties.  A  coordination  hub  can  support  the  collaboration,  communication  and  the  coordination  between  the  parties  (Lynne  &  Quang,  2012).  Two  different  types  of  coordination  hubs  have  been  presented:  private  and  shared.  The  difference  is  that  with  the  shared,  a  company  can  decide  which  business  partners  to  invite  for  using  the  hub,  while  with  the  shared  can  all  business  partners  use  it.   If  Ericsson  implements  a  coordination  hub,  it  could  reduce  the  many  manual  handovers  and  thus  shorten  the  lead  time.          

Page 138: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

GENERATION  OF  ALTERNATIVE  SOLUTIONS  

     126  

Another  problem  that  is  connected  to  transparency  is,  mentioned  by  Kristoffersson  (2016)  and  Slotte  (2016),  that  there  is  a  low  degree  of  preannounced  deliveries  to  EDC  GBG.  If  they  do  not  know  when  a  truck  will  deliver  or  what  it  will  deliver,  it  is  difficult  to  plan  the  work  at  EDC  GBG,  why  they  see  a  demand  for  a  higher  degree  of  preannounced  deliveries.  This  is  also  expected  to  be   improved  by   implementing  a  coordination  hub.  Steinfield  et  al.   (2011)  states   that  a   freight  company  can  share  information  of  the  delivery  in  a  transparent  way  with  its  partners,  when  using  a  coordination  hub.        Aglert  (2016)  stated  a  problem  being  the  often  changing  delivery  dates  within  the  supply  chain.  This  is  supported  by  Forsberg  (2016)  that  points  at  an  effect  being  a  bad  synchronization  between  different   material   flows   and   the   ASP   flow.   The   bad   synchronization   is   also   mentioned   by  Pettersson  (2016b),  Slotte  (2016)  and  Wilhelmsson  (2016)  that  all  point  at  a  need  for  an  improved  transparency  between  different  members  in  the  supply  chain.  By  implement  a  supply  chain  IT-­‐solution,  preferably  a  coordination  hub,  the  planning  work  can  also  be  facilitated  in  the  supply  chain  since  it  enables  to  identify  the  customer  demand  earlier,  which  is  in  line  with  Christopher  (2011).    To   summarize,   three   root   causes   can   be   solved   by   improving   the   integration   throughout   the  supply  chain  and  are  presented  in  Table  33  below.      

Table  33.  The  root  cause  that  is  solved  with  the  sixth  Ericsson  specific  solution.  

Ericsson  Specific  Solution   Root  Causes  Solved  End-­‐to-­‐End  Integration   Several  incompatible  systems  are  used  

Bad  transparency  Changing  delivery  dates  

 8.2.7   Proactive  Management  and  Future  Bank  Payment  Obligation  The  L/C  process  of  today  is  regarded  as  time  consuming  for  several  reasons.  First,  the  negotiation  before  the  creation  of  the  L/C  draft  can  take  much  time.  Secondly,  the  part  of  the  process  where  ATM  and  their  bank  open  the  L/C  is  often  representing  a  major  part  of  the  total  time.  A  reason  for  this  is  perceived  by  Ur  Rehman  (2016b)  to  be  that  ATM  places  orders  with  a  margin  of  lead  time   to   secure   for   the   offered   customer   lead   time   that   is   excessive.   A   suggested   solution   by  Holmqvist  (2016)  is  to  work  proactive  by  having  closer  collaboration  between  Ericsson,  EAL  and  ATM  after  the  CPO  is  received,  in  order  to  exchange  the  right  information  that  can  prevent  that  it  takes  too  long  time  for  ATM  to  go  to  their  bank.  Although,  it  could  also  be  caused  by  inefficient  or  absent  internal  processes  in  obedience  to  Mehta  (2005).  Since  Algeria  requires  that  L/C  is  used  by  Algerian  companies,  ATM  is  considered  to  be  an  experienced  user  of  the  payment  method  and  therefore  assumed  to  have  efficient  internal  processes.  Furthermore,  Ericsson  has  personnel  that  are  committed  to  work  only  with  L/C  and  the   internal  processes  are  therefore  assumed  to  be  sufficient  as  well.    

Page 139: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

GENERATION  OF  ALTERNATIVE  SOLUTIONS  

     127  

It   happens   that   the   L/C   itself   is   defective   when   it   is   received   by   the   Ericsson   bank,   i.e.   the  documents   does   not   correspond   to   each   other.   This   results   in   duplication   of   effort   and   is  according  to  Mehta  (2005)  one  of  the  most  common  situations  that  causes  discrepancies.  Because  both  parties  are  accustomed  to  the  L/C  term  makes  it  difficult  to  determine  what  the  excessive  lead  time  is  caused  by.  It  can  be  that  the  Algerian  bank  is  making  changes  to  the  L/C  and  in  those  cases,  Holmqvist  (2016)  suggests  that  the  Algerian  bank  sends  a  copy  of  the  changes  directly  to  Ericsson  for  approval.  By  doing  so,  the  process  will  be  more  rapid  considering  that  the  Ericsson  bank  will  not  be  involved  until  later.  The  suggested  solution  is  in  line  with  Oskarsson  et  al.  (2013)  that  argue  for  elimination  of  duplication  of  work,  i.e.  elimination  of  non-­‐value  adding  activities.    The  critical  situations  that  have  been  addressed  so  far  can  be  handled  by  Ericsson  and  ATM  by  ensuring   that   both   parties   master   discrepancy   rectification   and   acquire   knowledge   of   UCP  management,  L/C  terms  negotiation  management,  shipment  management  and  documentation  management,  in  accordance  with  Mehta  (2005).  Note  that  EAL  acts  as  an  intermediary  in  the  L/C  process  and  it  is  therefore  important  that  they  meet  the  above  criteria  as  well  (Holmqvist,  2016).    Susmus  and  Baslangic  (2015),  Green  (2012)  and  Torquato  (2016)  all  expect  that  the  usage  of  the  payment  method  BPO  will  increase  in  the  near  future.  Green  (2012)  consider  it  as  a  more  rapid  and  simple  alternative   to  L/C  since   it   is  an  automated  process   that  does  not   involve  any   time  consuming   document  management   or   exchange   processes.   BPO  would   therefore   be   a   highly  interesting  alternative  to  L/C  in  this  case,  apart  from  that  L/C  is  an  Algerian  legislation.  A  weakness  of  BPO  is  according  to  Göleç  (2015)  that  the  payment  method  is  relatively  new,  which  may  explain  why   it   is   not   used   for   this   case   in   the   current   situation.   As   it   becomes   a  more   accepted   and  employed  method  by  companies  and  banks  globally,  it  may  become  a  relevant  payment  method  for  Ericsson  and  ATM  considering  that  acceptance  takes  time  in  obedience  to  Green  (2012).    To  summarize,  two  root  causes  can  be  solved  with  this  Ericsson  specific  solution  and  they  are  presented  in  Table  34  below.      

Table  34.  The  root  causes  that  are  solved  with  the  seventh  Ericsson  specific  solution.  

Ericsson  Specific  Solution   Root  Causes  Solved  Proactive  Management  and  Future  Bank  Payment  Obligation  

Demanding  paper  work  ATM  does  not  trust  the  lead  time  promised  by  Ericsson  

 8.2.8   Changing  Incoterm  to  CIP,  DAP  or  DAT  As   things   stand,   Ericsson   sometimes   waits   for   ATM   to   insure   the   goods   before   it   can   be  transported   from   EDC  GBG   (Benrabah,   2016b).   Cook   (2014)   stresses   the   importance   of   using  Incoterms  that  work  best  for  the  entire  supply  chain  and  that  meet  the  intentions  of  both  parties.  This   is  not   the  case  today,  since  the  CPT   Incoterm  contributes   to  a   longer   total   lead  time  and  higher  inventory  costs  for  Ericsson.  A  more  appropriate  Incoterm  would  be  one  that  confers  the  responsibility  for  paying  the  insurance  of  the  goods  to  Ericsson,  considering  the  existing  global  

Page 140: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

GENERATION  OF  ALTERNATIVE  SOLUTIONS  

     128  

insurance  agreement.  By  doing  so,  the  goods  can  be  sent  from  EDC  GBG  without  having  to  wait  for  the  insurance  from  ATM.    A  common  solution   to   this  problem  would  be   to  change   the  present  CPT   Incoterm  to  a  more  suitable  type,  e.g.  CIP,  DAP  or  DAT,  in  accordance  with  Cook  (2014).  However,  as  mentioned  by  Ur  Rehman  (2016b),  ATM  desires  to  pay  for  the  insurance  of  the  goods  by  using  local  insurance  companies.   This   demand   complicates   the   situation   and   there  will  most   likely   be   a  matter   of  negotiation  between  Ericsson  and  ATM.    To  summarize,  one  root  cause  can  be  solved  by  changing  Incoterm  and  it  is  presented  in  Table  35  below.    

Table  35.  The  root  cause  that  is  solved  with  the  eighth  Ericsson  specific  solution.  

Ericsson  Specific  Solution   Root  Causes  Solved  Changing  Incoterm  to  CIP,  DAP  or  DAT   Division  of  responsibilities    8.2.9   Summary  of  the  Generated  Solutions  In  order  to  clarify  for  the  reader  what  prioritized  root  causes  that  can  be  solved  with  the  above  Ericsson   specific   solutions,   they   are   summarized   in   Table   36   below.   In   total,   15   of   the   17  prioritized  root  causes  can  be  solved  by  the  presented  solutions.  The  ones  that  are  not  solved  directly  be  these  solutions  are  “Stakeholders  are  often  involved  in  several  projects”  and  “Many  parties  need  to  agree”.   It  has  been  difficult  to  find  a  direct  solution  to  the  number  of  projects  each  stakeholder  is  involved  in,  or  to  the  fact  that  parties  need  to  agree  regardless  what  payment  method  that  is  used.  Solutions  can  instead  be  found  for  the  ways  of  working,  which  can  facilitate  and  fasten  the  work,  i.e.  work  proactive  or  use  an  electronic  payment  method  as  BPO  instead  of  the  manually  handled  L/C.  Moreover,  all  ten  suggested  solutions  have  been  used  and  together  with  the  literature  resulted  in  the  generated  solutions.                                      

Page 141: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

GENERATION  OF  ALTERNATIVE  SOLUTIONS  

     129  

Table  36.  The  root  causes  together  with  their  solutions.  

Root  Cause   Solved  by  Solution  Wide  product  portfolio   Regional  product  portfolio  Orders  on  high  level  of  detail   Product  configurator  Several  product  catalogues   Product  configurator  Activities  concerning  both  the  engineering  and  the  order  flow  are  performed   Prepare  for  activities  during  pre-­‐sales  

Several  incompatible  systems  are  used   End-­‐to-­‐End  integration  Stakeholders  are  often  involved  in  several  projects    

Volatile  customer  demand   Regional  product  portfolio  

Long  lead  times  between  forecast  start  until  material  is  available  in  the  production  

Regional  supply  hub    Regional  product  portfolio  

There  is  no  clear  division  between  lean  and  agile  in  the  supply  chain  

Regional  supply  hub    

CODP  located  early  in  the  Supply  Chain   Regional  supply  hub  Bad  transparency   End-­‐to-­‐End  integration  Changing  delivery  dates   End-­‐to-­‐End  integration  Uncontrolled  incoming  deliveries   Time  Slots  Many  parties  need  to  agree    ATM  does  not  trust  the  lead  time  promised  by  Ericsson  

Proactive  Management  and  Future  Bank  Payment  Obligation  

Demanding  paper  work   Proactive  Management  and  Future  Bank  Payment  Obligation  

Division  of  responsibilities   Changing  Incoterm  to  CIP,  DAP  or  DAT          

Page 142: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

GENERATION  OF  ALTERNATIVE  SOLUTIONS  

     130  

   

Page 143: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

RECOMMENDED  SOLUTIONS  AND  REQUIREMENTS  FOR  IMPLEMENTATION  

     131  

 

9   RECOMMENDED  SOLUTIONS  AND  REQUIREMENTS  FOR  IMPLEMENTATION  

The   chapter   includes   an   evaluation   of   the   generated   solutions   and   their   interactions.   A   final  recommendation  is  provided  based  on  the  solutions,  their  interactions  and  the  time  perspective  of  the  solutions.  Lastly,  the  requirements  for  implementing  the  recommended  solutions  are  clarified.  

   

Page 144: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

RECOMMENDED  SOLUTIONS  AND  REQUIREMENTS  FOR  IMPLEMENTATION  

     132  

9.1   Evaluation  and  Recommendation  In   this   section,   the  combination  of   solutions   that  provides   the  greatest   lead   time   reduction   is  determined   and   presented.   This   is   done   by   evaluation   of   the   Ericsson   specific   solutions   and  discussions  of  how  the  solutions  can  work  together.  The  combination  of  solutions  forms  the  final  recommendation  that  is  forwarded  to  Ericsson,  and  is  also  the  result  of  the  study.    9.1.1   Evaluation  of  the  Generated  Solutions  The  regional  supply  hub  will  have  a  fundamental  role  in  the  recommendation,  since  it  is  assumed  to  have  a  great  effect  on  the   lead  time  and  the  service   level  towards  ATM  in  accordance  with  Magnusson  (2016c).  The  idea  is  to  locate  it  as  close  to  the  customer  as  possible,  considering  that  the  CODP  will  be  at  the  supply  hub.  This  to  apply  a  lean  strategy  to  an  as  great  part  of  the  supply  chain  as  possible,  and  thereby  increase  the  efficiency  into  the  supply  hub  and  reduce  the  lead  times.  A  lean  strategy  will  require  a  standardized  material  flow  and  a  stable  demand,  which  can  be  achieved  by  implementing  a  replenishment  flow  of  standard  modules  and  site  material  into  the   buffer   at   the   supply   hub.   To   avoid   the   problem  with   volatile   and   uncontrolled   incoming  deliveries  that  was  experienced  at  EDC  GBG,  the  supply  hub  needs  to  even  out  the  number  of  deliveries.  A  recommendation  is  to  implement  time  slots  that  control  the  incoming  deliveries  and  facilitate  the  planning  as  well  as  even  out  the  workload.  However,  Ericsson  needs  to  be  flexible  and  responsive  towards  ATM.  In  other  words,  they  must  apply  an  agile  strategy  after  the  supply  hub.   This   can   be   done   by   implementing   an   unrestricted   stock   of   standard  modules   and   site  material  at  the  supply  hub,  where  also  the  node  assembly  takes  place.    The  supply  hub  will  not  be  able  to  store  the  global  assortment,  but  should  instead  be  suited  for  the  regional  demand  (Magnusson,  2016c).  Since  the  supply  hub  is  thought  to  have  an  unrestricted  pick-­‐from-­‐stock   inventory,  Ericsson   is   recommended  to   limit   their  current  product  portfolio   in  collaboration  with  the  region.  A  narrower  product  portfolio  is  assumed  to  affect  the  lead  time  positively  in  form  of  better  forecasts  and  reduced  complexity  of  the  solutions  that  are  designed  during   the   local   processing   phase.   The   focus   should   be   to   eliminate   unnecessary   duplicate  products  and  low  frequent  products.  Considering  that  the  study  aims  to  improve  the  service  level,  it  is  important  that  the  regional  product  portfolio  still  satisfies  the  demand  of  ATM.  The  portfolio  should  therefore  consist  of  as  few  standard  modules  and  site  materials  as  possible  that  together  can  be  combined  so  that  the  demand  still  can  be  fulfilled.  A  regional  product  portfolio  for  RMED  is  expected  to  have  a  positive  effect  on  the  lead  time  and  is  considered  to  be  feasible  (Magnusson,  2016c).      In  the  current  state,  it  happens  that  goods  that  are  ready  for  shipment  have  to  wait  for  ATM  to  secure  insurance.  To  avoid  this  non-­‐value  added  time  at  the  supply  hub,  Ericsson  is  recommended  to  negotiate  with  ATM  in  order  to  change  the  CPT  Incoterm  to  either  CIP,  DAP  or  DAT.  Considering  that  Ericsson  has  a  global   insurance  agreement,   it  would  not  result   in  any  additional  costs   for  either  parties.  In  fact,  it  means  that  ATM  will  save  the  money  put  on  insurance.  A  CIP,  DAP  or  DAT  Incoterm  will  ensure  that  Ericsson  can  ship  the  goods  from  the  supply  hub  without  having  to  wait  for  ATM  to  insure  it  (Magnusson,  2016c).      

Page 145: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

RECOMMENDED  SOLUTIONS  AND  REQUIREMENTS  FOR  IMPLEMENTATION  

     133  

Another  reason  for  that  goods  have  to  wait  for  shipment  from  EDC  GBG  is  because  of  the  absence  of  an  operative  L/C.  In  order  for  goods  to  not  have  to  wait  in  the  supply  hub  for  the  L/C  to  be  made  operative,  Ericsson  is  recommended  at  firsthand  to  ensure  that  all  parties  work  proactive  with  the  L/C  by  mastering  discrepancy  rectification  and  acquire  knowledge  of  UCP  management,  L/C  terms  negotiation  management,  shipment  management  and  documentary  management.  By  having   a   close   collaboration   between   EAB,   EAL,   ATM,   EAB   Bank   and   ATM   Bank,   a   greater  information  exchange  and  transparency  between  the  parties  can  be  maintained.  It  is  important  that  ATM  can  trust  the  lead  times  promised  by  Ericsson,  in  order  for  them  to  be  sure  of  when  to  place  an  order.  If  ATM  can  trust  the  lead  time  promised  by  Ericsson,  the  L/C  can  be  opened  before  the  CPO  is  sent  to  EAL  and  thereby  eliminate  the  non-­‐value  added  time.  If  Ericsson  can  assure  a  better  delivery  precision,  ATM  is  expected  to  go  to  their  bank  for  an  opening  of  the  L/C  in  time  (Magnusson,  2016c).      However,   the   L/C   process   is   time   consuming   and   more   efficient   payment   methods   exists.   A  relatively  new  payment  method  is  the  Bank  Payment  Obligation  (BPO),  which  has  more  or  less  the  same  function  as  L/C  but  is  automated  and  therefore  more  rapid.  By  using  BPO,  it  is  expected  that  the  time  consuming  document  handling  that  is  performed  manually  in  the  current  situation  can  be  eliminated.  It  will  be  difficult  to  implement  in  short  term,  given  that  it  is  a  new  and  not  well  proven  method  and  the  fact   that  L/C   is  a  country   legislation   in  Algeria.  Therefore,  BPO   is  considered  as   a   relevant   substitute   to   L/C   in   a   longer  perspective   as   it   becomes  more  widely  accepted  (Magnusson,  2016c).    Despite  the  regional  product  portfolio  that  is  determined  in  collaboration  with  the  region,  there  will  be  situations  when  ATM  needs  to  place  orders  not  referring  to  this  portfolio  (Magnusson,  2016c).  Therefore,  Ericsson  must  have  an  alternative  solution  for  distribution  of  these  goods.  The  recommendation  for  Ericsson  to  handle  these  situations  is  to  establish  two  supply  chains,  named  as  the  Regional  supply  chain,  for  the  regional  product  portfolio,  and  the  Alternative  supply  chain.  The  manufacturing  activities  will  be  at  the  same  places  for  both  of  them,  besides  that  the  modules  will  not  be  part  of  the  replenishment  flow  for  the  Alternative  supply  chain.        The  local  processing  phase  of  today  contains  of  a  large  amount  of  handovers,  which  are  perceived  as   a   cause   for   the  excessive   lead   time.   The  major   time   consumer  during   this  phase  has  been  identified  as  the  translation  from  price  objects   into  delivery  objects.  This  activity   is  performed  after   the  CPO   is   received,  but   can  be  accomplished  before.  Considering   that   this  project   is   to  reduce  the   lead  time   from  order   to  delivery,   the  recommendation  to  Ericsson   in  a  short   term  perspective  will  be  to  perform  the  translation  before  the  CPO  is  received  by  EAL.  By  doing  so,  the  final  solution  in  Verdi  will  be  ready  as  the  CPO  arrives  and  the  lead  time  that  ATM  experiences  will  be  reduced  (Magnusson,  2016c).    A  recommendation  to  Ericsson   in  a   longer  perspective   is   to  establish  a  more  efficient  product  customization  by  doing  business  with  ATM  based  on  commercial  descriptions.  It  would  allow  ATM  to  place  orders  on  dynamic  solution  numbers  rather   than  firm  product  numbers.  By  doing  so,  Ericsson   can   update   the   solution   during   the   fulfillment   process   and   be   more   flexible.   The  complexity  it  brings  can  be  handled  by  implementing  a  product  configurator,  saving  time  in  form  

Page 146: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

RECOMMENDED  SOLUTIONS  AND  REQUIREMENTS  FOR  IMPLEMENTATION  

     134  

of   less   manual   handovers   and   a   reduced   dependency   of   human   expertise.   The   product  configurator  would   also   facilitate   the   local   processing  when   the   solution   is   designed,   e.g.   the  translation   from   sales   objects   into   delivery   objects.   The   configurator   will   be   able   to   create  solutions  from  the  global  product  portfolio  of  Ericsson  and  can  therefore  serve  customers  in  both  the  Regional  supply  chain  and  the  Alternative  supply  chain.  In  other  words,  if  ATM  places  an  order  that  are  not  based  on  the  regional  portfolio,  the  product  configurator  will  create  a  solution  from  the   global   portfolio.   Notice   that   the   regional   portfolio   is   a   part   of   the   global   portfolio.   The  recommended  product  customization  is  assumed  to  have  a  positive  impact  on  the  lead  time  and  is  therefore  recommended  in  a  longer  perspective  (Magnusson,  2016c).  As  already  stated,  a  more  reasonable  solution  in  the  short  term  perspective  is  to  perform  the  translation  from  price  objects  to  delivery  objects  earlier,  since  it  will  only  require  a  change  of  the  ways  of  working  without  any  system  changes.      It  has  been  made  clear  that  there  is  a  lack  of  integration  between  both  processes  and  systems  in  the  current  situation.  For  example,   there  are  several  different  systems  used  within  the  supply  chain   that   are   not   compatible,   which   leads   to   manual   translations   of   information   between  systems.  A  recommendation  for  Ericsson  is  therefore  to  establish  an  integrated  supply  chain  that  will  foster  a  greater  transparency  and  control  within  it.  This  could  be  done  by  implementing  an  End-­‐to-­‐End  system  or  a  coordination  hub  that  allows  different  systems  to   integrate  with  each  other,  which  would  shorten  the  lead  time  because  of  the  reduction  of  manual  handovers.  In  the  current  situation,  there  is  also  a  need  of  a  higher  level  of  transparency  in  form  of  preannounced  deliveries   into   EDC   GBG.   By   implementing   a   coordination   hub,   it   would   be   easier   to   share  information   between   freight   companies   and   Ericsson,  which  would   facilitate   the  work   at   the  recommended  supply  hub.  A  coordination  hub  is  reasonable  to  implement  in  a  longer  perspective  since  it  requires  that  the  different  systems  are  mature  enough  to  connect  to  the  coordination  hub  (Magnusson,  2016c).        Given   the   above   reasoning,   the   greatest   lead   time   reduction   is   expected   to   be   achieved   by  combining  all  of  the  generated  solutions,  with  the  supply  hub  acting  as  a  basis.  However,  the  final  recommendations   will   be   in   form   of   two   solutions   depending   on   the   specific   situation.   The  following  section  will  describe  the  two  recommended  solutions  and  their  impact  on  the  lead  time  and  service  level  in  the  studied  supply  chain.      9.1.2   Recommended  Solutions  As  described  above,  the  recommendation  to  Ericsson  will  be   in  form  of  two  solutions  that  are  used   in  different   situations.   Solution  A:   The  Regional   Supply  Chain,   is   used  when  ATM  orders  products  from  the  regional  product  portfolio.  Solution  B:  The  Alternative  Supply  Chain  and  is  used  when  ATM  places  orders  on  products   that  are  not   included   in   the   regional  portfolio.  The   two  solutions  are  summarized  and  described  separately  in  the  two  following  sections.      Solution  A:  The  Regional  Supply  Chain  In  the  Regional  supply  chain,  ATM  places  the  CPO  directly  to  the  supply  hub,  see  Figure  35.  Unlike  today,   the  CPO   is   for   this   setup   sent  directly   from  ATM   to   the   supply  hub  without   EAL   as   an  intermediate.  In  the  supply  hub,  the  production  of  nodes  takes  place  and  is  based  on  standard  

Page 147: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

RECOMMENDED  SOLUTIONS  AND  REQUIREMENTS  FOR  IMPLEMENTATION  

     135  

modules   and   components   that   are   picked   from   the   unrestricted   stock.   This   is  made   possible  because  of  the  regional  product  portfolio  that  is  agreed  within  the  region.  Replenishment  flows  of  standard  components  from  the  manufacturing  units  and  of  site  material  from  the  site  material  suppliers  are  applied  to  the  supply  hub  and  will  be  based  on  forecasts.  The  manufacturing  units  in  turn,  manage  their  own  supply  and  place  the  POs  to  their  suppliers  in  similar  to  the  current  situation.  See  Figure  35  for  a  visualization  of  the  Regional  supply  chain.        

 Figure  35.  The  Regional  supply  chain.  

This  arrangement  of  the  supply  chain  means  that  the  lead  time  perceived  by  ATM  will  be  reduced  compared  to  the  existing  supply  chain.  Since  ATM  will  place  the  order  directly  to  the  supply  hub,  the   lead  times  for  the   local  processing,  the  handover  and  the  ordering  will  be  eliminated.  The  production  lead  time  in  the  current  situation  includes  the  production  of  modules,  which  in  the  Regional  supply  chain  instead  will  be  stored  in  the  unrestricted  pick  from  stock  inventory  in  the  supply  hub  and  thus  not  be  perceived  by  ATM.  Therefore,  both  the  production  lead  time  and  the  EDC  inbound  lead  times  will  also  be  eliminated.  Instead,  the  lead  time  that  ATM  will  experience  is  the  time  it  takes  to  pick  the  material,  produce  the  nodes  and  pack  the  goods  at  the  supply  hub  together  with  the  time  for  transportation.  The  node  production  lead  time  will  be  the  same  as  for  the  current  situation,  i.e.  one  day,  and  the  picking  and  packing  is  assumed  to  take  less  than  one  day  (Magnusson,  2016c).  Since  the  supply  hub  is  expected  to  be  located  where  EDC  GBG  is  located  today,  the  transportation  lead  time  will  be  the  same  as  for  the  current  situation,  i.e.  15  days.  This  means  that  the  total  lead  time  perceived  by  ATM  with  the  Regional  supply  chain  is  17  days.  See  Table  37  below  for  a  summary  of  the  lead  times  in  the  Regional  supply  chain  compared  to  the  current  situation  in  best,  normal  and  worst  case.            

CPO

SO

PO

PO

EALEricssonSuppliersDSPATM

Page 148: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

RECOMMENDED  SOLUTIONS  AND  REQUIREMENTS  FOR  IMPLEMENTATION  

     136  

Table  37.  Lead  times  for  the  Regional  supply  chain  compared  to  the  current  state.  

Number   Activities  &  Processes  

Current  Lead  Time  (days)   Lead  Time  for  RSC  (days)  Best  Case   Normal  Case   Worst  Case  

T1   Local  processing   14   28   49   0  T2   Handover   2   3   3   0  T3   Ordering   1   2   2   0  T7   Production   1   1   24   0  T8   EDC  inbound   3   3   3   0  

T9   EDC  GBG    (Supply  hub)   7   32   50   2  

T10   EDC  outbound   15   15   15   15       43   84   146   17  

 To  achieve  a  customer  order  lead  time  of  17  days,  some  requirements  in  form  of  Ericsson  specific  solutions  are  necessary.  These  requirements  are  not  described  again,  but  are  instead  listed  below:      

•   Regional  product  portfolio  •   Short  term:  An  operative  L/C  as  the  goods  are  ready  for  shipment  

Long  term:  BPO  as  payment  method  •   CIP,  DAP  or  DAT  incoterm  •   Short  term:  Verdi  solution  ready  before  CPO  

Long  term:  CPO  on  commercial  descriptions  and  product  configurator    •   Time  slots  •   A  greater  information  exchange    

 Since  the  purpose  of  the  study  not  only  aimed  at  reducing  the  lead  time,  but  also  to  improve  the  service  level,   it   is  necessary  to  evaluate  the  result  out  from  a  service  level  perspective  as  well.  Mattsson  (2012),  Oskarsson  et  al.  (2013)  and  Storhagen  (2003)  describes  in  Section  3.3  a  number  of   service   elements:   lead   time,   delivery   reliability,   delivery   dependability,   stock   availability,  information  exchange  and  flexibility.  With  the  Regional  supply  chain  together  with  above  listed  Ericsson  specific  solutions,  ATM  will  experience  a  substantial  shorter  lead  time  compared  to  the  current   situation,   which   implies   a   higher   service   level.   If   ATM   does   their   forecast   correctly,  Ericsson  will  also  be  more  reliable  with  their  lead  times  and  dependable  with  their  deliveries  by  having  the  needed  material  available  in  the  supply  hub.  Also  the  stock  availability  will  be  greater  if  ATM  forecasts  correctly.  A  greater  information  exchange  with  a  higher  degree  of  transparency  between  Ericsson,  the  region  and  ATM  will  also  impact  the  service  level  positive.  The  risk  that  may  impact  the  service  level  negatively  is  the  limitation  of  the  product  portfolio,  since  ATM  will  experience  a  lower  degree  of  flexibility  when  the  product  offering  decreases.  To  manage  this  risk,  the  product  portfolio  should  be  composed  by  standard  modules  and  site  material  that  together  can  be  compounded  in  a  flexible  way  by  the  product  configurator  and  that  fulfill  the  customer  demand.  ATM  will  also  have  the  opportunity  to  order  products  outside  the  agreed  portfolio,  with  a   longer   lead   time,   which   will   be  managed   by   the   Alternative   supply   chain   described   in   the  

Page 149: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

RECOMMENDED  SOLUTIONS  AND  REQUIREMENTS  FOR  IMPLEMENTATION  

     137  

upcoming   section.   To   summarize,   ATM   will   with   the   Regional   supply   chain   experience   an  increased  service  level  compared  to  the  current  situation.      Solution  B:  The  Alternative  Supply  Chain  In  the  Alternative  supply  chain   illustrated   in  Figure  36,   the  order  flow  can  be   likened  with  the  existing   supply   chain.   Thus,   ATM  places   a   CPO   to   EAL  which   in   turn   processes   the   order   and  prepares   for   the   handover   meeting   with   EAB.   Notice   that   an   approval   for   early   start   is   not  required  since  the  L/C  is  operative  during  this  phase.  Once  the  CPO  is  processed,  EAL  and  EAB  have  the  handover  meeting  where  the  main  documents  are  reviewed  and  discussed  in  similarity  to   the   current   state.  After   the  handover  meeting,   EAL   releases   the   Sales  Order   to   EAB  which  compares  it  to  the  CPO.  The  Sales  Order  is  then  transformed  into  POs  by  EAB  that  releases  the  orders  to  the  module  productions  at  ESS  Tallinn,  EMS  Jabil  T-­‐town,  EMS  Flex  Tczew  and  to  the  site  material  suppliers.  A  Delivery  Order  is  also  sent  to  the  Supply  hub  in  Gothenburg  with  inputs  to  the  node  production  and  information  about  the  customer  and  when  the  delivery  will  take  place.    As  the  POs  arrive,  the  customized  modules  are  produced  according  to  the  requirements  of  ATM.  The  module  production  at  the  manufacturing  sites  is  the  same  as  for  the  current  situation,  except  from  that  the  EMSs  can  send  the  modules  directly  to  the  supply  hub  and  does  not  have  to  go  through  ESS  Tallinn.  Once  the  ordered  modules  and  site  material  arrive  at  the  Supply  hub,  they  are  unloaded  and  put  into  the  node  production.  The  RBSs  are  thereafter  packed  and  made  ready  for   shipment.   The   finished   goods   are   picked   up   by   the   distribution   service   provider   and  transported  to  ATM  in  accordance  with  the  agreed  incoterm.      

 Figure  36.  The  Alternative  supply  chain.  

PO

PO

EALEricssonSuppliersDSPATM

CPO

SO

PO

PO

PO

DO

Page 150: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

RECOMMENDED  SOLUTIONS  AND  REQUIREMENTS  FOR  IMPLEMENTATION  

     138  

The  lead  times  for  the  Alternative  supply  chain  can  to  a  great  extent  be  likened  with  the  existing  supply   chain.   The  main   differences   can  be   seen  during   the   local   processing   phase   and   at   the  supply  hub,  which  can  be  compared  to  the  current  EDC  GBG.  During  the  local  processing  phase  for  the  Alternative  supply  chain,  the  Verdi  solution  will  be  made  ready  for  ordering  before  the  CPO   is   received   by   EAL.   Furthermore,   The   ECP   carts   that   has   to   be   refreshed   and   manually  translated  from  sales  objects  into  delivery  objects  will  be  handled  automatically  by  the  product  configurator.  The  approval  of  an  early  start  is  not  required  for  this  solution,  considering  that  the  L/C  is  made  operative  before  the  CPO  is  handled.  The  lead  time  of  the  local  processing  phase  is  therefore   assumed   to   be   shorter   compared   to   the   current   supply   chain.   Since   there   are   no  measurements  of  how  long  time  it  takes  to  create  the  Verdi  solution,  to  refresh  the  ECP  carts  and  translate  the  sales  object  into  delivery  objects  or  to  wait  for  the  approval  of  the  early  start,  it  is  difficult  to  give  an  accurate  estimation  of  the  lead  time  reduction.  However,  considering  that  the  number  of  activities  and  the  waiting  times  can  be  reduced,  the  lead  time  for  the  local  processing  phase  will  be  reduced  as  well.    The  lead  time  for  the  supply  hub  in  the  Alternative  supply  chain  will  include  the  node  production,  unlike   the  existing   supply   chain  where   the  node  production   takes  place  at   the  manufacturing  sites.  The  node  production  for  the  supply  chains  is  considered  to  be  the  same,  but  the  time  that  goods  have  to  wait  for  the  L/C  to  be  made  operative  or  for  the  insurance  to  be  ready  is  eliminated.  The  time  slots  that  controls  the  incoming  deliveries  to  the  supply  hub  is  also  considered  to  have  a  positive   impact  on   the   lead   time,  considering   that   the  workload  will  be   leveled  out  and   the  planning  work  will  be  simplified.  Since  there  are  no  precise  measurements  of  how  long  time  the  goods  have   to  wait   for  an  operative  L/C  or   the   insurance   to  be   ready,   it   is  difficult   to  give  an  accurate  estimation  of  the  lead  time  reduction.  Likewise,  it  is  difficult  to  estimate  the  lead  time  reduction  that  the  time  slots  would  bring.  Considering  that  the  waiting  time  can  be  expected  to  be  eliminated  and  the  workload  reduced,  the  lead  time  for  the  supply  hub  will  be  reduced  as  well.  As  a  result,  the  customer  order  lead  time  will  be  shorter  for  the  Alternative  supply  chain  compared  to  the  best,  normal  and  worst  case  scenarios  in  the  existing  supply  chain.  The  comparison  of  the  lead  times  for  the  Alternative  supply  chain  and  the  current  supply  chain  is  presented  in  Table  38.    

Table  38.  Lead  times  for  the  Alternative  supply  chain  compared  to  the  current  state.  

Number   Activities  &  Processes  

Current  Lead  Time  (days)   Lead  Time  for  ASC  (days)  Best  Case   Normal  Case   Worst  Case  

T1   Local  processing   14   28   49   Reduced  T2   Handover   2   3   3   Unchanged  T3   Ordering   1   2   2   Unchanged  T7   Production   1   1   24   Unchanged  T8   EDC  inbound   3   3   3   Unchanged  

T9   EDC  GBG    (Supply  hub)   7   32   50   Reduced  

T10   EDC  outbound   15   15   15   Unchanged       43   84   146   Reduced  

Page 151: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

RECOMMENDED  SOLUTIONS  AND  REQUIREMENTS  FOR  IMPLEMENTATION  

     139  

The  requirements  for  managing  the  Alternative  supply  chain  and  achieve  a  reduced  lead  time  are  as  follows:      

•   Short  term:  An  operative  L/C  as  the  goods  are  ready  for  shipment  Long  term:  BPO  as  payment  method  

•   CIP,  DAP  or  DAT  incoterm  •   Short  term:  Verdi  solution  ready  before  CPO  

Long  term:  CPO  on  commercial  descriptions  and  product  configurator    •   Time  slots  •   A  greater  information  exchange    

 As  for  the  first  solution,  it  is  not  only  desirable  to  reduce  the  customer  order  lead  time,  but  also  to   improve  the  delivery  service  with  the  Alternative  supply  chain.  Delivery  service  consist  of  a  number  of  service  elements  described  by  Mattsson  (2012),  Oskarsson  et  al.  (2013)  and  Storhagen  (2003)  in  Section  3.3.  For  this  solution,  the  lead  time  service  element  will  be  improved  since  the  time  between  ordering  and  delivery  will  be  reduced,  see  Table  38.  Moreover,  the   information  exchange  is  expected  to  be  greater  with  integrated  systems  within  the  Alternative  supply  chain  and  affect  the  delivery  service  positively.  Considering  that  the  recommended  solution  will  reduce  or  in  best  case  eliminate  uncertainties  as  L/C  deviations,  heavy  workloads  and  a  lack  of  insurance,  the  delivery  reliability  is  assumed  to  be  improved.  With  the  product  configurator,  the  use  of  one  product  catalogue  and  that  ATM  places  orders  on  commercial  descriptions  will  result  in  a  greater  flexibility  for  Ericsson  to  deliver  the  goods  according  to  ATM  requirements,  e.g.  the  delivery  can  be  in  form  of  several  packages  of  sites  instead  of  per  product  area.  The  stock  availability  and  the  delivery  dependability  is  assumed  to  be  unaffected  by  the  Alternative  supply  chain.  Given  this,  the  delivery  service  is  expected  to  be  improved  with  the  Alternative  supply  chain.    9.2   Requirements  for  Implementation  In  order  to  implement  the  suggested  combination  of  solutions  in  the  supply  chain  for  Ericsson  and  ATM,  some  requirements  are  needed.  These  are  briefly  presented  throughout  the  text  below.      To  implement  the  supply  hub,  it  will  require  a  restructuring  of  the  supply  chain.  Firstly,  the  node  production  needs  to  be  moved  from  ESS  Tallinn  to  the  supply  hub.  The  supply  hub  also  requires  that  the  order  activities  can  be  handled  directly  from  the  hub,  in  order  for  ATM  to  be  able  to  place  orders  without  involvement  of  EAB  and  EAL.  In  other  words,  to  transform  EDC  GBG  into  a  supply  hub  will  require  new  systems,  competences  and  new  ways  of  working.  

 For  Ericsson  to  agree  on  a  regional  product  portfolio  that  will  cover  the  demands  for  the  entire  region,  continuous  meetings  with  the  region  are  required.  This  does  not  only   include  EAL  and  ATM,  but  all  local  companies  and  customers  in  the  same  region.  All  members  of  the  region  need  to  participate  and  agree  on  the  products  that  should  constitute  the  regional  portfolio.  Further,  to  take  advantage  of  the  regional  product  portfolio  it  also  puts  high  demand  on  correct  forecasts,  since   the  buffer   levels   in   the   supply  hub  are  dimensioned  based  on   forecasts.  Given   the   final  

Page 152: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

RECOMMENDED  SOLUTIONS  AND  REQUIREMENTS  FOR  IMPLEMENTATION  

     140  

recommendations  and  the  reduced  lead  times,  the  forecast  will  be  improved  in  comparison  with  the  current  situation.    New  IT-­‐systems  will  be  required  in  order  to  manage  the  control  of  the  time  slots,  to  use  BPO  as  payment  method  and  to  implement  the  product  configurator.  Implementing  a  coordination  hub  will  require  that  the  different  systems  in  the  supply  chain  are  compatible  to  be  integrated.  To  take  fully  advantage  of  the  coordination  hub,  it  also  requires  that  the  information  within  each  system  is  continuously  updated  in  order  to  provide  the  most  relevant  information.      In  order  to  work  proactive  and  fasten  the  L/C  process,  a  closer  collaboration  between  EAB,  EAL  and  ATM   is  needed.   In   a   longer  perspective,   a  negotiation  with  ATM   is  needed   to  be  able   to  replace  the  L/C  with  BPO.  Also  the  change  from  CPT  incoterm  to  CIP,  DAP  or  DAT  is  expected  to  require  a  longer  negotiation.  Finally,  to  create  the  Verdi  solution  before  the  CPO  is  received  will  require  new  routines  at  EAL  of  how  to  work.          

Page 153: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

CONCLUSIONS  

     141  

 

10  CONCLUSIONS  

The  concluding  chapter  answers  to  the  purpose  of  the  study  and  includes  recommendations  for  improvements  that  reduces  the   lead  time  and  improves  the  service   level  for  the  studied  supply  chain.  The  recommendations  consist  of  solutions  that  are  suitable  for  different  situations  and  the  chapter  contains  an  estimation  of  the  expected  lead  time  reduction  for  the  solutions.    

   

Page 154: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

CONCLUSIONS  

     142  

The  purpose  with  the  study  was  to  give  recommendations  for  improvements  that  reduce  the  total  lead  time  in  a  supply  chain  perspective  in  order  to  improve  the  customer  service  level.  To  be  able  to   fulfill   the   purpose,   four   objectives   or   main   steps   were   distinguished   and   supported   with  existing  frameworks  for  analyzing  supply  chains.  The  first  step  was  to  map  the  current  state  to  give  a  picture  of  the  existing  supply  chain  and  to  identify  the  problems  that  were  perceived  within  it.  This  was  done  by  having  24  interviews  with  different  people  at  relevant  positions  within  the  studied   supply   chain   and   in   total   could   43   problems   be   identified,   which   according   to   the  respondents  affected  the  supply  chain  performance  negatively.  The  interviews  also  generated  ten  suggested  solutions  that  were  assumed  to  solve  some  of  these  problems.    The  second  step  was  to  identify  potentials  for  lead  time  reduction  by  categorizing  the  supply  chain  parts  as  having  reasonable  or  not  reasonable  lead  times  and  as  constituting  significant  or  minor  portions  of  the  total  lead  time.  Also  the  problems  were  categorized  as  being  root  causes  or  not.  Thereafter,  there  were  a  prioritization  made  for  determining  where  to  target  the  efforts.  Three  supply  chain  parts  were  categorized  as  parts  with  not  reasonable  lead  times  and  that  constituted  significant  portions  of  the  total  lead  time.  Out  of  the  43  identified  problems,  there  were  17  that  could  be  classified  as  root  causes  using  fishbone  diagrams.  The  three  supply  chain  parts,  the  17  root  causes  and  all  ten  suggested  solutions  were  prioritized  in  this  step  and  decided  to  get  the  further  attention.      The  third  step  was  to  generate  solutions  by  conducting  a  second  literature  review  based  on  the  prioritized  supply  chain  parts,  root  causes  and  suggested  solutions  that  was  determined  during  the  prior  step.  First,  general  solutions  were  generated  from  the  literature  that  later  were  adapted  to  fit  the  current  situation  and  resulted  in  eight  Ericsson  specific  solutions.  The  fourth  step  was  to  evaluate  these  solutions  in  combination,  which  led  to  a  recommended  combination  of  solutions  that  provided  the  greatest   lead  time  reduction.  Also  the  requirements  for   implementing  these  solutions  were  presented  in  this  step.    The  four  steps  resulted  in  two  arrangements  of  the  supply  chain:  the  Regional  supply  chain  and  the   Alternative   supply   chain,   both   described   in   detail   in   Section   9.1.2.   The   main   difference  between  the  two  supply  chains  and  the  existing  supply  chain  is  the  replacement  of  EDC  GBG  with  a   supply   hub.   This   included   a   rearrangement   of   the   production   in   terms   of  moving   the   node  production  and  the  CODP  to  the  supply  hub  and  thus  closer  to  the  customer.  The  Regional  supply  chain   is   used  when  ATM  orders  products   from   the   agreed   regional   product  portfolio   and   the  Alternative  supply  chain  is  used  when  the  orders  refer  to  products  outside  this  portfolio.  Notice  that  the  Regional  supply  chain  is  intended  to  cover  the  main  flow  and  the  Alternative  supply  chain  will  act  more  as  a  complement  to  it.  As  can  be  seen  in  Table  39,  the  lead  time  for  the  Regional  supply  chain  is  expected  to  be  17  days,  since  several  steps  in  the  current  supply  chain  will  not  be  experienced  by  ATM  with  this  arrangement.  It  is  more  difficult  to  estimate  the  lead  time  reduction  for   the   Alternative   supply   chain   given   that   there   are   no   measurements   for   the   eliminated  activities.  However,  since  the  number  of  activities  and  the  waiting  time  is  reduced,  the  lead  time  that  ATM  experiences  will  be  reduced  as  well.  

Page 155: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

CONCLUSIONS  

     143  

Table  39.  Lead  times  for  the  Regional  supply  chain  and  the  Alternative  supply  chain  in  comparison  with  the  existing  supply  chain.  

Number   Activities  &  Processes  

Current  Lead  Time    (days)  

Expected  Lead  Time  (days)  

Best  Case   Normal  Case   Worst  Case   RSC   ASC  T1   Local  processing   14   28   49   0   Reduced  T2   Handover   2   3   3   0   Unchanged  T3   Ordering   1   2   2   0   Unchanged  T7   Production   1   1   24   0   Unchanged  T8   EDC  inbound   3   3   3   0   Unchanged  

T9   EDC    (Supply  hub)   7   32   50   2   Reduced  

T10   EDC  outbound   15   15   15   15   Unchanged     43   84   146   17   Reduced  

 As  stated  in  the  introductory  chapter  of  the  report,  Ericsson  has  a  long  term  goal  of  reducing  the  total  lead  time  with  50  %.  By  being  able  to  offer  a  lead  time  of  17  days  with  the  Regional  supply  chain,  this  goal  will  be  reached  for  both  the  best,  the  normal  and  the  worst  case  scenarios  in  the  current  supply  chain.  In  fact,  the  reduction  will  be  60,  80  and  88  %  respectively  for  the  three  cases,  which  can  be  seen  in  Table  40  below.      

Table  40.  The  lead  time  reduction  accomplished  with  the  Regional  supply  chain  in  the  three  different  cases.  

Scenario  of  Today   Current  Lead  Time    (Days)  

RSC  Lead  Time  (Days)  

Lead  Time  Reduction  (%)  

Best  Case   43   17   60  Normal  Case   84   17   80  Worst  Case   146   17   88  

 To  achieve  the  lead  time  of  17  days  for  the  Regional  supply  chain,  there  are  some  requirements  that  must  be  met.  The  requirements  have  been  described  per  Ericsson  specific  solution  in  Section  8.2   and   for   the   solutions   combined   in  Section   9.1.1.   The   requirements   for   the   recommended  solutions  are  listed  below.  Notice  that  it  is  the  same  requirements  for  Regional  supply  chain  as  for  the  Alternative  supply  chain,  despite  that  the  regional  product  portfolio  is  not  relevant  for  the  latter  arrangement.              

Page 156: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

CONCLUSIONS  

     144  

•   Regional  product  portfolio  •   Short  term:  An  operative  L/C  as  the  goods  are  ready  for  shipment  

Long  term:  BPO  as  payment  method  •   CIP,  DAP  or  DAT  incoterm  •   Short  term:  Verdi  solution  ready  before  CPO  

Long  term:  CPO  on  commercial  descriptions  and  product  configurator    •   Time  slots  •   A  greater  information  exchange    

 Since  the  purpose  of  the  study  not  only  aimed  at  reducing  the  lead  time,  but  also  to  improve  the  customer  service  level,  it   is  important  that  the  solutions  will   increase  the  current  service  level.  Notice  that  the  service  level  refers  to  delivery  service  in  this  study.  As  can  be  seen  in  Table  41,  the  delivery  service  will  be  improved  with  both  the  Regional  supply  chain  and  the  Alternative  supply  chain  given  that  the  service  elements  will  either  be  improved  or  unchanged,  and  not  deteriorated.  An  explanation   to  whether   the   service  elements  are   improved  or  unchanged  can  be   found   in  Section  9.1.2.    

Table  41.  The  expected  effects  on  the  delivery  service  and  its  service  elements.  

Delivery  Service  Element   Service  Level  RSC   ASC  

Lead  time   Improved   Improved  Delivery  reliability   Improved   Improved  

Delivery  dependability   Improved   Unchanged  Stock  availability   Improved   Unchanged  

Information  exchange   Improved   Improved  Flexibility   Unchanged   Improved  

  Improved   Improved    To  summarize,  the  conclusions  that  can  be  made  is  that  Ericsson  will  be  able  to  offer  a  significantly  shorter  lead  time  to  ATM,  provided  that  the  recommended  solutions  are  implemented  and  the  existing   supply   chain   is   rearranged   into   the   Regional   supply   chain   and   the   Alternative   supply  chain.  Moreover,   the   customer  will   also   experience   an   improved   service   level   in   both   cases.  Therefore,  the  purpose  of  the  study  is  considered  to  be  fulfilled.            

Page 157: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

DISCUSSION  

     145  

 

11  DISCUSSION  

The   discussion   chapter   presents   a   critical   review   of   the   applied   research   methods   and  delimitations   made   to   approach   the   objectives   of   the   study.   Potential   sources   of   error   are  highlighted  and  their  effects  on  the  final  result  is  discussed.  The  generalizability  of  the  result,  the  contribution  of  the  study  and  recommendations  for  further  studies  are  also  considered.  

   

Page 158: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

DISCUSSION  

     146  

11.1   Critical  Review  of  the  Result  The  purpose  of  the  study  is  to  give  recommendations  for  improvements  that  reduces  the  lead  time  and  improves  the  service  level,  which  has  resulted  in  two  different  supply  chains  that  are  both  based  on  the  supply  hub  concept.  The  Regional  supply  chain  is  for  situations  when  ATM  is  ordering  from  the  regional  product  portfolio,  which  is  created  in  collaboration  with  the  customers  and  the  local  companies  in  RMED.  The  estimated  customer  lead  time  for  the  regional  supply  chain  is  17  days.  The  Alternative  supply  chain  is  for  situations  when  ATM  places  orders  that  does  not  refer   to   the   regional   portfolio.   By   doing   so,   the  modules   need   to   be  manufactured   after   the  requirements  of  ATM,  which  can  be  likened  with  the  current  situation.  However,  the  Alternative  supply  chain  will  have  a  shorter  lead  time  than  the  current  state  since  there  will  be  a  reduced  number  of  activities  and  waiting  times.  Both  supply  chains  will  result  in  an  improved  service  level.    The  choice  of  delimitation  that  most  likely  had  the  largest  influence  on  the  final  recommendation  is  that  the  respondents  were  limited  to  merely  Ericsson  employees.  The  area  of  investigation  is  rather  wide  and  it  would  have  been  desirable  to  include  respondents  from  all  members  of  the  supply   chain   in   order   to   provide   a   precise   reflection   of   the   current   state   or   to   give   firm  recommendations.   However,   that   would   have   been   difficult   considering   that   the   relations  between  Ericsson   and   their   partners  were  not   to  be   affected.   It   can  be   sensitive   for   external  parties   to   highlight   their   shortcomings   and   make   them   visible   to   others.   Instead,   this   study  includes  Ericsson  employees  that  work  directly  with  the  external  companies  and  therefore  have  a  moderately  view  of  their  perspectives  and  can  determine   if   the  recommended  solutions  are  feasible  or  not.    Using  the  same  reasoning  as  above,   it  would  have  been  preferable  to   interview  all   individuals  working  within  the  supply  chain.  A  larger  number  of  respondents  could  have  highlighted  issues  that   are  not  of   this   reports   known  and   contributed   to  different  perspectives.  Considering   the  limited  time  frame  of  the  project,  a  delimitation  was  made  to  interview  a  restricted  number  of  individuals  that  gave  an  as  accurate  picture  of  the  current  state  as  possible.  This  was  made  sure  by  selecting  the  respondents  in  collaboration  with  the  supervisor  at  Ericsson.  Hence,  the  problems  addressed  in  this  work  were  for  most  of  the  cases  highlighted  by  several  members  in  the  supply  chain  and  can  therefore  be  assumed  to  be  the  main  issues.    Most   of   the   interviews   were   performed   in   person   with   the   respondents   on   the   premises   of  Ericsson  located  in  Kista.  It  is  assumed  to  not  have  affected  the  result  significantly  given  that  the  respondents   are  working   on   core   positions.   The   cases  when   interviews  were   conducted   over  telephone  are  also  assumed  to  not  have  affected  the  result  noticeably  because  when  ambiguities  arose,  the  respondents  were  asked  to  illuminate  the  answer  until  the  matter  was  clarified.    Another  delimitation  made   is   to  not   investigate   the  costs   for  Ericsson  and  other   supply   chain  members  to  implement  the  recommended  solutions.  Yet,  the  reasonableness  in  terms  of  costs  for  the  implementation  has  been  assessed  in  consultation  with  Ericsson  employees  and  thereby  have  an  estimate  been  obtained.      

Page 159: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

DISCUSSION  

     147  

Finally,  it  has  been  difficult  to  provide  a  precise  result  given  that  the  area  of  investigation  is  great  and  it  would  have  required  more  resources  and  time.  Instead,  this  report  highlights  the  potentials  for  lead  time  reductions  and  recommend  preferable  actions.  The  actions  and  their  impact  on  the  customer  order  lead  time  has  been  agreed  with  Ericsson  and  is  considered  to  be  reasonable.  Thus,  the  purpose  of  the  study  is  considered  to  be  fulfilled  despite  the  disadvantages  of  the  selected  methods  and  delimitations.    11.2  Generalization  of  the  Result  Because  the  final  result  is  specific  for  Ericsson  and  the  studied  supply  chain,  the  result  is  regarded  as  generalizable  in  cases  when  similar  set  of  supply  chains  exist.  It  could  be  the  case  for  Ericsson,  for  similar  customers  to  ATM  or  for  supply  chains  in  comparable  regions.  However,  the  result  is  based  on  general  solutions  that  can  be  adapted  and  applied  to  other  companies  and  supply  chains  with   comparable   problems   highlighted   in   this   report.   For   example,   it   can   be   relevant   for  companies  and  supply  chains  that  experience  excessive  lead  times  in  the  fulfilment  process  or  caused  by  the  L/C  process.    11.3   Research  Ethics  Ethical  principles  have  been  necessary  to  take  into  consideration  during  this  study  to  ensure  good  quality  and  that  morally  acceptable  methods  are  used.  As  described  in  the  methodology  chapter,  a  number  of  interviews  have  been  conducted  which  comes  with  the  risks  that  the  respondents  can   be   harmed   or   put   in   a   position   of   discomfort.   This   has   been   avoided   by   inviting   the  respondents  to  participate  on  a  voluntary  basis.  Furthermore,  it  was  clarified  for  the  respondents  that  they  will  be  a  part  of  this  study  and  were  offered  to  be  anonymous,  which  turned  out  to  not  be  desired  in  any  case.  The  respondents  have  also  been  let  known  that  it  is  possible  to  withdraw  from  the  study  at  any  time.    Moreover,   the   literature   of   the   referred   sources   has   been   studied   carefully   to   avoid   mis-­‐interpretations   and  distorted   information   in   the   report.   The   literature   review  has  been  made  inductively  rather  than  deductively,  meaning  that  it  has  been  made  with  an  open  attitude  and  not  tried  to  distort  the  gathered  information  to  fit  the  study.    11.4   Contributions  of  the  Study  The  academic  contribution  is  considered  to  be  the  identified  potentials  for  improvements,  since  most  of   them  are  general  and   important   to  consider  whether   it   is   the  case  of  another  supply  chain,   individual  company  or  another   industry  than  the  telecom  business.  Thus,  the  potentials  can  act  as  a  basis  to  ensure  efficiency  or  for  improvements.  Additionally,  the  report  consists  of  a  compilation   of   the   literature   about   supply   chains   and   lead   time   reduction   and   can   therefore  function  as  a  source  for  gathering  of  fundamental  knowledge.    From  the  Ericsson  point  of  view,  this  study  has  presented  a  result  that  will  reduce  the  customer  lead  time  and  increase  the  service  level  for  the  studied  case.  Besides  from  that,  it  has  contributed  with   an   overall  map   for   the   current   state   and   highlighted   the  main   problems.   Several   of   the  identified  problems  are  issues  that  are  not  specific  for  this  case,  but  are  general  for  Ericsson  and  

Page 160: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

DISCUSSION  

     148  

their  supply  chains.  This  study  is  therefore  interesting  for  other  Ericsson  employees  that  are  not  a  part  of  the  studied  supply  chain.    11.5   Recommendations  for  Further  Studies  With  foundation   in  the  critical   review  of  the  result,   it  would  be   interesting  from  the  company  perspective   to   examine   the   lead   time   reduction  more   precisely   for   the   two   different   supply  chains.  Furthermore,  the  recommendations  are  not  specifying  the  type  of  product  configurator,  coordination   hub   or   end-­‐to-­‐end   system   and   how   the   regional   product   portfolio   should   be  designed.  It  would  therefore  be  recommended  to  perform  further  studies  to  determine  the  most  appropriate  characteristic.  From  the  academic  perspective,  it  would  be  interesting  to  investigate  the  payment  method  BPO  further  and  study  how  well  it  has  worked  in  practice  considering  the  new  technology.    

Page 161: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

 

 I  

BIBLIOGRAPHY  

Literature  Arbnor,  I.,  &  Bjerke,  B.  (1994).  Företagsekonomisk  metodlära  (2nd  uppl.).  Lund:  Studentlitteratur.    Attwood,  P.,  &  Attwood,  N.  (1992).  Logistics  of  a  Distribution  System.  Aldershot:  Gower.    Björklund,  M.,  &  Paulsson,  U.  (2014).  Academic  papers  and  theses:  to  write  and  present  and  to  act  as  an  opponent.  Lund:  Studentlitteratur.    Bjornland,  D.,  Persson,  G.,  &  Virum,  H.  (2003).  LOGISTIK  för  konkurrenskraft  -­‐  ett  ledaransvar.  Lund:  Liber.    Buijs,  P.,  Vis,  I.  F.,  &  Carlo,  H.  J.  (den  16  December  2014).  Synchronization  in  Cross-­‐Docking  Networks:  A  Research  Classification  and  Framework.  European  Journal  of  Operational  Research  ,  ss.  593-­‐608.    Bumstead,  J.  (1998).  Time  compression  in  the  supply  chain  -­‐  Compress  your  supply  chain:  expand  your  customers'  satisfaction  .  i  J.  Gattona,  Strategic  Supply  Chain  Alignment:  Best  practice  in  supply  chain  management  (ss.  157-­‐168).  Hampshire,  England:  Gower  Publishing  Limited.    Chmielewski,  A.,  Naujoks,  B.,  Janas,  M.,  &  Clausen,  U.  (den  1  May  2009).  Optimizing  the  door  assignment  in  LTL-­‐terminals.  Transportation  Science  ,  ss.  198-­‐210.    Christopher,  M.  (2011).  Logistics  &  Supply  Chain  Management  (4th  uppl.).  Pearson  Education.    Christopher,  M.  (2000).  The  Agile  Supply  Chain:  Competing  in  Volatile  Markets.  Industrial  Marketing  Management  ,  29  (1),  ss.  37-­‐44.    Christopher,  M.,  &  Peck,  H.  (2004).  Building  the  Resilient  Supply  Chain.  International  Journal  of  Logistics  Management  ,  15  (2),  ss.  1-­‐14.    Claesson,  F.,  &  Hilletofth,  P.  (2011).  In-­‐transit  distribution  as  a  strategy  in  a  global  distribution  system.  Int.  J.  Shipping  and  Transport  Logistics  ,  3  (2),  198-­‐209.    Cook,  T.  A.  (2014).  Mastering  the  Business  of  Global  Trade:  Negotiating  Competitive  Advantage  Contractual  Best  Practices,  Incoterms,  and  Leveragaging  Supply  Chain  Options.  CRC  Press.    Damelio,  R.  (2011).  The  Basics  of  Process  Mapping  (2nd  uppl.).  New  York:  Productivity  Press.  

Page 162: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

 

 II  

Doorey,  D.  J.  (den  19  May  2011).  The  transparent  supply  chain:  from  resistance  to  implementation  at  Nike  and  Levi-­‐Strauss.  Journal  of  Business  Ethics  ,  ss.  587-­‐603.    Egels-­‐Zandén,  N.,  Hulthén,  K.,  &  Wulff,  G.  (den  09  May  2014).  Trade-­‐offs  in  supply  chain  transparency:  the  case  of  Nudie  Jeans  Co.  Journal  of  Cleaner  Production  ,  ss.  95-­‐104.    Erlach,  K.,  &  Sheehan,  E.  (01  2016).  VALUE  STREAM  DESIGNING  A  FACTORY.  ss.  31-­‐36.    Evans,  G.,  Towill,  D.,  &  Naim,  M.  (1995).  Business  process  re-­‐engineering  the  supply  chain.  International  Journal  of  Production  Management  and  Control  ,  ss.  227-­‐237.    Forrester,  J.  W.  (1961).  Industrial  Dynamics.  Cambridge:  The  M.I.T.  Press.    Forza,  C.,  &  Salvador,  F.  (2006).  Product  Information  Management  for  Mass  Customization:  Connecting  Customer,  Front-­‐office  and  Back-­‐office  for  Fast  and  Efficient  Customization.  PALGRAVE  MACMILLAN.    Fredholm,  P.  (2006).  Logistik  och  IT  -­‐  för  effektivare  varuflöden.  Lund:  Studentlitteratur.    Göleç,  N.  (2015).  As  an  Example  of  Innovation  in  International  Finance:  Bank  Payment  Obligation  (BPO).  Journal  of  Accounting,  Finance  and  Audit  Studies  ,  ss.  103-­‐120.    Gammelgaard,  B.  (2004).  Schools  in  logistics  research?  International  Journal  of  Physical  Distribution  &  Logistics  Management  ,  34  (6),  479-­‐491.    Gattorna,  J.  (1998).  Strategic  Supply  Chain  Alignment.  Aldershot:  Gower.    Gottfredson,  M.,  &  Aspinall,  K.  (November  2005).  Innovation  Versus  Complexity:  What  Is  Too  Much  of  a  Good  Thing?  Harvard  Business  Review  .    Govindan,  K.  (2013).  Vendor-­‐managed  inventory:  a  review  based  on  dimensions.  International  Journal  of  Production  Research  ,  51  (13),  3808-­‐3835.    Green,  P.  L.  (June  2012).  Banking  On  BPOs.  Global  Finance  ,  ss.  66-­‐67.    Hallgren,  M.,  &  Olhager,  J.  (den  15  September  2006).  Differentiated  manufacturing  focus.  International  Journal  of  Production  Research  ,  44,  ss.  3863-­‐3878.    Haug,  A.,  Hvam,  L.,  &  Mortensen,  N.  H.  (May  2011).  The  Impact  of  Product  Configurators  on  Lead  Times  in  Engineering-­‐Oriented  Companies.  Artificial  Intelligence  for  Engineering  Design,  Analysis  and  Manufacturing  ,  ss.  197-­‐206.    Hines,  P.,  Holweg,  M.,  &  Rich,  N.  (2004).  Learning  to  Evolve:  A  Review  of  Contemporary  Lean  Thinking.  International  Journal  of  Operations  &  Production  Management  ,  24  (10),  ss.  994-­‐1011.  

Page 163: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

 

 III  

Hong,  G.,  Xue,  D.,  Tu,  Y.,  &  Xiong,  Y.  (2008).  Identification  of  the  Optimal  Product  Configuration  and  Parameters  Based  on  Individual  Customer  Requirements  on  Performance  and  Cost  in  One-­‐of-­‐a-­‐Kind  Production.  International  Journal  of  Production  Research  ,  2  (46),  ss.  3297-­‐3326.    Hvam,  L.,  Malis,  M.,  Hansen,  B.,  &  Riis,  J.  (2004).  Reengineering  of  the  Quotation  Process  -­‐  Application  of  Knowledge  Based  Systems.  Business  Process  Management  Journal  ,  ss.  200-­‐213.    Hvam,  L.,  Pape,  S.,  &  Nielsen,  M.  (2006).  Improving  the  Quotation  Process  With  Product  Configuration.  Comuters  in  Industry  ,  ss.  607-­‐621.    Jacobsen,  D.  I.  (2002).  Vad,  hur  och  varför:  Om  metodval  i  företagsekonomi  och  andra  samhällsvetenskapliga  ämnen.  Lund:  Studentlitteratur.    Jespersen,  B.  D.,  &  Skjott-­‐Larsen,  T.  (2005).  Supply  Chain  Management  -­‐  in  Theory  and  Practice.  Copenhagen:  Copenhagen  Business  School  Press.    Jonsson,  P.  (2008).  Logistics  and  Supply  Chain  Management.  McGraw-­‐Hill  Education.    Jonsson,  P.,  &  Mattsson,  S.-­‐A.  (2011).  Logistik:  Läran  om  effektiva  materialflöden  (Second  edition  uppl.).  Lund:  Studentlitteratur.    Lambert,  D.  M.,  &  Cooper,  M.  C.  (2000).  Issues  in  Supply  Chain  Management.  Industrial  Marketing  Management  ,  29  (1),  65-­‐83.    Lee,  H.  L.,  Billington,  C.,  &  Carter,  B.  (1993).  Hewlett-­‐Packard  Gains  Control  of  Inventory  and  Service  thruogh  Design  for  Localization.  Interfaces  ,  23  (4),  ss.  1-­‐11.    Lekvall,  P.,  &  Wahlbin,  P.  (2001).  Information  för  marknadsföringsbeslut  (4th  uppl.).  IHM  Publishing.    Liker,  J.  K.,  &  Meier,  D.  (2006).  The  Toyota  Way  Fieldbook:  A  Practical  Guide  for  Implementing  Toyota's  4Ps.  The  McGraw-­‐Hill  Companies.    Luo,  G.,  &  Noble,  J.  S.  (den  1  May  2012).  An  integrated  model  for  crossdock  operations  including  staging.  International  Journal  of  Production  Research  ,  ss.  2451-­‐2464.    Lynne,  M.,  &  Quang,  B.  (den  01  04  2012).  Going  Concerns:  The  Governance  of  Interorganizational  Coordination  Hubs.  Journal  of  Management  Information  Systems  ,  ss.  163-­‐197.    Ma,  Y.,  Wang,  N.,  Che,  A.,  Huang,  Y.,  &  Xu,  J.  (den  01  05  2013).  The  bullwhip  effect  under  different  information-­‐sharing  settings:  a  perspective  on  price  sensitive  demand  that  incorporates  price  dynamics.  International  Journal  of  Production  Research  ,  ss.  3085-­‐3116.  

Page 164: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

 

 IV  

MacLean,  R.,  &  Rebernak,  K.  (den  18  June  2007).  Closing  the  credibility  gap:  The  challenges  of  corporate  responsibility  reporting.  Environmental  Quality  Management  ,  ss.  1-­‐6.    Mason-­‐Jones,  R.,  &  Towill,  D.  R.  (1998).  Time  compression  in  the  supply  chain:  information  management  is  the  vital  ingredient.  Logistics  Information  Management  ,  11  (2),  93-­‐104.    Mason-­‐Jones,  R.,  Naylor,  B.,  &  Towill,  D.  R.  (2000).  Lean,  Agile  or  Leagile?  Matching  Your  Supply  Chain  to  the  Marketplace.  International  Journal  of  Production  Research  ,  38  (17),  ss.  4061-­‐4070.    Mattsson,  S.-­‐A.  (2012).  Logistik  i  försörjningskedjor.  Lund:  Studentlitteratur.    Mehta,  R.  (February  2005).  Expert  Outlines  Checklist  of  Remedies  for  Common  Letter  of  Credit  Discrepancies.  Managing  Exports  &  Imports  (2),  ss.  2-­‐4.    Mentzer,  J.  T.,  DeWitt,  W.,  Keebler,  J.  S.,  Min,  S.,  Nix,  N.  W.,  &  Smith,  C.  D.  (2001).  Defining  Supply  Chain  Management.  Journal  of  Business  Logistics  ,  ss.  1-­‐25.    Meurling,  J.,  &  Jeans,  R.  (2000).  Ericssonkrönikan:  125  år  av  telekommunikation.  Informationsförlaget.    Miao,  Z.,  Lim,  A.,  &  Ma,  H.  (den  1  Januari  2009).  Truck  dock  assignment  problem  with  operational  time  constraint  within  cross  docks.  European  Journal  of  Operational  Research  ,  ss.  105-­‐115.    Naylor,  B.  J.,  Naim,  M.  M.,  &  Berry,  D.  (1999).  Leagility:  Integrating  the  Lean  and  Agile  Manufacturing  Paradigms  in  the  Total  Supply  Chain.  Internation  Journal  of  Production  Economics  ,  62,  ss.  107-­‐118.    Olhager,  J.  (2013).  Produktionsekonomi:  Principer  och  metoder  för  utfromning,  styrning  och  utveckling  av  industriell  produktion.  Studentlitteratur  AB.    Olhager,  J.  (2012).  The  Role  of  Decoupling  Points  in  Value  Chain  Management.  In  Modelling  Value:  Selected  Papers  of  the  1st  International  Conference  on  Value  Chain  Management  (pp.  37-­‐47).    Oskarsson,  B.,  Aronsson,  H.,  &  Ekdahl,  B.  (2013).  Modern  logistik  -­‐  för  ökad  lönsamhet  (4th  uppl.).  Stockholm:  Liber.    Pagh,  J.  D.,  &  Cooper,  M.  C.  (1998).  Supply  Chain  Postponement  and  Speculation  Strategies:  How  To  Choose  the  Right  Strategy.  Journal  of  Business  Logistics  ,  19  (2),  ss.  13-­‐33.    Patel,  R.,  &  Davidsson,  B.  (2011).  Forskningsmetodikens  grunder  -­‐  Att  planera,  genomföra  och  rapportera  en  undersökning.  Lund:  Studentlitteratur  AB.  

Page 165: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

 

 V  

Picard,  J.  (1983).  Physical  Distribution  Organization  in  Multinationals:  the  Position  of  Authority.  International  Journal  of  Physical  Distribution  &  Logistics  Management  ,  20-­‐32.    Porter,  M.  E.  (1985).  The  Competitive  Advantage:  Creating  and  Sustaining  Superior  Performance.  New  York:  Free  Press.    Sandberg,  E.  (2015).  Logistik  och  strategi.  Lund:  Studentlitteratur.    Seidman,  I.  (2006).  Interviewing  as  Qualitative  Research:  A  Guide  for  Researchers  in  Education  and  the  Social  Sciences  (Third  Edition  uppl.).  Teachers  College,  Columbia  University.    Sharman,  G.  (1984).  The  Rediscovery  of  Logistics.  Harvard  Business  Review  ,  ss.  71-­‐80.    Skjott-­‐Larsen,  T.,  Schary,  P.  B.,  Mikkola,  J.  H.,  &  Kotzab,  H.  (2007).  Managing  the  Global  Supply  Chain  (3rd  uppl.).  Copenhagen:  Copenhagen  Business  School  Press.    Stalk,  G.,  &  Hout,  T.  (1990).  Competing  Against  Time:  How  Time-­‐based  Competition  Is  Reshaping  Global  Markets.  New  York:  The  Free  Press.    Stalk,  G.,  &  Webber,  A.  M.  (July-­‐  August  1993).  Japan's  Dark  Side  of  Time.  Harvard  Business  Review  ,  ss.  93-­‐104.    Steinfield,  C.,  Lynne,  M.,  &  Wigand,  R.  (den  01  03  2011).  Through  a  Glass  Clearly:  Standards,  Architecture,  and  Process  Transparency  in  Global  Supply  Chains.  Journal  of  Management  Information  Systems  ,  ss.  75-­‐108.    Stephan,  K.,  &  Boysen,  N.  (den  1  December  2011).  Vis-­‐à-­‐vis  vs.  mixed  dock  door  assignment:  A  comparison  of  different  cross  dock  layouts.  Operations  Management  Research  ,  ss.  150-­‐163.    Stevens,  G.  C.  (1989).  Integrating  the  Supply  Chain.  International  Journal  of  Physical  Distribution  &  Materials  ,  19  (8),  3-­‐8.    Stock,  J.  R.,  &  Lambert,  D.  M.  (2001).  Strategic  Logistics  Management.  McGraw-­‐Hill.    Storhagen,  N.  G.  (2003).  Logistik  -­‐  grunder  och  möjligheter.  Nils  G  Storhagen  and  Liber  AB.  Susmus,  T.,  &  Baslangic,  S.  O.  (May  2015).  The  New  Payment  Term  BRO  and  its  Effects  on  Turkish  International  Business.  Procedia  Economics  and  Finance  ,  ss.  321-­‐330.    Taylor,  D.  H.  (1997).  Global  Cases  in  Logistics  and  Supply  Chain  Management  (1st  uppl.).  Thomson  Learning.    Torquato,  J.  (den  18  April  2016).  ICC  Releases  BPO  Guidelines  for  Banks.  Trade  Finance  ,  s.  126.    

Page 166: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

 

 VI  

Towill,  D.  R.  (1996).  Time  Compression  and  Supply  Chain  Management  -­‐  A  Guided  Tour.  Supply  Chain  Management:  An  International  Journal  ,  1  (1),  15-­‐27.    Towill,  D.,  &  Christopher,  M.  (2002).  The  Supply  Chain  Strategy  Conundrum:  To  be  Lean  Or  Agile  or  To  be  Lean  And  Agile?  International  Journal  of  Logistics  Research  and  Applications  ,  5  (3),  ss.  299-­‐309.    Van  Hoek,  R.  I.  (1998).  Reconfiguring  the  Supply  Chain  to  Implement  Postponed  Manufacturing.  The  International  Journal  of  Logistics  Management  ,  9  (1),  ss.  95-­‐110.    Wang,  F.,  Lin,  J.,  &  Liu,  X.  (den  1  May  2010).  Three-­‐dimensional  model  of  customer  order  decoupling  point  position  in  mass  customisation.  International  Journal  of  Production  Research  ,  48,  ss.  3741-­‐3757.    Whyte,  C.  (April/May  2003).  Motorola's  Battle  with  Supply  and  Demand  Chain  Complexity.  Supply  and  Demand  Chain  Executive  and  iSource  Business  .  

Oral  Aglert,  R.  (den  19  April  2016).  Global  Supply  Chain  Architect,  BURA.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Benrabah,  M.  (den  1  Mars  2016a).  Account  Supply  Responsible,  Ericsson  Algeria.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Benrabah,  M.  (den  11  April  2016b).  Account  Supply  Responsible,  Ericsson  Algeria.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Braun,  S.  (den  15  February  2016).  Cross  Process  Driver  Planning,  BURA.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Carlheimer,  Y.  (den  2  Mars  2016a).  Head  of  Inbound  Electronics,  BURA.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Carlheimer,  Y.  (den  12  April  2016b).  Head  of  Inbound  Electronics,  BURA.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)  Edwertz,  D.  (den  22  April  2016).  Special  Projects,  BURA.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Ersten,  J.  (den  23  February  2016).  Manager  Production  &  Test,  BURA.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Forsberg,  H.  (den  21  April  2016).  Program  Manager  Regional  Supply  Hubs,  BURA.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    

Page 167: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

 

 VII  

Holmqvist,  L.  (den  21  April  2016).  LC  Coordinator  ATM,  BURA.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Högberg,  M.  (den  19  April  2016).  Strategic  Product  Manager,  BURA.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Ianev,  I.  (den  17  February  2016a).  Strategic  Supply  Manager  Global  Supply,  BURA.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Ianev,  I.  (den  18  April  2016b).  Strategic  Supply  Manager  Global  Supply,  BURA.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Johansson,  C.  (den  08  February  2016a).  Head  of  Operational  Efficiency,  BURA.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Johansson,  C.  (den  1  Mars  2016b).  Head  of  Operational  Efficiency,  BURA.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Josepson,  J.  (den  20  April  2016).  Project  Manager,  Ericsson  Tallinn.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Kjellander,  A.  (den  18  April  2016).  Head  of  Radio  Supply,  BURA.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Kristoffersson,  M.  (den  20  April  2016).  Performance  Manager  EDC  GBG,  BURA.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Lindberg,  P.  (den  25  April  2016).  Senior  Trade  Compliance  Advisor.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Magnusson,  L.  (den  25  April  2016a).  Cross  Process  Driver  Logistics,  BURA.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Magnusson,  L.  (den  3  May  2016b).  Cross  Process  Driver  Logistics,  BURA.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Magnusson,  L.  (den  18  May  2016c).  Cross  Process  Driver  Logistics,  BURA.  (J.  Larsson,  Interviewer)    Neuman,  J.  (den  2  Mars  2016a).  Head  of  Inbound  Electromechanics,  BURA.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Neuman,  J.  (den  12  April  2016b).  Head  of  Inbound  Electromechanics,  BURA.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)  

Page 168: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

 

 VIII  

Pallase,  V.  (den  20  April  2016).  Head  of  Supply  Chain  Management,  Ericsson  Tallinn.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Pettersson,  K.  (den  23  February  2016a).  Strategic  Supply  Manager  Site  Material,  BURA.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Pettersson,  K.  (den  14  April  2016b).  Strategic  Supply  Manager  Site  Material,  BURA.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Radenholt,  D.  (den  22  April  2016).  R&D  Manager  e-­‐Commerce,  BURA.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Slotte,  C.  (den  15  April  2016).  Operational  Efficiency  EDC  GBG,  BURA.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Tamme,  K.  (den  21  April  2016).  Manager  of  Production  and  Demand  Planning,  Ericsson  Tallinn.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Tomba,  A.  (den  19  April  2016).  Short  Term  Planner,  Ericsson  Tallinn.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Ur  Rehman,  S.  F.  (den  25  February  2016a).  Supply  Chain  Manager  RMED,  BURA.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Ur  Rehman,  S.  F.  (den  11  April  2016b).  Supply  Chain  Manager  RMED,  BURA.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Wilhelmsson,  J.  (den  18  April  2016).  Order  &  Delivery  Manager,  BURA.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Zigulin,  A.  (den  18  April  2016).  FMR  Production  Planner,  Ericsson  Tallinn.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Özdogru,  D.  (den  11  April  2016).  Contract  Execution  Manager  RMED,  BURA.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)    Özelbir,  Ö.  (den  11  February  2016).  Head  of  Supply  Chain  Management  Filter  &  Digital,  BURA.  (J.  Larsson,  &  M.  Stenberg,  Interviewer)      

Page 169: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

 

 IX  

Websites  Ericsson  AB.  (2013).  This  is  Ericsson.  Hämtat  från  http://www.ericsson.com  den  12  February  2016    International  Chamber  of  Commerce.  (2016).  The  Incoterms  Rules.  Gathered  from  International  Chamber  of  Commerce:  http://www.iccwbo.org/products-­‐and-­‐services/trade-­‐facilitation/incoterms-­‐2010/the-­‐incoterms-­‐rules/  den  21  May  2016      

Page 170: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

 

 X  

APPENDIX  A.  COLLECTION  OF  ABBREVIATIONS  3PL     Third  Part  Logistics  ASP     Application  Service  Provider  ASR     Account  Supply  Responsible    ATM     Algeria  Telecom  Mobile  BPO     Bank  Payment  Obligation  BURA     Business  Unit  Radio  CIP     Carriage  and  Insurance  Paid  To  CPO     Customer  Purchase  Order  CPT     Carried  Paid  To  CRM360     A  sales  tool  CTP     Customer  Takeover  Point  DAP     Delivery  at  Place  DAT     Delivery  at  Terminal  DO     Delivery  Order  DSP     Distribution  Service  Provider  EAL     Ericsson  Algeria  ECP     Ericsson  Configuration  Portfolio  EDC     Ericsson  Distribution  Center  EMS     External  Manufacturing  Site  ESS     Ericsson  Supply  Site  GBG     Gothenburg  GI     Goods  Issued    GR     Goods  Received  JIT     Just-­‐In-­‐Time  KAM     Key  Account  Manager  ONE     Ericsson’s  SAP  system  PO     Purchase  Order  PoD     Proof  of  Delivery  SMA     Surface  Mounted  Assembly  STO     Stock  Transfer  Order  RFS     Ready  for  Shipment  RMED   Region  Mediterranean  Verdi     A  tendering  system              

Page 171: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

 

 XI  

APPENDIX  B.  RESPONDENTS  –  PLANNING  PHASE  The  people  interviewed  during  the  planning  phase  of  the  project  is  presented  in  Table  42.  The  interviews   were   unconstructed   and   the   aim   was   to   create   an   understanding   of   the   current  problem.    

Table  42.  Respondents  interviewed  during  the  planning  phase  of  the  study.  

Respondent   Position,  Organization  Benrabah,  Myra   Account  Supply  Responsible,  Ericsson  Algeria  Braun,  Sven   Cross  Process  Driver  Planning,  BURA  Carlheimer,  Ylva   Head  of  Inbound  Electronics,  BURA  Ersten,  Jörgen   Manager  Production  &  Test,  BURA    Ianev,  Ilia   Strategic  Supply  Manager  Global  Supply,  BURA  Johansson,  Christer   Head  of  Operational  Efficiency,  BURA  Neuman,  Jesper   Head  of  Inbound  Electromechanics,  BURA  Pettersson,  Katarina   Strategic  Supply  Manager  Site  Material,  BURA  Ur  Rehman,  Sheikh  Faisal   Supply  Chain  Manager  RMED,  BURA  Özelbir,  Özay   Head  of  Supply  Chain  Management  Filter  &  Digital,  BURA                      

Page 172: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

 

 XII  

APPENDIX  C.  RESPONDENTS  –  CURRENT  STATE  MAPPING  The  people  interviewed  during  the  current  state  mapping  is  presented  in  Table  43.  The  interviews  were  a  combination  between  structured  and  unconstructed  and  the  aim  was  to  map  the  current  state  of  a  specific  supply  chain.    

 Table  43.  Respondents  interviewed  during  the  current  state  mapping.  

Respondent   Position,  Organization  Aglert,  Roland   Global  Supply  Chain  Architect,  BURA  Benrabah,  Myra   Account  Supply  Responsible,  Ericsson  Algeria  Carlheimer,  Ylva   Head  of  Inbound  Electronics,  BURA  Edwertz,  David   Special  Projects,  BURA  Forsberg,  Henrik   Program  Manager  Regional  Supply  Hubs,  BURA  Holmqvist,  Liis   LC  Coordinator  ATM,  BURA  Högberg,  Martin   Strategic  Product  Manager,  BURA  Ianev,  Ilia   Strategic  Supply  Manager  Global  Supply,  BURA  Josepson,  Jüri   Project  Manager,  Ericsson  Tallinn  Kjellander,  Anders   Head  of  Radio  Supply,  BURA  Kristoffersson,  Marie   Performance  Manager  EDC  GBG,  BURA  Lindberg,  Per   Senior  Trade  Compliance  Advisor,  BURA  Magnusson,  Lars   Cross  Process  Driver  Logistics,  BURA  Neuman,  Jesper   Head  of  Inbound  Electromechanics,  BURA  Pallase,  Valentin   Head  of  Supply  Chain  Management,  Ericsson  Tallinn  Pettersson,  Katarina   Strategic  Supply  Manager  Site  Material,  BURA  Radenholt,  Dennis   R&D  Manager  e-­‐Commerce,  BURA  Slotte,  Carl   Operational  Efficiency  EDC  GBG,  BURA  Tamme,  Kairi   Manager  of  Production  and  Demand  Planning,    

Ericsson  Tallinn  Tomba,  Andrei   Short  Term  Planner,  Ericsson  Tallinn  Ur  Rehman,  Sheikh  Faisal   Supply  Chain  Manager  RMED,  BURA  Wilhelmsson,  Johan   Order  &  Delivery  Manager,  BURA  Zigulin,  Aleksei   FMR  Production  Planner,  Ericsson  Tallinn  Özdogru,  Defne   Contract  Execution  Manager  RMED,  BURA            

Page 173: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

 

 XIII  

APPENDIX  D.  GENERIC  INTERVIEW  QUESTIONS  INFORMATION  ABOUT  THE  RESPONDENT  Name:    Position:  What  are  your  responsibilities?  How  long  have  you  worked  at  the  current  position  and  at  the  company?    CURRENT  STATE  MAPPING  How  is  the  supply  chain  structured  from  your  point  of  view  in  terms  of:  

•   Members?  •   Activities  and  processes?  

 How  are  goods  distributed  in  your  part  of  the  supply  chain  in  terms  of:  

•   Between  which  members?  •   Mode  of  transportation?  •   Frequencies?  

 How  is  inventory  handled  in  you  part  of  the  supply  chain  in  terms  of:  

•   Location  of  buffers?  •   Type  of  buffers?  •   Buffer  levels?  •   Responsibility  of  buffers?  

 Do  you  have  any  pronounced  strategies  for  the  material  and  information  flow  in  your  part  of  the  supply  chain  in  terms  of:  

•   Lean  and  agile?  •   Postponement  and  speculation?  •   Customer  order  decoupling  point?  •   Other  strategies?  

 How  is  information  managed  in  your  part  of  the  supply  chain  in  terms  of:  

•   Ways  of  communication  and  information  sharing?  •   Between  which  members?  •   To  what  purpose?  •   Type  of  information?  •   Frequency  of  exchange?  

 What  are  the  lead  times  for  the  activities  and  processes?  

•   What  is  this  number  based  on?  •   Do  you  consider  it  to  be  reasonable?  

   

Page 174: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

 

 XIV  

Do  you  experience  any  problems  in  your  part  of  the  supply  chain?  •   Can  these  problems  be  connected  to  excessive  lead  times?  •   Do  you  have  any  suggested  solutions?  •   What  are  the  requirements  for  implementing  the  suggested  solutions?  

 ADDITIONAL  QUESTIONS  Do  you  have  any  additional  information  that  you  think  this  study  would  benefit  from?  Do  you  have  any  suggestions  for  people  who  you  think  might  be  useful  for  this  study  to  meet?      

Page 175: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

 

 XV  

APPENDIX  E.  LITERATURE  RESEARCH    

Table  44.  Literature  research  based  on  key  words.  

Key  word   Number  of  results/  relevant  results  

Title   Reference  

Crossdocking  synchronization  

2006/1   Synchronization  in  Cross-­‐Docking  Networks:  A  Research  Classification  and  Framework  

Buijs,  P.,  Vis,  I.  F.,  &  Carlo,  H.  J.  (2014)  

Crossdock   924/3   An  integrated  model  for  crossdock  operations  including  staging  

Luo,  G.,  &  Noble,  J.  S.  (2012)  

    Truck  dock  assignment  problem  with  operational  time  constraint  within  crossdocks  

Miao,  Z.,  Lim,  A.,  &  Ma,  H.  (2009)  

    Vis-­‐à-­‐vis  vs.  mixed  dock  door  assignment:  A  comparison  of  different  cross  dock  layouts  

Stephan,  K.,  &  Boysen,  N.  (2011)  

Transit  distribution  system  supply  chain  

55148/1   In-­‐transit  distribution  as  a  strategy  in  a  global  distribution  system  

Claesson,  F.,  &  Hilletofth,  P.  (2011)  

Incoterms   3067/1   Mastering  the  Business  of  Global  Trade:  Negotiating  Competitive  Advantage  Contractual  Best  Practices,  Incoterms,  and  Leveragaging  Supply  Chain  Options  

Cook,  T.  A.  (2014)  

Transparent  supply  chain  implementation  

43426/1   The  transparent  supply  chain:  from  resistance  to  implementation  at  Nike  and  Levi-­‐Strauss  

Doorey,  D.  J.  (2011)  

Transparency  Supply  chain    

101102/2   Trade-­‐offs  in  supply  chain  transparency:  the  case  of  Nudie  Jeans  Co  

Egels-­‐Zandén,  N.,  Hulthén,  K.,  &  Wulff,  G.  (2014)  

    Through  a  Glass  Clearly:  Standards,  Architecture,  and  Process  Transparency  in  Global  Supply  Chains.  

Steinfield,  C.,  Lynne,  M.,  &  Wigand,  R.  (2011)  

Value  stream  mapping   281344/1   VALUE  STREAM  DESIGNING  A  FACTORY  

Erlach,  K.,  &  Sheehan,  E.  (2016)  

Vendor  managed  inventory  

11323/1   Vendor-­‐managed  inventory:  a  review  based  on  dimensions  

Govindan,  K.  (2013)  

CODP  manufacturing  strategy  

274/1   Differentiated  manufacturing  focus  

Hallgren,  M.,  &  Olhager,  J.  (2006)  

Page 176: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

 

 XVI  

Product  configurator  lead  time  

2366/1   he  Impact  of  Product  Configurators  on  Lead  Times  in  Engineering-­‐Oriented  Companies  

Haug,  A.,  Hvam,  L.,  &  Mortensen,  N.  H.  (2011)  

Coordination  hub   56768/1   Going  Concerns:  The  Governance  of  Interorganizational  Coordination  Hubs  

Lynne,  M.,  &  Quang,  B.  (2012  

The  bullwhip  effect   9774/1   The  bullwhip  effect  under  different  information-­‐sharing  settings:  a  perspective  on  price  sensitive  demand  that  incorporates  price  dynamics  

Ma,  Y.,  Wang,  N.,  Che,  A.,  Huang,  Y.,  &  Xu,  J.  (2013)  

Letter  of  Credit  proactive   27118/1   Expert  Outlines  Checklist  of  Remedies  for  Common  Letter  of  Credit  Discrepancies  

Mehta,  R.  (2005)  

Leagile  supply  chain   938/1   Leagility:  Integrating  the  Lean  and  Agile  Manufacturing  Paradigms  in  the  Total  Supply  Chain  

Naylor,  B.  J.,  Naim,  M.  M.,  &  Berry,  D.  (1999)  

Decoupling  point  supply  chain  management  

9308/1   The  Role  of  Decoupling  Points  in  Value  Chain  Management  

Olhager,  J.  (2012)  

Customer  order  decoupling  point  

25685/1   Three-­‐dimensional  model  of  customer  order  decoupling  point  position  in  mass  customisation  

Wang,  F.,  Lin,  J.,  &  Liu,  X.  (2010)  

Distribution  supply  chain  management  

528152/1   Physical  Distribution  Organization  in  Multinationals:  the  Position  of  Authority  

Picard,  J.  (1983)  

Letter  of  credit  slow   151728/1   The  New  Payment  Term  BRO  and  its  Effects  on  Turkish  International  Business  

Susmus,  T.,  &  Baslangic,  S.  O.  (2015)  

BPO  payment   7658/1   ICC  Releases  BPO  Guidelines  for  Banks  

Torquato,  J.  (2016)  

             

Page 177: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

 

 XVII  

Table  45.  Literature  research  based  on  references.  

Source   Title   Reference  Found  from  other  article   The  Basics  of  Process  Mapping   Damelio,  R.  (2011).  Found  from  other  article   Business  process  re-­‐engineering  

the  supply  chain  Evans,  G.,  Towill,  D.,  &  Naim,  M.  (1995)  

Found  from  other  article   Product  Information  Management  for  Mass  Customization:  Connecting  Customer,  Front-­‐office  and  Back-­‐office  for  Fast  and  Efficient  Customization  

Forza,  C.,  &  Salvador,  F.  (2006)  

Found  from  other  article   As  an  Example  of  Innovation  in  International  Finance:  Bank  Payment  Obligation  (BPO)  

Göleç,  N.  (2015)  

Recommended  by  supervisor   Schools  in  logistics  research?   Gammelgaard,  B.  (2004)  Found  from  other  article   Innovation  Versus  Complexity:  

What  Is  Too  Much  of  a  Good  Thing?  Gottfredson,  M.,  &  Aspinall,  K.  (2005)  

Found  from  other  article   Banking  On  BPOs   Green,  P.  L.  (2012)  Literature  from  course  TMQU12   Learning  to  Evolve:  A  Review  of  

Contemporary  Lean  Thinking  Hines,  P.,  Holweg,  M.,  &  Rich,  N.  (2004)  

Found  from  other  article   Improving  the  Quotation  Process  With  Product  Configuration  

Hvam,  L.,  Pape,  S.,  &  Nielsen,  M.  (2006)  

Found  from  other  article   Reengineering  of  the  Quotation  Process  -­‐  Application  of  Knowledge  Based  Systems  

Hvam,  L.,  Malis,  M.,  Hansen,  B.,  &  Riis,  J.  (2004)  

Found  from  other  source   Issues  in  Supply  Chain  Management  

Lambert,  D.  M.,  &  Cooper,  M.  C.  (2000)  

Found  from  other  source   Hewlett-­‐Packard  Gains  Control  of  Inventory  and  Service  thruogh  Design  for  Localization  

Lee,  H.  L.,  Billington,  C.,  &  Carter,  B.  (1993)  

Literature  from  course  TMQU12   The  Toyota  Way  Fieldbook:  A  Practical  Guide  for  Implementing  Toyota's  4Ps  

Liker,  J.  K.,  &  Meier,  D.  (2006)  

Found  from  other  source   Closing  the  credibility  gap:  The  challenges  of  corporate  responsibility  reporting  

MacLean,  R.,  &  Rebernak,  K.  (2007)  

Found  from  other  source   Time  compression  in  the  supply  chain:  information  management  is  the  vital  ingredient  

Mason-­‐Jones,  R.,  &  Towill,  D.  R.  (1998)  

Literature  from  course  TETS31   Lean,  Agile  or  Leagile?  Matching  Your  Supply  Chain  to  the  Marketplace  

Mason-­‐Jones,  R.,  Naylor,  B.,  &  Towill,  D.  R.  (2000)  

Literature  from  course  TETS31   Supply  Chain  Postponement  and  Speculation  Strategies:  How  To  Choose  the  Right  Strategy  

Pagh,  J.  D.,  &  Cooper,  M.  C.  (1998)  

Literature  from  course  TETS31   The  Competitive  Advantage:  Creating  and  Sustaining  Superior  Performance  

Porter,  M.  E.  (1985)  

Found  from  other  source   The  Rediscovery  of  Logistics   Sharman,  G.  (1984)  Found  from  other  source   Japan's  Dark  Side  of  Time   Stalk,  G.,  &  Webber,  A.  M.  (1993)  Found  from  other  source   Integrating  the  Supply  Chain   Stevens,  G.  C.  (1989)  

Page 178: OptimizingtheSupplyChain! Performance!at!Ericsson!AB1058947/FULLTEXT01.pdf · ACKNOWLEDGEMENT! Thismasterthesisisthefinalexaminationoftheauthors’!MasterinIndustrialEngineeringand

 

 XVIII  

Found  from  other  source   Time  Compression  and  Supply  Chain  Management  -­‐  A  Guided  Tour  

Towill,  D.  R.  (1996)  

Literature  from  course  TMQU12   The  Supply  Chain  Strategy  Conundrum:  To  be  Lean  Or  Agile  or  To  be  Lean  And  Agile?  

Towill,  D.,  &  Christopher,  M.  (2002)  

Literature  from  course  TETS31   Reconfiguring  the  Supply  Chain  to  Implement  Postponed  Manufacturing  

Van  Hoek,  R.  I.  (1998)  

Found  from  other  source   Motorola's  Battle  with  Supply  and  Demand  Chain  Complexity  

Whyte,  C.  (2003)  

Found  from  other  source   Optimizing  the  door  assignment  in  LTL-­‐terminals  

Chmielewski,  A.,  Naujoks,  B.,  Janas,  M.,  &  Clausen,  U.  (2009)  

Found  from  other  source   The  Agile  Supply  Chain:  Competing  in  Volatile  Markets  

Christopher,  M.  (2000)  

Literature  from  course  TETS31   Building  the  Resilient  Supply  Chain   Christopher,  M.,  &  Peck,  H.  (2004)