optimization of temperature-programmed gas chromatographic

Upload: anonymous-atbeoja

Post on 02-Jun-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Optimization of Temperature-programmed Gas Chromatographic

    1/9

    E L S E V I E R

    Journal of Chromatography A , 756 (1996) 175-183

    JOURN L OF

    CHROM TOGR PHY

    O ptim ization of temp erature programm ed gas chrom atographic

    separations

    II. O ff l ine Sim plex optim ization and colum n select ion

    H e n r i S n i j d e r s , H a n s - G e r d J a n s s e n , C a r e l C r a m e r s

    Laboratota ~f bzs trumental Ana lys is , D epa rtmen t ~[ Chemical Engineer ing, Eindhoven Univers ity o f Technology, P .O. Box 513, 5600

    MB Eindhoven, Nether lands

    Received 3 May 1996: revised 9 July 1996; accepted 15 July 1996

    A b s t r a c t

    I n th i s w o r k a m e t h o d i s d e s c r i b e d w h i c h a l l o w s o f f - l i n e o p t i m i z a t i o n o f t e m p e r a t u r e - p r o g r a m m e d G C s e p a r a ti o n s . T h e

    m e t h o d i s b a s e d o n a n e w n u m e r i c a l m e t h o d t h a t a l lo w s t h e o f f - l i n e p re d i c t i o n o f r e te n t i o n t i m e s a n d p e a k w i d t h s o f a

    m i x t u r e c o n t a i n i n g c o m p o n e n t s w i t h k n o w n i d e n t it i e s in c a p i ll a r y G C . I n t h e p r e s e n t w o r k w e a p p l y t h i s m e t h o d f o r o f f - l i n e

    o p t i m i z a t i o n o f s i n g l e - a n d m u l t i - r a m p t e m p e r a t u r e - p r o g r a m m e d G C s e p a r at i o n s. F i rs t , it w il l b e s h o w n h o w t h e n u m e r i c a l

    m e t h o d s a r e i n c o r p o r a t e d i n a S i m p l e x o p t i m i z a t i o n m e t h o d . N e x t , i t i s d e s c r i b e d h o w t h e m e t h o d c a n b e u s e d t o d e t e r m i n e

    t h e o p t i m a l t e m p e r a t u r e p r o g r a m f o r t h e s e p a r a ti o n o f a m i x t u r e c o n t a i n i n g c o m p o n e n t s o f d i f f e r e n t f u n c ti o n a l it i e s . F i n a l ly ,

    i t i s s h o w n t h a t t h e o p t i m i z a t i o n s t r a t e g y f o l l o w e d h e r e a l l o w s s e l e c t i o n o f t h e c a p i l l a r y c o l u m n m o s t s u i t e d f o r t h e

    s e p a r a t io n p r o b l e m u n d e r s t u d y f r o m a g i v e n s e t o f c ap i l l a ry c o l u m n s c o n t a i n i n g t h e s a m e s t a ti o n a r y p h a s e a n d v a r y i n g i n n e r

    d i a m e t e r s a n d f i lm t h i c k n e ss e s . T h e p r o c e s s c a n b e p e r f o r m e d w i t h o u t a n y e x p e r i m e n t a l e f f o rt . T h e r e s u l t s i n d i c a te t h a t f u l ly

    o f f - l i n e s i m u l a t i o n a n d o p t i m i z a t i o n o f s i n g l e - a n d m u l t i - r a m p t e m p e r a t u r e - p r o g r a m m e d G C s e p a r a t i o n s a s w e l l a s c o l u m n

    se l ec t i on i s poss ib l e .

    K e v w o r d s

    Simplex optimization; Temperature-programming; Optimization; Column selection; Capillary columns; Chemo-

    metrics

    1 I n t r o d u c t i o n

    In a prev ious a r t ic le [1] we desc r ibed a numer ica l

    me th o d to p r e d i c t ( t r u ly o f f - l i n e ) l i n e a r t e mp e r a tu r e -

    p r o g r a mme d r e t e n t i o n t ime s a n d p e a k w id th s f o r

    mix tu r e s c o n t a in in g c o mp o n e n t s w i th k n o w n id e n -

    t i t i e s i n c a p i l l a r y G C . T h e p r o c e d u r e i s b a se d o n

    Corresponding author.

    e x t r a c t i n g t h e r mo d y n a mic v a lu e s ( e n t r o p y a n d e n -

    th a lp y t e r ms ) f r o m p u b l i sh e d K o v f i ts re t e n t i o n i n -

    d i c e s . A n u me r i c a l me th o d w a s d e v e lo p e d , t h a t u se s

    th e se t h e r mo d y n a mic v a lu e s t o c a l c u l a t e l i n e a r ( s i n -

    g l e o r m u l t i - r a m p ) t e m p e r a t u r e - p r o g r a m m e d r e t e n -

    t i o n t ime s a n d p e a k w id th s o n a n y c a p i l l a r y G C

    c o lu mn c o n ta in in g t h e s a me s t a t i o n a r y p h a se b u t

    wi th a d i f fe ren t phase ra t io and/or length . In shor t ,

    t h e n u m e r i c a l a p p r o a c h mo d e l s t h e so lu t e s c h r o -

    ma to g r a p h ic p r o c e s s i n to v e r y sma l l s e g me n t s o f

    e q u a l t ime . F o r e v e r y t ime in t e r v a l t h e v a r io u s

    0021-9673/96/ 15.00 19 96 Elsevier Science B.V. All rights reserved

    P l l S 0 0 2 1 - 9 6 7 3 ( 9 6 ) 0 0 6 2 6 - 7

  • 8/10/2019 Optimization of Temperature-programmed Gas Chromatographic

    2/9

    1 7 6

    H. Snijders et al, / J. Chromatogr. A 756 1996) 1 75- 183

    c h r o ma to g r a p h i c p a r a me te r s a r e c a l c u l a t e d , b a s e d o n

    a m o d e l d e v e l o p e d f r o m s o u n d c h r o m a t o g r a p h i c

    theory . Re ten t ion t imes a re ca lcu la ted f rom loca l

    r e t e n t i o n f a c to r s a n d t h e p r e s s u r e a n d t e mp e r a tu r e

    cor rec ted loca l ve loc i ty in eve ry t ime in te rva l . Ana l -

    o g o u s ly , p e a k w id th s a r e c a l c u l a t e d f r o m lo c a l p l a t e

    h e ig h t s ( d e r i v e d f r o m th e w e l l - k n o w n G o la y e q u a -

    t i o n ) i n e v e r y s e g me n t . D u r in g t h e c a l c u l a t i o n s

    p h y s i c a l mo d e l s a n d a p p r o x ima t io n s a r e u s e d t o

    obta in v iscos i ty and d i f fus ion da ta .

    A p a r t f r o m th e t h e r mo d y n a mic q u a n t i t i e s a n d t h e

    s o lu t e s mo le c u l a r f o r mu la , t h e o n ly a d d i t i o n a l i n p u t

    p a r a me te r s n e e d e d f o r t h e p r e d i c t i o n s a r e t h e c o l -

    u mn c h a r a c t e r i s t i c s ( d ime n s io n s a n d c o a t i n g e f -

    f ic iency) , the ca r r ie r gas type and seve ra l in -

    s t r u me n ta l p a r a me te r s s u c h a s t h e t e mp e r a tu r e p r o -

    g r a m a n d t h e c o lu mn d e a d t ime o r i n l e t p r e s s u r e .

    I n t h e t e m p e r a t u r e - p r o g r a m m e d m o d e a w i d e t e m -

    p e r a tu r e r a n g e i s a l l o w e d a n d i s o th e r ma l p l a t e a u s

    c a n b e i n c lu d e d i n t h e p r o g r a m. A n a t t r a c t i v e

    f e a tu r e o f th e a p p r o a c h i s t h a t, o n c e t h e t h e r mo -

    d y n a mic v a lu e s o f t h e s o lu t e s o f i n t e r e s t a r e

    k n o w n , t h e y c a n b e s t o r e d i n a d a t a b a s e a n d f u tu r e

    p r e d i c t i o n s c a n b e p e r f o r me d w i th o u t t h e n e e d t o

    p e r f o r m n e w e x p e r ime n ta l i n p u t r u n s .

    I n t h e p r e s e n t w o r k w e a p p ly t h i s n e w n u me r i c a l

    me th o d t o o f f - l i n e o p t imiz a t i o n o f t e mp e r a tu r e - p r o -

    g r a mme d G C s e p a r a t i o n s , w h e r e w e d e f in e t h e t e r m

    o p t imiz a t i o n a s a c h i e v in g b a s e l i n e r e s o lu t i o n i n t h e

    s h o r t e s t p o s s ib l e a n a ly s i s t ime . T h e u l t ima t e g o a l o f

    t h e w o r k i s t o d e v e lo p a n o p t imiz a t i o n s t r a t e g y t h a t

    does not r equi re any exper imenta l input run . In o the r

    w o r d s , a me th o d t h a t e n a b l e s t r u ly o f f - l i n e o p t imi -

    za t ion . F i r s t , i t wi l l be shown how the numer ica l

    me th o d s f o r r e t e n t i o n t ime a n d p e a k w id th p r e d i c t i o n

    p r e v io u s ly d e v e lo p e d a r e i n c o r p o r a t e d i n a S imp le x

    o p t imiz a t i o n me th o d . N e x t , i t i s d e s c r i b e d h o w th e

    me th o d c a n b e u s e d t o d e t e r min e o f f - l i n e t h e o p t ima l

    ( e i t h e r s i n g l e - o r mu l t i - r a mp ) t e mp e r a tu r e p r o g r a m

    f o r t h e s e p a r a t i o n o f a mix tu r e c o n t a in in g c o m-

    ponents of d i f f e ren t func t iona l i t ie s . F ina l ly , i t i s

    s h o w n th a t t h e o p t imiz a t i o n s t r a t e g y f o l l o w e d h e r e

    a l l o w s s e l e c t i o n o f t h e c a p i l l a r y c o lu mn mo s t s u i t e d

    f o r t h e s e p a r a t i o n p r o b l e m u n d e r s t u d y , f r o m a g iv e n

    s e t o f c a p i l l a r y c o lu mn s c o n t a in in g t h e s a me s t a t i o n -

    a r y p h a s e b u t w i th v a r y in g p h a s e r a t i o s a n d /o r

    lengths .

    2. T h e o r y

    2 .1 . C h r o m a t o g r a p h i c r e s p o n s e f u n c t i o n

    S u c c e s s f u l a p p l i c a t i o n o f a n o p t imiz a t i o n p r o c e s s

    i s p r e c e d e d b y c a r e f u l s e l e c t i o n o f t h e q u a n t i t y

    ( r e s p o n s e f a c to r ) t o b e o p t imiz e d . F o r c h r o ma to -

    g r a p h i c s e p a r a t i o n s t h e ma in p r o b l e m l i e s i n p r o p e r

    c o n v e r s io n o f t h e r e te n t i o n t ime s a n d p e a k w id th s o f

    a l l r e l e v a n t c h r o ma to g r a p h i c p e a k s i n to a s i n g l e

    n u mb e r w h ic h a c c u r a t e ly r e f l e c t s t h e o p t imiz a t i o n

    c r i t e r i u m. S e v e r a l a u th o r s h a v e r e c o g n i z e d a n d d i s -

    c u s s e d th i s p r o b l e m [ 2 - 4 ] a n d m a n y c h r o m a t o g r a p h -

    i c r e s p o n s e f u n c t i o n s ( C R F ) h a v e b e e n s u g g e s t e d . I n

    th i s w o r k w e a d o p t e d t h e C R F u s e d b y D o s e [ 5 ] . F o r

    a g iv e n c h r o ma to g r a m th e C R F v a lu e c a n b e c a l c u -

    l a t e d f r o m:

    C R F + ~ e

    e~ ~.r

    (1)

    t R c r i t i~i

    w h e r e

    tR

    i s the r e ten t ion t ime of the la s t - e lu t ing

    peak , tR ,~r~, i s a u se r - se lec ted t im e-cos t w e ight ing or

    c o m p r o m i s e f a c t o r a n d

    R~.cr~

    i s a use r - se lec ted

    reso lu t ion ta rge t va lue . R ~ j i s t he r e s o lu t i o n b e tw e e n

    pea k i and j which i s de f ined a s:

    AtR .~ i

    R ~ ~ -

    2 ( ~ + ) ( 2 )

    w h e r e

    A t R ~ j

    i s the r e ten t ion t ime d i f f e rence (ex-

    pressed pos i t ive ) be tween pe ak i and j . ~ and ~ a re

    th e s t a n d a r d d e v i a t i o n s o f p e a k i a n d p e a k j , r e s p e c -

    t ive ly .

    F r o m E q . ( 1 ) i t c a n b e s e e n t h a t b o th a n a ly s i s time

    a n d r e s o lu t i o n a r e i n c o r p o r a t e d i n t h e C R F . Mo r e -

    over , a l l poss ib le peak- to-peak in te rac t ions a re in -

    c lu d e d . T h e o c c u r r e n c e o f o v e r l a p p in g p e a k s i s

    s t r o n g ly d i s c o u r a g e d . A d d i t i o n a l ly , i t e mp h a s i z e s t h e

    l e a s t re s o lv e d p e a k p a i r s w i th o u t t o t a l l y i g n o r in g t h e

    o th e r p e a k p a i r s. F u r th e r m e r i t s o f t h e C R F u s e d h e r e

    a r e e x t e n s iv e ly d i s c u s s e d b y D o s e [ 5 ] .

    2.2.

    O p t i m i z a t i o n a l g o r i t h m

    T h e o p t imiz a t i o n p r o c e d u r e u s e d i n t h i s w o r k i s

    t h e Mo d i f i e d S imp le x Me th o d ( MS M) a s d e s c r i b e d

  • 8/10/2019 Optimization of Temperature-programmed Gas Chromatographic

    3/9

    H . S n i jd e r s et a l . / J . C h r o m a t o g r . A 7 . 56 1 9 9 6 ) 1 7 5 - 1 8 3 1 7 7

    b y N e ld e r a n d Me a d [ 6 ] . S u c c e s s f u l a p p l i c a t i o n o f

    t h e S i m p l e x m e t h o d f o r t h e o p t i m i z a t i o n o f G C

    s e p a r a t i o n p r o b l e m s w a s d e m o n s t r a t e d b y s e v e r a l

    au thors , e .g . [5 ,7] . In th is sec t ion i t wi l l be shown

    h o w th e n u me r i c a l me th o d s p r e v io u s ly d e r i v e d f o r

    t h e c a l c u l a t i o n o f r e t e n t i o n t ime s a n d p e a k w id th s i n

    t e m p e r a t u r e - p r o g r a m m e d G C s e p a ra t io n s [1 ] a re

    in c o r p o r a t e d i n a n MS M f o r t h e p u r p o s e o f o f f - l i n e

    o p t i m i z a t i o n o f t e m p e r a t u r e - p r o g r a m m e d G C s e p a -

    r a t i o n s . Mo r e o v e r , i t w i l l b e s h o w n h o w th e s t r a t e g y

    f o l l o w e d h e r e a l l o w s s e l e c t i o n o f t h e c a p i l l a r y

    c o lu mn mo s t s u i t e d f o r a g iv e n s e p a r a t i o n p r o b l e m

    f r o m a s e t o f a v a i l a b l e c o lu mn s . T h e d i s c u s s io n o f

    t h e v a r i o u s imp o r t a n t a s p e c t s o f t h e o p t imiz a t i o n

    p r o c e s s i s g u id e d b y t h e o v e r a l l o p t imiz a t i o n a lg o -

    r i thm, presented in F ig . 1 .

    P r io r t o s t a r t i n g t h e o p t imiz a t i o n , i t mu s t b e

    d e c id e d w h ic h p a r a me te r s a r e t o b e o p t imiz e d .

    N o r ma l ly o n ly t h o s e f a c to r s a r e i n c lu d e d w h ic h

    e x h ib i t th e l a r g e s t imp a c t o n t h e C R F th e q u a n t it y

    to b e o p t imiz e d ) . F o r t h e ma jo r i t y o f G C s e p a r a t i o n s

    th e t e mp e r a tu r e - p r o g r a mmin g r a t e i s t h e d e c i s i v e

    p a r a me te r i n o r d e r t o a t t a i n t h e u l t ima t e s e p a r a t i o n

    g o a l . A p a r t f r o m th e p r o g r a mmin g r a t e , a l s o o th e r

    imp o r t a n t p a r a me te r s s u c h a s e . g . t h e i n i t i a l o v e n

    t e mp e r a tu r e , c a n b e i n c lu d e d i n t h e o p t imiz a t i o n .

    W i th t h e p r e s e n t a l g o r i t h m th e n u mb e r o f d ime n s io n s

    to b e o p t imiz e d c a n b e f u l l y u s e r - s e l e c t e d . T h i s

    me a n s t h a t t h e o p t imiz a t i o n c a n b e p e r f o r me d f o r

    s i n g l e - a n d / o r m u l t i - r a m p t e m p e r a t u r e - p r o g r a m m e d

    s e p a r a t i o n s e i t h e r w i th o r w i th o u t t h e i n c o r p o r a t i o n

    of i so the rma l p la teaus . In f ac t , a l l va r iab les which

    d e s c r ib e a G C t e mp e r a tu r e p r o g r a m c a n b e i n c lu d e d

    a s o p t imiz a t i o n p a r a me te r s . P a r a me te r s w h ic h a r e n o t

    inc luded in the opt imiza t ion a re he ld cons tan t .

    As a l r eady ment ioned in the in t roduc t ion , the

    p r ima r y g o a l o f t h e w o r k p r e s e n t e d h e r e i s t o a t t a i n

    t r u ly o f f - l i n e o p t imiz a t i o n s . D u r in g t h e o p t imiz a t i o n

    ca lcu la t ions the mean l inea r ve loc i ty a t the in i t ia l

    o v e n t e mp e r a tu r e w a s k e p t c o n s t a n t . H e n c e , t h e

    n u me r i c a l me th o d s a p p l i e d h e r e r e q u i r e a r e p r e s e n t a -

    t i v e v a lu e f o r t h e me a n l i n e a r v e lo c i t y . T h i s v a lu e

    w a s e s t i m a t e d f o r a g i v e n c o m b i n a t i o n o f c o l u m n

    in n e r d i a me te r a n d c a r r i e r g a s t y p e u s in g T a b l e 1 .

    T h i s t a b l e i s c o mp i l e d b y u s in g t h e c o mp u te r p r o -

    g r a m d e s c r i b e d i n [ 8 ] . W i th t h e v a lu e f r o m th e t a b l e

    a n d g iv e n t h e in i ti a l o v e n t e mp e r a tu r e d e t e r min e d

    n o

    y e s

    I n p u t d a t a

    1 ) C o l u m n l i s t

    - c o l u m n ( s ) d i m e n s i o n s

    - s t a ti o n a r y p h a s e t y p e

    - c a r r i e r g a s

    - c o a t i n g e f f i c i e n c y

    2 ) C o m p o n e n t l i s t

    - e n t h a l p y / e n t r o p y - t e r m

    - m o l e c u l a r f o r m u l a

    R e a d c o l u m n d a t a

    Rea d m ea n l i n ea r v e lo c it y

    ( T a b l e I )

    S e l ec t s i m p l ex

    - p a r a m e t e r s

    - b o u n d a r i e s

    - r e a d s e t f i x e d v a l u e s

    rea t e s i m p l ex

    R e a d c o m p o n e n t d a t a

    a l cu l a t e t a ~

    I a l o u l a t e I

    ~ O p t i m u m

    , ~

    M o r e c o l u m n s

    [ S e l e c t b e s t c o l u m n [

    end

    n o

    F i g . 1 . O v e r a l l a l g o r i t h m o f t h e o p t i m i z a t i o n p r o c e d u r e .

    b y t h e v e r t e x d a t a ) , t h e c o r r e s p o n d in g c o lu mn d e a d

    t ime a n d r e q u i r e d i n l e t p r e s s u r e c a n b e c a l c u l a t e d

    u s in g t h e a p p r o a c h d e s c r i b e d i n p a r t I o f t h i s w o r k

    [ 1] . T h i s me a n s t h a t d u r in g t h e e x e c u t i o n o f th e

    o p t imiz a t i o n n o e x p e r ime n ta l d a t a h a v e t o b e a c -

  • 8/10/2019 Optimization of Temperature-programmed Gas Chromatographic

    4/9

    1 7 8 H. Snijders et al. / J. Chromatogr. A 756 1996) 175-18 3

    T a b l e 1

    E s t i m a t e d m e a n l i n e a r v e l o c i t i e s [8 ] a s a f u n c t io n o f c o l u m n

    d i a m e t e r a n d c a r r i e r g a s t y p e

    C o l u m n i n n e r d i a m e t e r ( ~ m ) M e a n l i n e a r v e l o c i t y ( c m s )

    C a r r i e r g a s t y p e

    H 2 H e N 2

    1 5 0 3 2 0 5 5 - 4 5 4 0 - 3 3 1 7 1 2

    3 2 1 - 5 5 0 4 5 - 2 8 3 3 - 2 5 1 2 - 7

    T h e v a l u e s f o r t h e m e a n l i n e a r v e l o c i t ie s a re r e t r i e v e d f r o m t h e

    t a b l e b y l i n e a r i n t e r p o l a t io n b e t w e e n t h e i n d i c a t e d c o l u m n d i a m e -

    t e r s .

    quired, which satisfies our goal of truly off-line

    optimization.

    An other important aspect to be addressed are the

    constraints which have to be put on the variables to

    be optimized. Often, those boundaries are dictated by

    the chromatographic equipment used. As an exam-

    ple, contemporary gas chromatographs have limited

    maximum programming rates. Moreover, the maxi-

    mum and minimum allowable operating temperatures

    of the separation column are limited. Also parameter

    values that would lead to highly undesirable results

    such as too low a programming rate or too low an

    initial oven temperature can be excluded from the

    factor space. By taking those limitations into ac-

    count, the factor space can thus be adapted to

    practical and/or experimental considerations. The

    simplex is held within the boundaries by assigning

    unfavourable (very high) CRF values to vertices

    which fall outside the factor space.

    The location of the initial simplex should be

    carefully chosen. The classical problem associated

    with Simplex optimizations is that the final optimum

    may not be the global optimum but a local optimum

    with a less desirable response (in this case a less

    desirable CRF value). For GC optimizations conver-

    gence to a local optimum can easily occur when e.g.

    peak orders change under temperature-programmed

    conditions. To locate the optimum which yields the

    shortest possible analysis time (while maintaining

    baseline resolution), the initial simplex is selected

    near the upper or lower boundaries of the factor

    space. In case of a three-factor optimization this

    could mean that the initial simplex is located close to

    the maximum allowable programming rate and initial

    temperature and close to the minimum allowable

    time for an isothermal plateau.

    Once the initial simplex is determined, the optimi-

    zation procedure proceeds as follows. Given the

    conditions specified by the factors of each vertex of

    the initial simplex, the retention times and peak

    widths for each component are calculated by using

    the numerical procedures. For this purpose the

    entropy and enthalpy term and the molecular formula

    for each component must be known. The calculated

    peak data are than used to calculate the CRF for each

    vertex. The optimization continues by rejecting the

    vertex with the least desirable response followed by

    determination of the next simplex, guided by the

    Modified Simplex algorithm (note that a high CRF

    value indicates a low response ). The process is

    ended when the step size of each factor to be

    optimized is less than a preselected maximum allow-

    able difference. This value is usually given by the

    accuracy of the instrumentation for each individual

    factor.

    The process described above is restarted when the

    optimal chromatogram should be predicted for

    another column, with a different phase ratio and/or

    length, until all column data are processed. Finally,

    comparison of the results yields the column ex-

    hibiting the lowest analysis time (indicated by the

    retention time of the last-eluting component) for the

    given separation problem. Here it should be realized

    that in practical situations the final selection of the

    column most suited for the separation problem under

    study can also be guided by additional practical

    considerations such as e.g. the oven cooling down

    time.

    3 Experimental

    3 1 Instrumentation

    GC was performed on an HP 5890 gas chromato-

    graph equipped with a split-splitless injector and a

    flame ionization detection (FID) system (Hewlett-

    Packard, Wilmington, DE, USA). The columns used

    in this study are indicated in Table 2. Columns A, B

    and D are coated with 100% methyl silicone, HP-1

    (Hewlett-Packard). Column C is coated with 100%

    methyl silicone, CP-Sil 5 CB (Chrompack, Middel-

  • 8/10/2019 Optimization of Temperature-programmed Gas Chromatographic

    5/9

    H. Snijders et al. / J. Chromatogr. A 756 1996) 1 75-183 179

    T a b l e 2

    D i m e n s i o n s o f t h e c o l u m n s u s e d i n t h is s t u d y

    S y m b o l L (m ) d (~ xm ) d ~ (~ m ) / 3

    A 2 5 3 2 0 0 .5 2 1 53

    B 2 5 3 2 0 0 .1 7 4 7 0

    C 2 5 2 5 0 0 .2 5 2 5 0

    D 2 5 2 0 0 0 .3 3 2 6 4

    L - c o l u m n l e n gt h ; d e = c o l u m n d i am e t e r; d , = s t at io n a r y p h a s e

    f i l m t h i ck n ess ; / 3 co l u m n p h ase ra t i o . A l l co l u m n s a re co a t ed

    w i t h 1 0 0 m e t h y l s i l i co n e .

    b u r g , T h e N e th e r l a n d s ) . I n j e c t i o n s w e r e p e r f o r me d i n

    the sp l i t mode ( sp l i t r a t io 1 :100) to min imize in-

    j e c t i o n b a n d b r o a d e n in g . T h e i n s t r u me n t w a s o p e r -

    a t e d i n t h e c o n s t a n t p r e s s u r e mo d e . I n e x p e r ime n ta l

    v e r i f i c a t i o n s o f p r e d i c t e d o p t ima l c h r o ma to g r a ms ,

    t h e o p t ima l c o lu mn d e a d t ime , r e p o r t e d a f t e r t h e

    o p t imiz a t i o n , w a s s e t o n t h e i n s t r u me n t b y a d ju s t i n g

    th e c a r r i e r g a s ( h e l i u m) p r e s s u r e t o t h e c o r r e s p o n d in g

    va lue v ia me thane in jec t ions . Both in jec tor and

    d e t e c to r t e mp e r a tu r e w e r e h e ld c o n s t a n t a t 3 0 0 C

    d u r in g t h e e x p e r ime n ta l w o r k . T h e d e t e c to r ma k e - u p

    g a s f l o w - r a t e ( n i t r o g e n ) w a s ma in t a in e d a t 3 0 ml

    r a in t . A n O m e g a d a t a s y s t e m ( P e r k in - E lme r , N o r -

    w a lk , C T , U S A ) w a s u s e d f o r d a t a a c q u i s i t i o n a n d

    p r o c e s s in g .

    3 . 2 . C a l c u l a t i o n s

    D u r in g t h e s imu la t i o n s n o c o r r e c t i o n f o r t h e

    c o lu mn c o a t i n g e f f i c i e n c y w a s a p p l i e d . F o r t h e

    c a l c u l a t i o n s i t w a s a s s u me d t h a t t h e c o lu mn o u t l e t

    pressure equa ls 100 kPa (abs . ) . The s tepwidth At was

    1 0 0 0 ms [ 1 ] . T h e ma x imu m a l l o w a b le d i f f e r e n c e f o r

    the f ac tor s i s I C for tem pera tu res and 0 .1 C ra in 1

    f o r t e mp e r a tu r e p r o g r a mmin g r a t e s . F o r C R F c a l c u -

    la t ions ,

    R~ ~ri~

    and tR,cr it are s e t to 1.5 and 20 ra in

    r e s p e c t i v e ly . A l l c o mp u ta t i o n s w e r e c a r r i e d o u t o n a

    4 8 6 - D X 2 / 6 6 M H z p e r s o n a l c o m p u t e r . S o f t w a r e w a s

    wr i t ten in Turbo Pasca l 6 .0 (Bor land , USA) . A

    c o mp le t e o p t imiz a t i o n f o r o n e c o lu mn t a k e s a b o u t 1 5

    ra in . Da ta en t ry i s a r ranged through f i led input .

    3 . 3 . T e s t m i x t u r e

    T o d e t e r min e t h e a p p l i c a b i l i t y o f th e o p t imiz a t i o n

    a p p r o a c h p r e s e n t e d a b o v e , a t e s t mix tu r e w a s c o r n -

    p i l e d , c o n t a in in g s i x t e e n c o mp o n e n t s o f d i f f e r e n t

    f u n c t i o n a l i t y , p - C h lo r o to lu e n e ,

    s e c . - b u t y l b e n z e n e

    d ip h e n y l e t h e r , a n th r a c e n e , p y r e n e a n d h e x a d e c e n e

    w e r e p u r c h a s e d f r o m J a n s s e n C h imic a ( G e e l , B e l -

    g iu m) . Me th y l e s t e r s o f my r i s t i c a c id , p a lmi t i c a c id

    a n d o l e i c a c id w e r e o b t a in e d f r o m P o ly s c i e n c e

    C o r p o r a t i o n ( I L , U S A ) . n - U n d e c a n e , n - u n d e c e n e , n -

    t r i d e c a n e a n d n - t e t r a d e c a n e w e r e p u r c h a s e d f r o m

    Me r c k ( D a r ms t a d t , G e r ma n y ) . 1 - C h lo r o t e t r a d e c a n e

    w a s o b t a i n ed f r o m H u m p h r e y W i l k in s o n ( C T , U S A )

    a n d n a p h th a l e n e a n d q u in o l i n e f r o m A ld r i c h ( B o r -

    nem, Be lg ium) . The pur i ty of a l l ana ly te s was a t

    leas t 98 . The so lven t used to prepa re the mixture

    w a s a n a ly t i c a l g r a d e n - h e x a n e ( Me r c k ) .

    T h e e n t r o p y a n d e n th a lp y t e r ms o f t h e t e st c o m-

    ponents were obta ined f rom Ref . [1] . For te s t

    c o mp o n e n t s f o r w h ic h n o d a t a w e r e a v a i l a b l e t h e

    e n t r o p y a n d e n th a lp y t e r ms w e r e e x p e r ime n ta l l y

    es tab l i shed .

    4 R e s u l t s a n d d i s c u s s i o n

    T o d e mo n s t r a t e t h e a p p l i c a b i l i t y o f t h e n o v e l

    o p t imiz a t i o n a p p r o a c h , o p t imiz a t i o n s o f t h e t e s t

    mix tu r e w e r e p e r f o r me d f o r a l l c o lu mn s . I d e a l l y , t h e

    o p t imu m lo c a t e d b y t h e S imp le x p r o c e d u r e s h o u ld b e

    th e g lo b a l o p t imu m. T o c h e c k w h e th e r t h e p r e d i c t e d

    o p t imu m e q u a l s t h e g lo b a l o p t imu m, d e t a i l e d k n o w l -

    e d g e o f th e r e s p o n s e s u r f a c e s h o u ld b e a v a i l a b l e . F o r

    a tw o - f a c to r o p t imiz a t i o n t h e r e s p o n s e s u r f a c e c a n b e

    graphica l ly r epresented by e .g . a contour p lo t . In F ig .

    2 . the ca lcu la ted re sponse sur faces for the sepa ra t ion

    o f t h e t e s t mix tu r e o n a l l c o lu mn s a r e p r e s e n t e d . T h e

    tw o f a c to r s p lo t t e d a r e th e i n i t ia l c o lu m n t e m p e r a tu r e

    a n d t h e o v e n p r o g r a m m i n g r a t e . T h e C R F v a l u e s

    w e r e c a l c u l a t e d o f f - l i n e b y u s in g t h e n u me r i c a l

    me th o d s . I n t h e c o n to u r p lo t s t h e i s o - r e s p o n s e ( i s o -

    C R F ) p o in t s a r e c o n n e c t e d b y l i n e s . F r o m th e f i g u r e

    i t can be seen tha t in a l l p lo ts seve ra l loca l op t ima

    c a n b e o b s e r v e d . T h i s o c c u r s e . g . w h e n p e a k o r d e r s

    c h a n g e d u r i n g t e m p e r a t u r e p r o g r a m m i n g . C l o s e l y

    lo c a t e d o p t ima a r e o b s e r v e d w h e n t h e g a in i n

    a n a ly s i s t ime b y s t a r t i n g t h e t e mp e r a tu r e p r o g r a m a t

    a h ighe r in i t ia l tempera ture i s pa r t ia l ly of f se t by a

    d e c r e a s e i n t h e p r o g r a mmin g r a t e . T h i s l e a d s t o o n ly

    min o r d i f f e r e n c e s i n t h e c h r o ma to g r a p h i c s e p a r a t i o n

  • 8/10/2019 Optimization of Temperature-programmed Gas Chromatographic

    6/9

    1 8 0

    H. Snijders et al. / J. Chromatogr. A 756 1996) 17 5-1 83

    C o l u m n C o l u m n B

    25

    o

    ' i 1 5

    lO

    5

    2 5

    o

    50 7 '5 150 125 150 5 50 75 100

    Ini t i a l empera ture C)

    15 150

    Ini t i a l empera ture C)

    C o l u m n C C o l u m n D

    25

    '~. 20

    i 15

    1o

    5 5 0 1 5 0

    7~5 100 125

    Ini t i a l empera ture C)

    ,=

    J

    5 o 7 5 t 6 0 l ~ 5

    In i t i a l empera ture C)

    t~o

    Fig. 2. Iso-response plots of the separation of the test mixture on all four the columns.Parameters included n the optimizationare the initial

    oven temperature and the programming rate. The optima found by the corresponding Simplex optimizationare indicated by the cross. The

    temperature programs located by the optimizationare for column A: 100C ~ 13.0C rain ~ --- 300C; column B: 108C ~ 10.3C min

    ---+ 300C; column C: 97C ~ 20.4C min ~ -4 300C; column D: 108C -- 13.7C min ~ --~ 300C.

    and/ or analysis time. The corresponding CRF values

    are nearly equal.

    In parallel, the corresponding two-factor Simplex

    optimization was performed for the test components

    for all columns. The parameters plotted in the

    contour plots were now optimized by using the novel

    optimization approach. No initial hold time was

    used. The final optima, located by the optimization,

    are indicated in the contour plots of Fig. 2 as well.

    From the figure it can be seen that the opti ma located

    in all cases equal the global optima.

    To verify the resemblance between predicted and

    experimental optimal chromatograms, the test mix-

    ture was analyzed under the conditions determined

    by the values of the optimum for each column. The

    results of these measu rement s are presented in Fig. 3.

    The figure clearly shows that for all columns the

    experimental and predicted chromatograms are very

    similar. In the chromatograms several critical peak

    pairs can be distinguished. The experimental data

    corresponding to the optimization on column C and

    D reveal partial peak overlap for the second critical

    peak pair. Due to the smaller inner diameter of these

    columns, compared to columns A and B, injection

    band broadening becomes more critical and is proba-

    bly responsible for the partial peak overlap observed.

  • 8/10/2019 Optimization of Temperature-programmed Gas Chromatographic

    7/9

    H. Snijders et al. / J. Chromatogr. A 756 1996) 175- 183

    1 8 1

    , 1

    0

    C o l u m n C o l u m n

    B

    I L I L J l 11

    ,~ t 2 (5 o.oo 230 5.bo 7.~o

    Time (rain) Time (min)

    I 1 1

    10 .00

    9 ( 2 ( 5 0 . 0 0 2 . 5 0

    Time (min)

    12150

    5 . 0 0 7 . 5 0 1 0 . 0 0 1 2 . 5 0

    Time (min)

    C o l u m n

    C

    C o l u m n

    D

    L I

    6 8 1 0 0 . 0 0 2 . 5 0

    Time (rain)

    2 4

    Time (rain)

    1 I 1

    5.bo 7.~o lOlOO 12150

    Time (rain)

    8 1 o o o o 2 ~ o 5 b o

    7.50 io lo o 12 .5o

    Time (rain)

    Fig. 3. Comparison of predicted (upp er trace) and experimental (lower trace) chromatograms for single-ramp temperature-programmed

    optimizations of the separation of the test mixture for all four the columns. Conditions see Fig. 2.

    T h e c h r o m a t o g r a p h i c d a t a f u r th e r i n d i c a t e th a t t h e

    c o l u m n m o s t s u i te d f o r s i n g l e - r a m p a n a l y s i s o f th e

    m i x t u r e w o u l d b e c o l u m n B . T h i s c o l u m n y i e l d s t h e

    s h o r t e s t a n a l y s i s t i m e w h i l e a l l c r i t i c a l p e a k p a i r s a r e

    b a s e l i n e s e p a r a t e d .

    O p t i m i z a t i o n o f t h e s e p a r a t io n o f t h e t e s t m i x t u r e

    w a s a l s o p e r f o r m e d f o r a t w o - s t e p m u l t i - r a m p t e m -

    p e r a t u re p r o g r a m . P a r a m e t e r s o p t i m i z e d n o w a r e t h e

    i n it ia l a nd m i d - p o i n t c o l u m n t e m p e r a t u r e a n d t h e

    c o r r e s p o n d i n g t w o p r o g r a m m i n g r a te s . I n t o t al f o u r

    p a r a m e t e r s a r e o p t i m i z e d s i m u l t a n e o u s l y . A g a i n , t h e

    p r e d i c t e d a n d e x p e r i m e n t a l c h r o m a t o g r a m s a r e p r e -

    s e n t e d i n F i g . 4 . F r o m t h e f i g u r e i t c a n b e c o n c l u d e d

    t h a t f o r a l l f o u r c o l u m n s t h e e x p e r i m e n t a l a n d

    p r e d i c t e d c h r o m a t o g r a m s a r e v e ry s i m i l a r . T h e e x -

    p e r i m e n t a l d a t a c o r r e s p o n d i n g t o t h e o p t i m i z a t i o n s

  • 8/10/2019 Optimization of Temperature-programmed Gas Chromatographic

    8/9

    1 8 2

    H . S n i d e r s e t a l . I J . C h r o m a t o g r . A 7 5 6 1 9 9 6 ) 1 7 5 ; - 1 8 3

    C o l u m n A C o l u m n B

    J l l i I I l l

    0 . 0 0 2 . 5 0 5 .0 0 7 .5 0 1 0 . 0 0 1 2 , 5 0 0 . 0 0

    T i m e m i n )

    0 . 0 0 2 . 3 0 5 . 0 0 7 . 5 0 1 0 : 0 0 1 2 : 5 0

    T i m e r a i n )

    C o l u m n C

    1 i i t J l I

    0 00

    1 . 5 0 3 . 0 0 4 . 5 0 6 . 0 0 7 . 5 0

    T i m e m i n )

    1 . 5 0 3 . 0 0 4 . 5 0 6 . 0 0 7 . 5 0

    T i m e r a i n )

    C o l u m n D

    I l l J i t l J l _

    4 6 8

    T i m e (rain)

    1 0 0 . 0 0

    t l l l J

    2 . 5 0 5 . 0 0 7 . 5 0 1 0 .0 0

    T i m e m i n )

    1 2 . 5 0

    8 i 0

    T i m e m i n )

    0 . 0 0 2 . 5 0 5 . 0 0 7 . 5 0

    T i m e r a i n )

    ]

    lo . oo 12 .5o

    F i g . 4 . Co m p a r i s o n o f p r e d i c te d (u p p e r t r a c e ) a n d e x p e r i m e n ta l ( l o we r t r a c e ) c h r o m a to g r a m s fo r m u l t i - r a m p te m p e r a tu r e -p r o g r a m m e d

    o p t i m i z a t i o n s o f th e s e p a r a t i o n o f th e t e s t m i x tu r e fo r a l l fo u r th e c o l u m n s . T h e t e m p e r a tu r e p r o g r a m s l o c a te d b y th e o p t i m i z a t i o n a r e fo r

    c o l u m n A: 1 0 5 C - -- ) 1 3 . 8C r a i n ~ - - -) 2 4 2 C ~ 2 3 . 6 C m i n ~ - -~ 3 0 0 C; c o l u m n B : 9 1 C ~ 2 4 . 8 C m i n ~ - -~ 2 4 5 C ~ 2 1 . 4 C r a i n ~ - -~

    3 0 0 C; c o l u m n C: 9 9 C ~ 1 9 .3 C r a in ~ - - ) 2 4 3 C ~ 1 9 .9 C m i n ~ ~ 3 0 0 C: c o l u m n D: 1 0 5 C - -~ [3 . 8 C m i n ~ - - -) 2 6 6 C - - -) 1 5 .0 C

    m i n ~ - -~ 3 0 0 C.

    o n c o l u m n A , C a n d D a g a i n r e v e a l p a r t ia l p e a k

    o v e r l a p f o r t h e s e c o n d c r i t i ca l p e a k p a i r. A g a i n ,

    a d d i t i o n a l p e a k b r o a d e n i n g d u e t o i n j e c t i o n i s t h e

    m o s t p r o b a b l e c a u s e f o r t h e s e o b s e r v a t i o n s . T h e d a t a

    f u r t h e r in d i c a t e t h a t f o r s e p a r a t i o n o f t h e t e s t m i x t u r e

    c o l u m n B s h o u l d b e u s e d u n d e r t h e m u l t i - r a m p

    t e m p e r a t u r e - p r o g r a m m e d c o n d i t i o n s i n d i c a t e d in F i g .

    4 .

    I t s h o u l d b e n o t e d t h a t , i n p r i n c i p a l , m o r e v a r i -

    a b l e s c o u l d b e a d d e d t o th e o p t i m i z a t i o n f o r f u r th e r

  • 8/10/2019 Optimization of Temperature-programmed Gas Chromatographic

    9/9