optical physical layer issues in wavelength-division

79
8/6/07 DIMACS talk, slide 1 © 2007 Alcatel-Lucent Optical Physical Layer Issues in Wavelength-Division Multiplexed Networks C. R. Doerr and G. Wilfong

Upload: others

Post on 02-Jan-2022

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 1 © 2007 Alcatel-Lucent

Optical Physical Layer Issues in Wavelength-Division Multiplexed Networks

C. R. Doerr and G. Wilfong

Page 2: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 2 © 2007 Alcatel-Lucent

Outline• WDM network basics• Passive WDM routing devices• Active WDM routing devices• Conventional WDM mesh nodes• Novel WDM mesh nodes• Electronic switching vs. optical switching• Conclusion

Page 3: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 3 © 2007 Alcatel-Lucent

WDM network basics

Page 4: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 4 © 2007 Alcatel-Lucent

Two main types of optical transport

TDM

Time

Frame

WDM

Frequency

Examples: SONET, SDH

There is also packet-based transport, such as Ethernet, but it is usually put into TDM frames.

195.5 THz195.6 THz195.4 THz

195.7 THz

Examples: DWDM, CWDM

Often called “ch. 9540”

Page 5: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 5 © 2007 Alcatel-Lucent

Basic optical networkOptical networks are traditionally based on transceivers

One transceiver traditionally talks to one other transceiver,i.e., transceivers connect in pairs.

Tx

Rx Tx

Rx

“XFP”(10-Gb/s small form-factor pluggable)

Page 6: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 6 © 2007 Alcatel-Lucent

All devices can still communicate if one transceiver fails or if one span is broken.The physical layout may not look much like a ring. For example, as long as two routes are on different sides of a road, they can be different parts of a ring.

Device

DeviceDevice

Rx

Ring

Page 7: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 7 © 2007 Alcatel-Lucent

Example SONET ring using Alcatel-Lucent’s DMX product

M1 always connects to M2

Two ring types1. UPSR (unidirectional path-switched ring)2. BLSR (bidirectional line-switched ring)

UPSR•Same copy of traffic sent in both directions•Rx chooses best signal•Control is simplest•Delays are unequal•Best for hubbing

M1 M2

BLSR•Send and receive on fiber pair•Preemptable traffic•Equal delays•More efficient•Best for distributed traffic

Page 8: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 8 © 2007 Alcatel-Lucent

Two main categories of protectionElectrical

Optical

Device

Device

Page 9: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 9 © 2007 Alcatel-Lucent

Very basic WDM components

Multiplexer (Mux) Demultiplexer (Dmux)

…Ch. 9520Ch. 9530

Ch. 9590

Ch. 9520Ch. 9530

Ch. 9590

Ch. 9520Ch. 9530

Ch. 9590

VOA

VOA

VOA

Variable optical attenuator

VOA multiplexer (Vmux)

Page 10: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 10 © 2007 Alcatel-Lucent

Ring with WDM point-to-point

WDM increases capacity on a fiber

Page 11: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 11 © 2007 Alcatel-Lucent

Recent proponent for WDM point-to-point

Image from Infinera

Original use of WDM was just point-to-point, with all switching done in the electronic domain. Now, one company claims that networks should go back to such an architecture, because of integration.

Page 12: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 12 © 2007 Alcatel-Lucent

Ring with WDM add-drop

Optical pass-through

Optical amplifier

Optical add-drop multiplexer (OADM)

Page 13: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 13 © 2007 Alcatel-Lucent

“East-west” separability requirement for WDM add-drop

SONET/SDH ring

The OADM must have the drop and add for each direction at each node on separate circuit packs

TxRx

RxTx

Tx Rx

RxTx

TxRx

RxTx

Circuit pack

If any one circuit pack is removed, all nodes can still communicate.

Pure TDM case WDM case with add-drop

SONET/SDH ring

TxRx

RxTx

Circuit packs

If any one circuit pack is removed, all nodes can still communicate.

Add Drop

Drop Add

West EastWest East

Page 14: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 14 © 2007 Alcatel-Lucent

Types of WDM drops

• Static OADM

• Fixed-port ROADM

• Port-selectable ROADM

• Full WSSLess

blocking

......

OXC

...

Also called “colorless” ROADM

WSS

Wavelength-selective switch

Page 15: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 15 © 2007 Alcatel-Lucent

Interconnecting rings

Electronic connection

If it is an optical connection, then it becomes…

Page 16: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 16 © 2007 Alcatel-Lucent

Optical mesh

Mesh provides greater flexibility and protection

Degree-4 node

Degree-3 node

Degree is the number of main line pairs connected to the node.Confusing point: sometimes the degree number includes local add-drop and sometimes it doesn’t.

Page 17: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 17 © 2007 Alcatel-Lucent

Passive WDM routing devices

Page 18: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 18 © 2007 Alcatel-Lucent

Mux/DmuxThin-film filter (TFF)

Arrayed waveguide grating (AWG)

For ≤ 8 chs

For > 8 chs

“Bulk” optics

“Integrated” optics

Page 19: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 19 © 2007 Alcatel-Lucent

Planar lightwave circuit (PLC)

A planar arrangement of waveguides on a substrate

Substrate

Cladding Waveguide

Waveguide core Normalized index contrast

core

claddingcore2core

2cladding

2core

2 nnn

nnn −

≈−

=∆

Page 20: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 20 © 2007 Alcatel-Lucent

Arrayed waveguide grating (AWG)

Page 21: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 21 © 2007 Alcatel-Lucent

AWG principle of operation

2θa2

∆L successive path-length increase

M. K. Smit, Electron. Lett., vol. 24, pp. 385-386, 1988.

Grating order1θ

( ) λθθ AaanLn ≈++∆ 2211fswg

Plane wave a1

Effective index of channel waveguides

Effective index of slab waveguides

Page 22: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 22 © 2007 Alcatel-Lucent

C. Dragone, Electron. Lett., p. 942, 1988.

A. Vellekoop and M. Smit, J. Lightwave Technol., p. 310, 1991.

M. Smit, Electron. Lett., p. 385, 1988.

C. Dragone, J. Opt. Soc. Am. A, p. 2081, 1990.

C. Dragone, IEEE Photon. Technol. Lett., p. 812, 1991.

H. Takahashi, et. al., Electron. Lett., p. 87, 1990.

AWG history

“PHASAR”

“Arrayed waveguide

grating (AWG)”

“Waveguide grating router

(WGR)”

Page 23: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 23 © 2007 Alcatel-Lucent

N x N AWG

Gives passive cyclic wavelength routing.Not used in today’s networks.

Page 24: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 24 © 2007 Alcatel-Lucent

InterleavingDivides channels into combs

Frequency

Frequency

Frequency

Odd chs.

Even chs.

Page 25: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 25 © 2007 Alcatel-Lucent C. Doerr et al. ” Integrated band demultiplexer using waveguide grating routers”, PTL, 15, 1088-1090, 2003

Banding

1525 1535 1545 1555 1565-40-35-30-25-20-15-10

-50

Tran

smis

sivi

ty(d

B)

Wavelength (nm)

M-skip-N

Divides channels into contiguous bands

Number of channels in band (usually on 100-GHz grid)

Number of dead channels between bands

Page 26: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 26 © 2007 Alcatel-Lucent

Active WDM routing devices

Page 27: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 27 © 2007 Alcatel-Lucent

Thermooptic phase shifter in silicaMetal (chrome, etc.)

Phase shifter

Switch or VOA

+V-

Page 28: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 28 © 2007 Alcatel-Lucent

Active WDM routing devices for deg-2 nodes

Page 29: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 29 © 2007 Alcatel-Lucent

OADM

……

VOAVOA

VOA

Manually jumpered

East-west separable

Page 30: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 30 © 2007 Alcatel-Lucent

First integrated ROADM

K. Okamoto, K. Takiguchi, and Y. Ohmori, Electron. Lett., pp. 723-724, 1995.

Silica

Page 31: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 31 © 2007 Alcatel-Lucent

8-channel ROADM with flat-top passbands via MZI-AWG

Page 32: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 32 © 2007 Alcatel-Lucent

ROADM design without waveguide crossings

In

Add and/or drop

Through

Mirror

Avoidance of waveguide crossings allows for lower loss and smaller size.

C. R. Doerr, et al., IEEE Photon. Technol. Lett., vol. 11, pp. 1437-1439, 1999.

For study of waveguide crossings see H. G. Bukkems, et. al., IEEE Photon. Technol. Lett., pp. 1420-1422, 1999.

Page 33: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 33 © 2007 Alcatel-Lucent

1550 1560 1570 1580 1590 1600 1610-50

-40

-30

-20

-10

Wavelength (nm)

Tran

smis

sivi

ty(d

B)

1550 1560 1570 1580 1590 1600 1610-50

-40

-30

-20

-10

Wavelength (nm)

Tran

smis

sivi

ty(d

B)

1550 1560 1570 1580 1590 1600 1610-50

-40

-30

-20

-10

Add/dropIn

Through

Mirror

64-ch ROADM

Wavelength (nm)

Tran

smis

sivi

ty(d

B)

In-through

In-through

Add-through

Activated only central 32 channels

MZI

C. R. Doerr, et. al., IEEE Photon. Technol. Lett., pp. 56-58, 2002.

Silica

Page 34: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 34 © 2007 Alcatel-Lucent

32-channel commercially available ROADM

All silica PLCFrom JDSU

Page 35: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 35 © 2007 Alcatel-Lucent

Port-selectable ROADM—cross-bar type

-100

-80

-60

-40

1.52x10-6 1.53x10-6 1.54x10-6 1.55x10-6

Wavelength

Trans

m iss

ionRa

tio

25 dB

Drop

-90

-70

-50

-30

1.5475x10-6 1.5500x10-6 1.5525x10-6 1.5550x10-6 1.5575x10-6 1.5600x10-6

Wavelength(m)

Tran s

miss

i onra t

io 33 dB

Through

Courtesy of R. Chen from Univ. of Maryland

Drop

Add Silica

37 × 4

Page 36: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 36 © 2007 Alcatel-Lucent

WESTAdd

EASTDrop

WESTDrop

EASTAdd

GEqPM

GEqPM

Band filter (4λ) Low-costband amp.

Add/Drop OXCDesirable for

tunable Tx/Rx

Optical switchesFor A/D config.

Gain equalizationand power monitoring

Die layout - 72x31mmM. Earnshaw, et. al., IPR 2004.

Port-selectable ROADM—post OXC type

Courtesy of M. Earnshaw from Lucent

Page 37: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 37 © 2007 Alcatel-Lucent

Active WDM routing devices for deg >2 nodes

Page 38: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 38 © 2007 Alcatel-Lucent

...

Shutter

“Blocker”

50/50 coupler

......

......

2 × 2 switch

“Directional” deg-4 nodes

Conventional

Broadcast-and-select (also called “blocker-

type”)

1 × K

......

Not E-W separable

Page 39: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 39 © 2007 Alcatel-Lucent Courtesy of J. Lam from Neophotonics

32-ch PLC blocker

Page 40: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 40 © 2007 Alcatel-Lucent

K. Okamoto et al., Electron. Lett., pp.723-724, 1995.

2 x 2 WSSSilica

Page 41: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 41 © 2007 Alcatel-Lucent

Another 2 x 2 WSS

1544 1546 1548 1550 1552 1554 1556-50

-40

-30

-20

-10

0 Line 1 to lines 1 and 2

Wavelength (nm)

1544 1546 1548 1550 1552 1554 1556-50

-40

-30

-20

-10

0Line 2 to lines 1 and 2

Wavelength (nm)

Fibe

r-to

-fibe

r tra

nsm

issi

vity

(dB)

Blue, red = TE; green, purple = TM

1544 1546 1548 1550 1552 1554 1556-50

-40

-30

-20

-10

0 Line 1 to lines 1 and 2

Wavelength (nm)

1544 1546 1548 1550 1552 1554 1556-50

-40

-30

-20

-10

0Line 2 to lines 1 and 2

Wavelength (nm)

Fibe

r-to

-fibe

r tra

nsm

issi

vity

(dB)

Blue, red = TE; green, purple = TM

Interleave-chirped AWG

Page 42: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 42 © 2007 Alcatel-Lucent

1×K WSSThere are two main types:

Transmission-type

Reflection-typeOnly one possible input port

Any port can be an input port

…K ports

K+1 ports

Example:

1x9 WSS

Example:

1x4 WSS

1×KWSS

1×KWSS

Page 43: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 43 © 2007 Alcatel-Lucent

WDM In

WDM Out 1

WDM Out 2

WDM Out 3

VOAs

Dmux

Muxes1x2 switches

M.P. Earnshaw, et al, IPR 2003, PD2

1 × 3 transmission-type WSS

Courtesy of M. Earnshaw from Alcatel-Lucent

Page 44: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 44 © 2007 Alcatel-Lucent

Thru IL < 5.5 dBThru xtalk < -45 dBThru PDL < 0.2 dB @ 0-dB att.

< 0.5 dB @ 12-dB att.Drop IL < 8 dBDrop xtalk < -40 dBDrop PDL < 0.3 dBAdd IL < 12.5 dBAdd PDL < 0.2 dB @ 0-dB att.

< 1.0 dB @ 10-dB att.

Performance:

•8 chs, 8 drop ports, 200-GHz sp.•Any combination of any channels can be sent to any port •All switching is hitless

1 × 2 switch

Shutter/VOA

In

Drop #5

ThruPower combinerShutter/VOA

Drop #6

Drop #7

Drop #8

Add Combined add

Drop #1

Drop #2

Drop #3

Drop #4

λ1

λ8…

……

……

……

……

……

……

……

C. R. Doerr, et. al., IEEE Photon. Technol. Lett., p. 138, 2003.

AWG

1 × 9 transmission-type WSS

Page 45: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 45 © 2007 Alcatel-Lucent

De-interleaver Interleaver

1530 1532 1534 1536 1538 1540 1542 1544 1546-30

-20

-10

0

Wavelength (nm)

Tran

smis

sivi

ty(d

B)

1530 1532 1534 1536 1538 1540 1542 1544 1546-30

-20

-10

0

Wavelength (nm)

Tran

smis

sivi

ty(d

B)

Wavelength (nm)

C. R. Doerr, et. al., OFC PD 2003.

Page 46: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 46 © 2007 Alcatel-Lucent

Measured in-to-thru

1530 1532 1534 1536 1538 1540 1542 1544 1546

-60

-40

-20

0

Wavelength (nm)

Tran

smis

sivi

ty(d

B)

1530 1532 1534 1536 1538 1540 1542 1544 1546

-60

-40

-20

0

Wavelength (nm)

Tran

smis

sivi

ty(d

B)

All chs. thru

Some chs. dropped

Worst-case loss < 4.75 dB

Isolation > 55 dB

Page 47: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 47 © 2007 Alcatel-Lucent

Measured in-to-drop

1530 1540-60

-40

-20

0

1530 1540-60

-40

-20

0

1530 1540-60

-40

-20

0

1530 1540-60

-40

-20

0

1530 1540-60

-40

-20

0Tran

smis

sivi

ty(d

B)

1530 1540-60

-40

-20

0

Wavelength (nm)1530 1540

-60

-40

-20

0

1530 1540-60

-40

-20

0

Worst-case loss < 7.5 dB

Page 48: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 48 © 2007 Alcatel-Lucent

Measured add-paths

1530 1532 1534 1536 1538 1540 1542 1544 1546-25

-20

-15

-10

Wavelength (nm)

Tran

smis

sivi

ty(d

B) Worst-case loss < 12.2 dB

0-dB attenuation

10-dB attenuation

Page 49: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 49 © 2007 Alcatel-Lucent

-60

-50

-40

-30

-20

-10

0

1581.5 1582 1582.5 1583 1583.5 1584

Wavelength [nm]

Tran

smis

sivi

ty [d

B]

Common reflection-type WSSs

DROP

ADD

IN PASS

Grating

Switch Array

Lens

λ/4 plate Input

Output

Wavelength-Selective 1×K SwitchesMarom D. M., et al., JLT 23 (2005) , pp. 1620-30.

Channel equalization and blocking filterNeilson D. T., et al., JSTQE 10 (2004) , pp. 563-569.

Wavelength Add-Drop SwitchingFord J. E., et al., JLT 17 (1999) , pp. 904-911.

• A diffraction grating and imaging system disperses the light onto the modulator array (MEMS, LC or other). • The interaction of the dispersed light and the modulation mechanism results in interference effects between channelsOh S.-H. and Marom D. M., Appl. Opt. 43 (2004) , pp. 127-131.

MEMSmirrors

Interference spikebetween WDM channels due to rotation direction

Ch Ch Ch Ch Ch Ch

Page 50: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 50 © 2007 Alcatel-Lucent

Hybrid PLC reflection-type WSS

Port 1

Input

Port 2 Cylindricalcollimators

PLC 1 and PLC 2

Fourierlens

MEMSmicro-mirrorarray

PLC stack 1×2 WSSMarom D. M., et al., Optical MEMS 2004.

1×3 WSS with Integrated DEMUXMarom D. M., et al., ECOC 2005.

Page 51: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 51 © 2007 Alcatel-Lucent

Conventional WDM mesh nodes

Page 52: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 52 © 2007 Alcatel-Lucent

……

B

A

C

Local drop Local add

1 × 3 WSS

1 ×

3 W

SS

1 ×3 W

SS

Deg-3 mesh node with local add-drop

Power splitterSwitching must be “hitless”

Page 53: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 53 © 2007 Alcatel-Lucent

B

C

D

A……

Local drop Local add

1 × 4 WSS…

1 ×

4 W

SS

… …

1 ×4 WSS

……

1 ×4 W

SS

Deg-4 mesh node with local add-drop

Page 54: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 54 © 2007 Alcatel-Lucent

BA

C D

1 × 2 WSS 1 × 2 WSS1 ×2 WSS1 ×2 WSS

Directional deg-4 mesh node

Page 55: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 55 © 2007 Alcatel-Lucent

Novel WDM mesh nodes

Page 56: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 56 © 2007 Alcatel-Lucent

Symmetric demands

J. Simmons, et. al., IEEE Photon. Technol. Lett., vol. 10, pp. 819-821, 1998.

Tx Rx

Tx Rx

In optical networks, transceivers are almost always connected in pairs. Thus all demands are symmetric.

Traffic amount may not be symmetric, but the connections are

Page 57: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 57 © 2007 Alcatel-Lucent

Conventional design allows asymmetric demands

B

A

C

D

1 × 3 WSS

1 ×

3 W

SS

1 ×3 WSS

1 ×3 W

SS

Too much functionalityToo complex

Page 58: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 58 © 2007 Alcatel-Lucent

Reflection-type WSS

Example 1×3 WSS

Multiplexer/demultiplexer

Steering mirror (one for each wavelength channel)

Page 59: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 59 © 2007 Alcatel-Lucent

Multi terminal pair connection property of reflection-type WSSs

Common 1 2 3

Represent mirror position by a “dot” notationAll terminals symmetric about the dot are connected

Port p is connected to port q for mirror position m, when m – p = q - m

•C. R. Doerr, Optical Fiber Comm. Conf., paper PDP40, 2006.•C. R. Doerr, G. Wilfong, S. Chandrasekhar, JSTQE, p. 627, 2006.

Page 60: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 60 © 2007 Alcatel-Lucent

……

B

A

C

Local drop Local add

1 × 3 WSS

1 ×

3 W

SS

1 ×3 W

SS

Conventional deg-3 mesh node with local add-drop

Page 61: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 61 © 2007 Alcatel-Lucent

Novel deg-3 mesh node

……

B

A

C

Local drop Local add

1 × 3 WSS

……

Optical circulator

Reduced the number of WSSsfrom 3 to 1

Page 62: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 62 © 2007 Alcatel-Lucent

Conventional deg-4 mesh node without local add-drop

B

A

C

D

1 × 3 WSS

1 ×

3 W

SS

1 ×3 WSS

1 ×3 W

SS

Page 63: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 63 © 2007 Alcatel-Lucent

Novel deg-4 mesh node without local add-drop

B

A

C

D1 × 6 WSS

0.620.38

0.380.62

Page 64: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 64 © 2007 Alcatel-Lucent

A-B, C-D

B

A

C

D1 × 6 WSS

Page 65: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 65 © 2007 Alcatel-Lucent

A-C, B-D

B

A

C

D1 × 6 WSS

Page 66: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 66 © 2007 Alcatel-Lucent

A-D, B-C

B

A

C

D1 × 6 WSS

Page 67: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 67 © 2007 Alcatel-Lucent

Pros and cons of single-WSS design

Pros Cons•Only 1 WSS required instead of 4

•No channel power balancing function

•Demands must be symmetric (but can multicast)

•Single point of failure (but see next slide)

Page 68: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 68 © 2007 Alcatel-Lucent

Can use as building block

Solves the single point of failure issue

Example deg.-5 node with diversity for source/sink

Tx Rx Tx Rx

Device

Deg.-4 node

Page 69: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 69 © 2007 Alcatel-Lucent

Config. used in the experiment

Could not use the minimum configuration because of this gap

0.5

Commercial1 × 9 WSS

0 1 2 3 6 7 8 9

B

C A

D

0.5 0.50.5

4 5

Commanded:First 14 chs A-B, C-DSecond 14 chs A-D, B-CThird 14 chs A-C, B-D(no software change required)

Page 70: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 70 © 2007 Alcatel-Lucent

Experimental results

1530 1540 1550 1560-40

-20

0

Wavelength (nm)

Tran

smis

sivi

ty (d

B)

AB1530 1540 1550 1560

-40

-20

0

Wavelength (nm)

Tran

smis

sivi

ty (d

B)

CD

1530 1540 1550 1560-40

-20

0

Wavelength (nm)

Tran

smis

sivi

ty (d

B)

AC

1530 1540 1550 1560-40

-20

0

Wavelength (nm)

Tran

smis

sivi

ty (d

B)

AD1530 1540 1550 1560

-40

-20

0

Wavelength (nm)

Tran

smis

sivi

ty (d

B)

BC

1530 1540 1550 1560-40

-20

0

Wavelength (nm)

Tran

smis

sivi

ty (d

B)

BD

Works!Circulators not included

Page 71: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 71 © 2007 Alcatel-Lucent

Back-reflection check

1530 1540 1550 1560-50

-40

-30

-20

-10

0

Wavelength (nm)

Tran

smis

sivi

ty (d

B)

AA

1530 1540 1550 1560-50

-40

-30

-20

-10

0

Wavelength (nm)

Tran

smis

sivi

ty (d

B)

BB

1530 1540 1550 1560-50

-40

-30

-20

-10

0

Wavelength (nm)

Tran

smis

sivi

ty (d

B)

CC

1530 1540 1550 1560-50

-40

-30

-20

-10

0

Wavelength (nm)

Tran

smis

sivi

ty (d

B)

DD

All ports have > 45 dB return loss

Page 72: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 72 © 2007 Alcatel-Lucent

B

C

D

… …

1 × 6 WSS

A

……Local drop

Local add

ROABM

Novel deg-4 mesh node with local add-drop

Page 73: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 73 © 2007 Alcatel-Lucent

BA

C D

1 × 4 WSS

Novel directional deg-4 mesh node

Page 74: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 74 © 2007 Alcatel-Lucent

Novel deg-5 mesh node

1 × 3 WSS

… A

Local drop

Local add

B

C

D

E

Can use a single WSS only up to deg 4 because a single WSS has only one adjustable mirror.

Page 75: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 75 © 2007 Alcatel-Lucent

Electronic switching vs. optical switching

Page 76: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 76 © 2007 Alcatel-Lucent

Electrical vs. optical switching

Optical switchingCost high but independent of bit rateCannot access TDM channelsFormat and rate transparent

Electrical switchingCost low but increases with bit rateCan access TDM channelsFormat and rate dependent

Page 77: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 77 © 2007 Alcatel-Lucent

Conclusion

Page 78: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 78 © 2007 Alcatel-Lucent

Conclusion• Gave overview of TDM and WDM networks• Presented novel optical mesh node design that

reduces the required number of components• Advantages of new design

– Much less expensive– Much more compact

• Disadvantages of new design– Demands must be symmetric

• but can do multicasting if use LCOS-type WSS– Cannot do individual channel power control

• but WSS gets less costly if do not need individ. ch. pwr control– Single point of failure

• but can get diversity if use multiple elements

Page 79: Optical Physical Layer Issues in Wavelength-Division

8/6/07 DIMACS talk, slide 79 © 2007 Alcatel-Lucent

Future• Degree number will increase in the

future• Conventional design requires many

components and fiber connections• Protection needs to be considered more

carefully• Must decide where best to do electronic

switching and where best to do optical switching