oliver orasch christof gattringer mario giuliani

20
Low T condensation and scattering data Oliver Orasch Christof Gattringer Mario Giuliani Lattice 2018, East Lansing, July 24 th C. Gattringer, M. Giuliani, O. Orasch, PRL 120, 241601 (2018)

Upload: others

Post on 30-Nov-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Oliver Orasch Christof Gattringer Mario Giuliani

Low T condensation and scattering data

Oliver Orasch Christof Gattringer Mario Giuliani

Lattice 2018, East Lansing, July 24th

C. Gattringer, M. Giuliani, O. Orasch, PRL 120, 241601 (2018)

Page 2: Oliver Orasch Christof Gattringer Mario Giuliani

Motivation: Particle Number vs. µ

I Typical scenario at low T (fixed) and finite V (= Ld−1):

0.95 1 1.05 1.1µ

0

0,5

1

1,5

2

N

L = 2L = 4L = 10

I Nature of condensation steps?I Condensation thresholds µi

c ⇔ low energy parameters2

Page 3: Oliver Orasch Christof Gattringer Mario Giuliani

Our approach

I We study the low temperature regime of a QFT at finite density

I For small spatial lattices particle sectors are separated by finite energysteps ⇒ particle condensation

I Critical chemical potentials µic of these transitions are related to the

minimal N-particle energies WN

I At finite volume scattering information is encoded in WN

I We measure the µic with worldline simulations and extract low energy

scattering parameters

3

Page 4: Oliver Orasch Christof Gattringer Mario Giuliani

The framework

I Model: complex scalar field with φ4 interaction in 2D and 4D

S =∑n∈Λ

((2d + m2

0)|φn|2 + λ|φn|4 −

d∑ν=1

[eµδν,dφ∗nφn+ν + e−µδν,dφ∗nφn−ν

])

I Sign problem ⇒ MC not possible in conventional representation

I Worldline representation withreal and positive weights solvessign problem

4C. Gattringer, T. Kloiber, Nucl.Phys. B869, 56 (2013)

space

time

Page 5: Oliver Orasch Christof Gattringer Mario Giuliani

Measuring the condensation thresholds (2D case)Fit the steps to a logistic function ⇒ µi

c is inflection point

N(µ) = (i − 1) +[1 + e−k(µ−µi

c )]−1

0,24 0,25 0,26 0,27 0,28µ

0

0,2

0,4

0,6

0,8

1

N

Simulation data

Fit: k = 398(23), µc

1 = 0.2602(12)

5

Page 6: Oliver Orasch Christof Gattringer Mario Giuliani

Interpretation of the condensation steps

I Condensation thresholds are related to the minimal N-particle energies:Bruckmann et al., PRL 115, 231601 (2015)

W1 = µ1c ≡ m

W2 = µ1c + µ2

c

W3 = µ1c + µ2

c + µ3c

...

I WN depend on low energy parameters (LEP)

I Describe condensation thresholds in terms of LEP

6

Page 7: Oliver Orasch Christof Gattringer Mario Giuliani

Important cross-check with conventional spectroscopy

I Compute N-particle energies with connected 2N-point functions:

⟨(φt)N(φ∗0)N

⟩c∝ e−tEN

with E1 = m, E2 = W2, E3 = W3, . . .

⇒ fields are projected to zero momentum

I µ is absent ⇒ MC in conventional representation

I Extract the N-particle energies from the exponential decay of correlators

7

Page 8: Oliver Orasch Christof Gattringer Mario Giuliani

Spectroscopy versus WL simulations (2D case)

2 4 6 8 10 12 14 16

L

0.5

1.0

1.5

2.0

spectroscopy

condensation

m

W2

W3

⇒ Interpretation of condensation steps as m, W2, W3 confirmed!

8

Page 9: Oliver Orasch Christof Gattringer Mario Giuliani

L-dependence of N-particle energies (4D case)

m = m∞ + AL 3

2e−Lm∞

Rummukainen & Gottlieb 1995

W2 = 2m + 4πamL3

[1− a

LIπ

+(

aL

)2 I 2−Jπ2 +O

(aL

)3]

Huang & Yang 1957, Luscher 1986

W3 = 3m + 12πamL3

[1− a

LIπ

+(

aL

)2 I 2 +Jπ2 +O

(aL

)3]

Beane et al. 2007, Hansen & Sharpe 2014, 15, 16, Sharpe 2017

I Infinite-volume mass m∞I Scattering length a

[δ(k) = −ak +O(k2)

]I Numerical constants I = −8.914 and J = 16.532

9

Page 10: Oliver Orasch Christof Gattringer Mario Giuliani

Results for 4D

3 4 5 6 7 8 9 10N

s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

spectroscopy

condensation

fit

prediction for W3

m

W2

W3

I m∞ = 0.168(1) and a = −0.078(7)I Good ”prediction” of W3 except for very small L (≡ Ns)

10C. Gattringer, M. Giuliani, O. Orasch, PRL 120, 241601 (2018)

Page 11: Oliver Orasch Christof Gattringer Mario Giuliani

Scattering data in 2D

In 2D the full scattering phase shift can be determined from the periodicboundary condition: M. Luscher, U. Wolff, Nucl. Phys. B 339, 222 (1990)

e2iδ(k) = e−ikL

For short-range interaction:

W2 = 2√

m2 + k2 ⇒ δ(k) = −L2

√√√√(W22

)2

−m2

From 4D: Up to leading order W3 should be described by δ(k)

W3 =√

m2 + (k1 + k2)2 +√

m2 + k21 +

√m2 + k2

2

11

Page 12: Oliver Orasch Christof Gattringer Mario Giuliani

Scattering data in 2D

In 2D the full scattering phase shift can be determined from the periodicboundary condition: M. Luscher, U. Wolff, Nucl. Phys. B 339, 222 (1990)

e2iδ(k) = e−ikL

For short-range interaction:

W2 = 2√

m2 + k2 ⇒ δ(k) = −L2

√√√√(W22

)2

−m2

From 4D: Up to leading order W3 should be described by δ(k)

W3 =√

m2 + (k1 + k2)2 +√

m2 + k21 +

√m2 + k2

2

11

Page 13: Oliver Orasch Christof Gattringer Mario Giuliani

Results for 2D

0.1 0.15 0.2 0.25 0.3 0.35k

-1.0

-0.8

-0.6

-0.4

δ(k)

spectroscopy

condensation

I Very good agreement of spectroscopy and worldline results

12

Page 14: Oliver Orasch Christof Gattringer Mario Giuliani

Results for 2D

2 4 6 8 10 12 14 16

L

1

1,2

1,4

1,6

1,8

2

W3

condensationprediction with δ(k) from W

2

I Good prediction of W3 with δ(k) from W2

I Condensation steps are determined by scattering phase shift δ(k)

13

Page 15: Oliver Orasch Christof Gattringer Mario Giuliani

Summary

I Low temperature study of the φ4 model at finite density

I Sign problem is evaded by using a worldline representation

I For low T particle sectors are separated by finite energy steps⇒ critical chemical potential/condensation thresholds µi

c

I The N-particle energy is the sum of the µic , i = 1, . . . ,N

I Cross-check of condensation steps with spectroscopy calculations

I Scattering parameters can be extracted from WN

I 4D: scattering length aI 2D: full scattering phase shift δ(k)

I Condensation thresholds are determined by scattering data

14

Page 16: Oliver Orasch Christof Gattringer Mario Giuliani

Thank you for listening!

15

Page 17: Oliver Orasch Christof Gattringer Mario Giuliani

Backup slides

16

Page 18: Oliver Orasch Christof Gattringer Mario Giuliani

Simulation parameters

I Parameters for 4D simulations:

I η = 2d + m20 = 7.44, λ = 1.0, NT = 320, 640, Ns = 3, 4, . . . , 10

I Parameters for 2D simulations:

I η = 2d + m20 = 2.6, λ = 1.0, NT = 400, Ns = 2, 4, . . . , 16

17

Page 19: Oliver Orasch Christof Gattringer Mario Giuliani

Worldline representation for the charged scalar φ4 field

I In the worldline approach the grand canonical partition sum is exactlyrewritten in terms of dual link variables kn,ν ∈ Z

Z =∑k

eµβWt [k] B[k] C [k]

I Wt [k] = temporal winding number of the worldlines

I Real and positive weights B[k]

I Constraints C [k] =∏nδ(~∇ · ~kn)

⇒ ~∇ · ~kn =∑ν

(kn,ν − kn−ν,ν) = 0 ∀n

18C. Gattringer, T. Kloiber, Nucl.Phys. B869, 56 (2013)

Page 20: Oliver Orasch Christof Gattringer Mario Giuliani

Interpretation of the condensation steps

Grand canonical partition sum

Z = tre−β(H−µQ) = e−βΩ(µ)

Low T : Z will be governed by the minimal grand potential Ω(µ) in eachparticle sector

Ω(µ) T→0−→

ΩN=0

min = 0, µ ∈ [0, µ1c)

ΩN=1min = W (1) − 1µ, µ ∈ (µ1

c , µ2c)

ΩN=2min = W (2) − 2µ, µ ∈ (µ2

c , µ3c)

. . . ,

with renormalized mass W (1) ≡ m, minimal 2-particle energy W (2), . . .

19Bruckmann et al., PRL 115, 231601 (2015)