of~~n david w. taylor naval ship research and development ... · jv ship speed advance coefficient,...

156
OF~~n ~ DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER ~ Bethesda, Md. 20DS4 A LIFTING LINE COMPUTER PROGRAM FOR PRELIMINARY DESIGN OF PROPELLERS by A:) E.B. Caster J.A. Diskin T.A. LaFone OCT 14 ' L C- jL -'3 .uI Approved for Public Release; Distribution Unlimited SHIP PERFORMANCE DEPARTMENTAL REPORT NOVIE"MBER 1975 REPORT NO. SPD-595-01

Upload: trinhdan

Post on 26-Jun-2018

226 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

OF~~n ~

DAVID W. TAYLOR NAVAL SHIPRESEARCH AND DEVELOPMENT CENTER ~

Bethesda, Md. 20DS4

A LIFTING LINE COMPUTER PROGRAM

FOR PRELIMINARY DESIGN OF PROPELLERS

by

A:) E.B. Caster

J.A. Diskin

T.A. LaFone

OCT 14 '

L C- jL -'3 .uI

Approved for Public Release;

Distribution Unlimited

SHIP PERFORMANCE DEPARTMENTAL REPORT

NOVIE"MBER 1975 REPORT NO. SPD-595-01

Page 2: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

DISCLIMER NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

Page 3: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

OTNSRDC

COMMANDER 00

TECHNICAL DIRECTOR01

OFFICERIN.CHARGE OFFICER-IN.CHARGECARDEROCK - ANNAPOLIS 04

SYSTEMSDEVELOPMENTDEPARTMENT

[ SHIP PERFORMANCE AVIATION ANDDEPARTMENT SURFACE EFFECTS

15 DEPARTMENT 16 )

STRUCTURES COMPUTATIONDEPARTMENT AND MATHEMATICS

17 DEPARTMENT 18

SHIP ACOUSTICS PROPULSION AND

DEPARTMENT AUXILIARY SYSTEMS19 DEPARTMENT 27

MATERIALS CENTRAL

DEPARTMENT INSTRUMENTATION28 DEPARTMENT 29

Page 4: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

UNCLASS IFIEDlSECURITY CLASSIFICATION OF THIS PAOIE (Whom a t. Z£DIIRADINTRCTON

REPORT DOCUMENTAT ION PAGE BFRE COMTPLETINORM

IRIPOR~tfL. R- 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMNER

£ TYPE OF RE PORT &.XIQQ COVERED

'k- ~ Lifting Line Co, utr Program for Dprmna ia~.~jPreliminary Design of Propellers.DpretaFil

-S. PERFORMING ORGc. RtE*dT9V r

SPD-595-017 t% ZOftfS. CONTRACT OR GRAIST NUMBER(*)

X117TIN AE AND ADDRESS 10. PROGRAMd ELEMENT. PROJECT. TASKARIEA & XORK U NIT NUMUIERS

David W. Taylor Naval Ship Research and Tak k 1 5942Development Center Work Unit N~o, 1524-462

Bethesda, Maryland 20084 1500-nolIs CONTROLLING OFFIC:E NAME ANO0 ADDRESS TREBI.Q

Naval Sea Systems Commy~and (S034) /Novembe.-1915-Washington, D.C. 20362 13. NUMBER OF PAGES:.

14314 uDNITORING AGENCY NAME & AODRESS(If different from Controlling Office) IS. SECURITY CLASS7(1 A.Mf(f.

Unclassified

ISa. OECLASSIFICATIONd DOWNGRAOINGSCHEDULE

16 DISTRIBUTION STATEMENT (of this Reporl)

Approved for Public Release; Distribution Unlimited

17 DIST RIBUTION STATEMENT (of the abstract entered In Block 20, It different fromi Report)

IS SUPPLEMENTARY NOTES

19, KEY wORDS (Continue on reverse olde It necessary and Identity by block number)

PropellerLifting LineStress\Design

20. A ftz_ g 4T (Continue on reverse aide It necessary and Identity by block number)

1-his report presents a computer program that can be used for the.preliminary design and to predict t~e performance of single screwpropellers when designed for a presc~'bed hydrodynamic pitch dis-tribution. This design peogram is based on lifting line theory asdeveloped by Lerbs for moderately-loaded fini.te-bladed propellers.Stress calculations using beam theory are also mnade for each design,which take into account the effect of blade skew and rake.Desig4~~c C 9

DD I JAN 7 1473 EDITION OF I NOV 65 IS OIISOLETZ UNCLASSIFIEDSIN 0 102.014- 6601 1 SECUKITY CLASSIFICATION OF THIS PAGE ("oen Date Xnteiedf

v-f o,

Page 5: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

UNCLASSIFIEDL AS$% IC1 ION 0 "S AG E" Do'* Eted

Kcalculations can be made for given design speeds where delivered shaftpower is computed (Thrust Option), or for the case when the deliveredshaft power is specified and the corresponding speed is computed (PowerOption). A FORTRAN listing of the yrogram, developed to run on thecomputers at the David W. Taylor Naval Ship Research and DevejopmentCenter (DTNSRDC), is presented as well as input and output obtainedfor two sample designs, one using zhe Thrust Option, and the other thePower Option,

41)

Nw

ii UNCLASSIFIEDSECURITY CLASSIFICATION OF THIS PAGE(Whton Dec& Eri.,.d)

Page 6: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

TABLE OF CONTENTS

Page

ABSTRACT ....... . . ................. 1

ADMINISTRATIVE INFORMATION ...... ................ 2

INTRODUCTION ........ ....................... 2

PROPELLER LIFTING LINE THEORY . . . . . . ....... 5

DESCRIPTION OF INPUT DATA . . . . . . . . . ...... 6

EFFECTIVE POWER, SPEED, AND SHAFT POWER ... ....... 7

NONDIMENSIONAL RADIAL DISTANCE. . . ......... 8

PROPELLER WAKE ........... . . ......... 8

ADVANCE ANGLE DISTRIBUTION iNPUT OPTION .... ..... 9

HYDRODYNAMIC FLOW ANGLE ................... .10

STATIC HEAD . . . . . ............... 11

BLADE OUTLINE AND EXPANDED AREA RATIO ....... 11

BLADE THICKNESS TO CHORD RATIO .... ............ 12

RAKE AND SKEW ...... .................... .13

SECTION DRAG COEFFICIENT ................ 14

FINAL PITCH INPUT OPTION. . . . . .......... 14

DESIGN AND PROPULSIVE PERFORMANCE PARAMETERS CALCULATED . 15

PROPELLER STRESS CALCULATIONS USING BEAM THEORY . . .19

PARAMETERS FOR MAKING BLADE SURFACE CAVITATION

CHECKS. . . . . . . . . . . . . . . . . . . . . . . . 20

CHORD LENGTHS FOR PITCH AND CAMBER CALCULATIONS . . .23

SPACING BETWEEN BLADES AND FILLETS. ......... 24

ill

Page 7: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

Page

PROPELLER DESIGN THRUST AND POWER OPTIONS ........... .. 24

COMPUTER PROGRAM AND SAMPLE DESIGN CALCULATIONS ........ 26

APPENDIX A - PROPELLEk WEIGHT, MASS POLAR MOMENTS OF

INERTIA, AND CENTER OF GRAVITY ......... ... 33

APPENDIX B - AMERICAN BUREAU OF SHIPPING (ABS)

COEFFICIENTS AND THICKNESS REQUIREMENTS . . . 37

APPENDIX C - DESCRIPTION OF INPUT AND OUTPUT ...... 40

APPENDIX D - SAMPLE DESIGN USING THE THRUST OPTION . . 50

APPENDIX E - SAMPLE DESIGN USING THE POWER OPTION . . . 73

APPENDIX F - FORTRAN LISTING OF'COMPUTER PROGRAM ...... 108

F(EFERENCES ........ ........................ .141

IV

Page 8: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

I

LIST OF FIGURES

Page

Figure 1 - Typical Velocity Diagram for a PropellerBlade Section at Radius r ... .......... 27

Figure 2 - Diagrams Showing Recommended ReferenceLines and Terminology .... ............ 28

Figure 2a- View of Unrolled Cylindrical Sections atBlade Root and at Any Radius of a Right-HandedPropeller (Looking Down) Showing RecommendedLocation of Propeller Plane ... ......... 28

Figure 2b- Diagram Showing Recommended Reference Lines(Looking to Port) ............... .... 29

Figure 2c- Diagram Showing Recommended Reference Lines(Looking Forward) ..... .............. 30

Figure 2d- Input for Detailed Hub Option .......... 31

LIST OF TABLES

Page

Table 1 - Conversion Factors Between English and SIUnits for Input and Output Parameters . . . . 32

V

Page 9: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

NOTATION

AE Expanded blade area, Z h c dr

AE/A0 Propeller expanded area ratio, (2Z/n)f (c/D) dxXh

(A /A Keller's minimum expanded area ratio for elininating backAEAo k bubble cavitation, (2.6+O.6Z)KT/(oO.7[J2+(O.7.n)2J}+K

A0 Disc area, wD2/4

Ap PEstimated propeller projected area,[1.067-0.229 (P/D)i]AE

a(x) Area of section, 2c(x)t(x)fIt(x,x )dx

B(x) Distance of CG from hub face,y cos + x sin(o-e S) x R tan(0-eR) x+DH/

2

(c/R)LE,(c/R)TE Chord lengths measured from leading edge and trailing edgeof blade to propeller reference line

CD Section drag coefficient

CFO Frictional resistance of seLtion

rG Center of gravity

CL Blade section lift coefficient

C P Power loading coefficient, PD/AP/2)xR2VA IC PS Power loading coefficient based on ship speed,

P /[(p/2)iR 2V 31; calculated fxh(1 +c/tan )

(dCpsi/dx) dx

CTh Thrust loading coefficient, T/[(p/2)R 2VA ]

C TS Thrust loading coefficient based on ship speed,T/[(p/2)nR2V2]; calculated f (l - ctanB I)

(dCTsi/dx) dx h

CThP Power loading coefficient, f4 (I W (I - tans)

(dCTSi/dx) dx Xh x

c Propeller blade chord length, c(x)

vi

Page 10: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

ICpsi Inviscid power loading coefficient,

(4Z/ s)xG(l-Wx)+UT/2V]

C Inviscid thrust loadina coefficient,CTSi 4ZG[(x/As)-UA/2V]

Propeller diameter

b Hub diameter

F(O') Parameter for calculating the fluctuatingangles of attack, I/[l+21tan(Bi-B)/CL]

f M Camber

g Acceleration due to gravity

G(r) Nondimensional circulation about a blade

section r/(2TrRV)

GF Spacing between fillets

Gz Spacing between blades at the hub

H Static head at propeller shaft centerline

IxoIyo Moment of inertia of blade section aboutx and y axes

J Advance coefficient, V(l-wT)/(nD)=VA/(nD)

JV Ship speed advance coefficient, V/(nD)

K Kellers' constant for predicting minimumblade area of propeller (see p. 22)

2 sTorque coefficient, Q/(n

2D

24h

KT T,,rust coefficient, T/(pn D )

LI Propeller lift distribution per unit spanfor finite element stress calculations

M P Moment of blades, see page 34

vii

Page 11: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

MTbMQb Moment due to thrust and torque

Mxo' o Moment parallel and perpendicular tothe nose - tail line

n Propeller revolution per unit time

(P/D)i Estimated propeller pitch ratio at 0.7radius, 0.7tan8I in program

PD Delivered power at propeller, 2rQn

P E Effective power

PS Shaft power

Q Propeller torque

R Propeller tip radius

rpm Propeller revolutions per minute

r Propeller local radius

rh Propeller hub radius

r Local position along the section chord

T Propeller thrust

t Propeller blade maximum thickness t(x),thrust deduction fraction

t(x,x ) Chordwise distribution of section thick-ness (NACA 66 modified thickness form isused)

U A/2V Axial induced velocity at lifting line

UT/2V Tangential induced velocity at liftinq line

V Ship speed

VA Speed of advance of the propeller, V(l-wT)

viii

Page 12: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

IV Local velocity along the x axis at any field

point

Vr Inflow velocity at each propeller section,V,/(I -wx )+UA/2VJ4 +LX/s-UT/2VJ '

Wa /V Axial velocity from sources other than the

propeller wake (l-wx)

WB Weight of blades

WH Weight of hub

Wp Propeller weight

wc Circumferential mean wake fraction at eachradius calculated from wake survey

wt/ V Tangential velocity from sources other thanthe propeller wake (l-w x)

WT Propeller effective wake fraction as determinedfrom thrust identity from self propulsionexperiment

wv Volume mean wake fraction

wX Propeller wake fraction, l-[(l-wT)/(l-wv)](l-wc)

x Nondimensional radial distance, r/R

Xh Nondimensional hub radius, rh/R

x Nondimensional distance along section chord, r /c

Z Number of blades

ZR Propeller rake

ZT Total rake, rake plus skew induced rake

ix

Page 13: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

Cxi Section ideal angle of attack, 1.54C Lfor NACA a=O.8 meanline in twodimensional flow

amax Maximum fluctuating annle of attack,max ai_(_AB)P(x)

ami n Minimum fluctuating angle cf attack,i-(+AB)F(x)

Advance anqle of a propeller blade section

Hydrodynamic flow angle of a propeller bladesection

r Circulation about a propeller blade section,

C Section drag-lift ratio, CD/CL

9 D Propulsive efficiency, PE/PD=(l-t)CTS/Cps

'Pe Estimated propeller efficiency,CT p/Cpc0R Blade rake angle in degrees

S R Blade skew angle in degrees

A S Advance ratio of propeller based on ship speed,V/(nnD)

Water density

PDensity of propeller material

Pitch angle

a Section cavitation number, 2gH/V2

r

0o.7 Burrill cavitation number,2gH/[{V(lIw x=0. 7 ) 1 2 +{O.7unDj

Tc Burrill thrust loading coefficient,T/[{V(l-wx=0 .7)} 2 +{0.71nD} 2]

x

Page 14: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

|ABSTRACT

This report presents a computer program that can be used for

the preliminary design and to predict the performance of single

screw propellers when designed for a prescribed hydrodynamic

pitch distribution. This design program is based on lifting line

theory as developed by Lerbs for moderately-loaded finite-bladed

propellers. Stress calculation3 using beam theory, propeller

weight, moments of inertia, and center of gravity for specified hubs

are also made for each design, which take into account the effect

of blade skew and rake. Desiqn calculations can be made for given

design speeds where the corresponding shaft power is computed

I' (thrust option), or for the case when the shaft power is specified

and the corresponding speed is computed (power option). A FORTRAN

listing of the program, developed to run on the computers at the

David W. Taylor Naval Ship Research and Development Center (DTNSRDC)

is presented as well as the input and output obtained for two sample

designs, one using the thrust option, and the other the power option.

-1

Page 15: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

ADMINISTRATIVE INFORMATION

This work was sponsored by the Naval Ship Systems Command,

SHIPS 034, and carried out under the David W. Taylor Naval Ship

Research and Development Center (DTNSRDC) Work Unit No. 1524-462,

Task 15942.

INTRODUCTION

The David W. Taylor Naval Ship Research and Development

Center (DTNSRDC), Carderock Laboratory, was requested by the

Naval Ship Systens Command (NAVSHIPS) to develop a computer

program that can be used as an aid in determining optimum

values of propeller design parameters such as diameter, rpm,

and blade number for naval vessels. This report has the

objective of presenting a computer program that can be easily

used for the preliminary design and for prediction of the

performance of propellers applicable to specific ships.

The main portion of the computer program makes preliminary

propeller design calculations and performance predictions

using Lerbs' lifting line moderately-loaded finite-bladed

propeller theory of References 1 and 2. Once the lifting

1. Lerbs, H.W., "Moderately Loaded Propellers with a FiniteNumber of Blades and an Arbitrary Distribution of Circulation,"Transactions of the Society of Naval Architects and MarineEngineers, Vol. 60, p 73-117, 1952

2. Morgan, W.B. and Wrench, J.W., Jr., "Some ComputationalAspects of Propeller Design," Methods in Computational Physics,Vol. 4, Academic Press Inc., New York, p 301-331, 1965

2

Page 16: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

line calculations for the propeller have been obtained, a

computer program based on lifting surface theory must be

used to determine the final pitch and camber of the propeller3

Numerous experimental checks4 on the design procedure used

have verified this procedure.

A computer program for the preliminary design of propellers

having a prescribed pitch or circulation distribution was

previously published in Reference 5. One of the most

important new features of the new computer program is the

power option which computes the speed automatically when the

design power is specified. Other features included in the

present computer program follows:

-A 1. Only one set of basic input data is required for the

preliminary design of a series of propellers with rpm,

blade number and expanded area ratio varied. Any

number of basic sets of data can be specified in

the computer program.

3. Morgan W.B., Silovic, Vladimir and Denny, Stephen B., "PropellerLifting-Surface Corrections," Transactions of the Society of NavalArchitects and Marine Engineers, Vol. 76, p 309-347, 1968

4. Boswell, R.J., "Design, Cavitation Performance and Open-WaterPerformance of a Series of Research Skewed Propellers,' NavalShip Research and Develpment Center Report 3339, March 1971

5. Haskins, E.W., "Calculations of Design Data for Moderately LoadedMarine Propellers by Means of Induction Factors," Naval ShipResearch and Development Center Report 2380, September 1967

3

Page 17: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

2. The propeller stress, based on beam theory6 , modified

to account for the effect of rake and skew, is computed for

each design. An input option is used to make stress calcula-

tions for a linear or nonlinear distribution of blade skew.

Parameters required to make blade surface cavitation

checks using the 12t.rrill cavitation charts of Reference 7 and

Brockett's incipient cavitation diagrams of Reference 8 are

calculated on the computer. In addition, Keller's method 9 of

predicting the minimum expanded area ratio based on back bubble

type cavitation, is calculated. The estimated propeller

weight including the hub, and input parameters required for

the lifting surface computer program used to calculate the

final pitch and camber of propeller designs are some of the

other parameters calculated.

6. Eckhart, M.K. and Morgan, W.B., "A Propeller Desiqn Method,"Transactions of the Society of Naval Architects and MarineEngineers, Vol. 63, p 305-370, 1955

7. Burrill, L.C. and Emerson, A., "Propeller Cavitation: FurtherTests on 16 Inch Propeller Models in the Kings College Cavita-tion Tunnel," Transactions of the North East Coast Institutionof Engineers and Ship Builders, Vol. 78, p 295-320, 1963-64

8. Brockett, Terry, "Minimum Pressure Envelopes for ModifiedNACA-66 Sections with NACA a=0.8 Camber and BUSHIPS Type Iand Type II, Sections," David Taylor Model Basin Report 1780,1966

9. Keller, J. Auf'm, "Enige aspectem bij het ontwerpen vanScheepsschroeven," Schip en Werk, No. 24, p 658-662, 1966

4

Page 18: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

I w

PROPELLER LIFTING LINE THEORY

The availability of high speed digital computers has made

it now possible to make use of more adequate mathematical models

to represent the hydrodynamic %ction of marine propellers.

The computer has also released the designer from performing

laborious computations involved in present design methods.

The lifting line theory used in the computer program

presented here is the theory developed by Lerbs (Reference 1)

for moderately-loaded finite-bladed propellers. This lifting

line design method discussed by Cox and Morgan in Reference 10

also permits the designer to accurately account for propeller

parameters such as number of blades, hub size, radial blade-

loading, and wake distribution. Since this theory is discussed

in detail in References 1 and 2, only some of the assumptions

made in developing the theory are mentioned here. The theory

developed by Lerbs' considers the influence of the induced

velocities on the shape of the helical vortex sheet at the

lifting line, but neglects the effect of centrifugal forces

and the contraction of the slip-stream. In addition, the

change in shape of the vortex lines is neglected in the axial

direction, indicating that each vortex line is assumed to be of

constant pitch. However, the vortex sheets are not necessarily

helical surfaces since the pitch may vary along the radius.

10. Cox, G.G. and Morgan, W.B., "The Use of Theory in PropellerDesign," Marine Technology, Vol. 9, No. 4, p 419-429, October 1972

5

Page 19: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

The computer program can be used for the preliminary desiqn of

a propeller having a prescribed pitch disIribution. The viscous

effects of the propeller are taken into account by giving as

input the blade-section drag coefficient and chord lengths.

Blade stresses are computed using simple beam theory by giving

as additional input the blade thickness, rake, and skew.

DESCRIPTION OF INPUT DATA

Dimensioned parameters may be input in the appropriate S.I. or

English units, as specified by the user illustrated in Table 1.

Effective power, shaft power, speed (V), number of blades (Z),

diameter (D), rp r, propeller wake (l-w x), and estimate of the

hydrodynamic flow angle distribution (aI) are required input

parameters in order to make nonviscous propeller design

calculation 1,2 The radial distributioo of blade chord lengths

nondimensionalized on diameter (c/D) and section drag coefficients

(CD) must also be specified as input if design calculations are

to account for the propeller viscous effects. Since the computer

program presented calculates the propeller principal stresses

based on beam theory, the radial distribution of maximum thickness

nondimensionalized on chord length (t/c), rake nondimensionalized

on diameter (ZR/D), and skew angle (eS) must also be input parameters.

The blade section cavitation number (o) is a required parameter in

order to make blade surface cavitation checks using the Burrill

cavitation diagrams of Reference 7 and Brockett's incipient cavitation

6

%-1 _V,

Page 20: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

diagrams of Reference 8. By specifying the static head (H) as input

data, the cavitation number (a) is calculated on the computer.

Hub dimensions can be input or assumed to be a circular cylinder

of equal length and diameter as described in Appendix A. A brief

description of how these input parameters can be determined will

be discussed in this section.

Effective Power, Speed, and Shaft Power

Effective power and speed are normally obtained from model

self-propulsion experiments. Input effective power (P E and shaft

power (Ps) are defined as follows:

P E = VT(l-t)

PS = 2TrnQ

where n = propeller revolutions

PS = shaft power,

PE = effective power,

Q = propeller torque,

T = propeller thrust,

V = ship speed

(l-t) = thrust deduction, which may vary with

diameter and speed.

7

Page 21: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

Nondimensional Radial Distance (X)

This is a reference set of eleven nondimensional radial

distances xi at which all other distributions, either input

or calculated by the computer, are defined as existing. In

general xi = ri/R, with the restrictions

xI =rh/R

xll = R/R=I,

where r. = the distance along the propeller reference line from

the shaft axis to the ith section,

rh = propeller hub radius, and

R = propeller tip radius.

Propeller Wake

The radial distribution of the axial wake (l-w x) which varies

with propeller diameter is also required input data. The circum-ferential mean of the axial velocity distribution (l-w c) is obtained

from a wake survey without the propeller operating. However, the

(l-wc) wake distribution must be corrected for the propeller action.

No completely satisfactory method is presently available to obtain

this correction, but an approximation of the radial distribution of

the wake (l-w x) with the propeller operating is obtained as follows:

8

Page 22: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

Wake distribution

(1'W x) = [(l-WT)(l-Wc)]/(1"Wv)[]

where (l-wc) = radial distribution of the circumferential

mean wake from wake survey data,

(l-wT) = effective wake from self propulsion data

(l-w) = volume mean wake, [2/(l-x2)If, (1-Wc) xdx,

R = propeller radius,

r =propeller local radius

rh = propeller hub radius,

x = nondimensional radial distance (r/R), and

xh = nondimensional hub radius (rh/R).

The propeller wake distribution may also vary with propeller

diameter depending on the hull characteristics of the vessel.

Advance Angle Distribution Input Option

The advance angle distribution (tanB) is normally calculated

from the equation V(l-w x)/(nnDx) using the propeller wake (l-wx)

from Equation [1]. For most single screw propeller designs this

approach gives good performance predictions. In a few instances,

it may be desired to utilize the computer program presented to

design and predict the performance of propellers operating inside

a duct or in the vicinity of another propeller as in the case of

tandem or contrarotating propellers where the axial (wa /V) anda

9I

Page 23: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

tangential (wt/V) velocities induced by these additional sources

near the propeller plane can be predicted. In this case, an option

in the computer program allows the input of the estimated tanB

distribution which accounts for the axial (w a/V) and tangential

(wt/V) velocities induced by other sources in the following manner:

Equation for Estimatinq tan6 If Input Option Is Used

tanestimated = [(l-w x) +wa/V)]/[(x/xs)-(wt/V)] [2]

where wa/V = axial velocity from other sources,

wt/V = tangential velocity from other sources,

s = advance ratio based on ship speed, V/(nnD),

V = ship speed, and

D = propeller diameter.

It can be seen from Equation [2] that for the case where (w a /V)

and (wt/V) values are specified as zero, the advance angle tanB

is calculated in the usual manner when designing single screw

propellers. If the tane input option is used, the tan6 values

are calculated using Equation ?]. For 'he norral sirlp s',a,

propeller desiqn case, tanR is calculated on the computer.

Hydrodynamic Flow Angle Distribution

The hydrodynamic flow angle distribution (tanBI) can be

specified as input. An option is included so Lerb's optimum

10

Page 24: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

tans I distribution6 can be calculated by the computer as follows:

tans, = (tanB/ni)[(l-wT)/(l-,W.x)]1/2 [3]

where n- = propeller ideal efficiency

ni = 0.85 is used in the program, and

tanB - advance angle distribution

Lerbs' optimum tans I distribution usually results in optimum pro-

peller efficiency. If other factors such as cavitation, strength

and vibration are considered, the input of an alternate tans I

distribution may be desired.

Static Head

The static head (H) at the shaft centerline is

required input. This parameter (H) is defined as Hs+H a-Hv, where

H is the shaft submergence, Ha is the atmospheric pressure, and

Hv is the vapor pressure of fluid which is normally small compared

with H and may be neglected. The static head (H) is used to

calculate the section cavitation number (a) in Equation [25] and

the Burrill cavitation number 00.7 of Equatiun [30].

Blade Outline and Expanded Area Ratio

The blade outline (c/D) and expanded area ratio (AE/AO) must

be input for the design. An expanded area ratio (AE/AO) is

calculated on the computer according to:

11J

Page 25: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

AE/A= (2Z/z)fh c/D dx

where c/D = nondimensional chord length, and

Z = number of blades

If the (AE/AO) input value differs fron the one indicated

in equation [4], adjusted (c/D) values used for the design are

calculated as follows:

(c/D) adj=(C/D) input (AE/AO)calc/(AE/AO)design

The final blade outline and expanded area ratio should be chosen

to give satisfactory propeller strength and cavitation characteristics.

Blade Thickness to Chord Ratio

The input of maximum thickness to chord ratio (t/c)

values allow an estimate of the propeller principal stresses

(see The Propeller Stress Calculations Using Beam Theory section

discussed later) based on beam theory6 to be calculated durinq t~e

preliminary design stage of the propellers. From a rough estimate

of the blade outline (c/D) for the final design and an estimate of

the radial distribution of thickness (t/D) based on fatigue

6strength , the following equation can be used to obtain initial

(t/c) input values:

Blade Thickness Ratio:

t/c = (t/D)/(c/D)

where t/D = radial distribution of thickness (can be estimated from

Reference 6).

12

Page 26: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

Rake and Skew

Nondimensional rake (ZR/D) and the skew angles (Os) for a design

are specified to permit adequate predictions of principal propeller

stresses using the beam theory method described in Reference 6

and discussed later in the propeller stress section of this report.

The rake (ZR) is defined consistent with Reference 11 (see Ficures

1 through 2d) as the distance from the propeller Diane to thp genera-

tor line in the direction of the shaft axis. Aft displacement is

considered positive rake (see Figures 2a).

Since the skew angles (eS) significantly affect propeller

unsteady forces, a computer program based on the unsteady

propeller lifting surface theory of References 12, 13, 14, and 15

can be used to select the skew angles (es) for the propeller

design. The input skew angles (eS) in degrees are defined as

the angular displacement of points on the blade reference line

from the propeller reference line in the projected view.

11. Cumming, R.A., Dictionary of Ship Hydrodinamics - PropellerSection, 14th International Towing Tank Conference 1975,Report of Presentation Committee, Appendix VII

12. Tsakonas, S., Breslin, J., and Miller, M., "Correlation andApplication of an Unsteady Flow Theory for Propeller Forces,"Transactions of the Society of Naval Architects and MarineEngineers, Vol. 75, p 158-193, 1967

13. Breslin, J.P., "Exciting-Force Operators for Ship Propellers,"Journal of Hydronautics, Vol. 5, No. 3, p 85-90, July 1971

14. Jacobs, W.K., Mercier, J., and Tsakonas, S., "Theory andMeasurements of the Propeller-Induced Vibratory Field,"Davidson Laboratory Report SIT-DL-1485, December 1970

15. Tsakonas, S., Jacobs, W.R., and All, M.R., "An Exact LinearLifting Surface Theory for Marine Propeller in a NonuniformFlow Field," Journal of Ship Research, Vol. 17, No. 4,December 1974

13

Page 27: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

Section Drag Coefficient

In order to account for viscous effects when predicting the performance

of a propeller, the section drag coefficient (C0 ) must be specified as input.

A section drag coefficient (CD) value of 0.0085 usually gives reasonable

estimates of model propeller drag for propeller shapes normally used at DTNSRDC

in the past. For propellers having very thick blades, the following equation,

available as an input option on the computer, and derived as a function of

maximum thickness (t/c) values using experimental data from NACA 66 type

sections, 16 ,17 will give a better estimate of the section drag coefficient (CD):

Section Drag Coefficient:

C = CFO [l+1.25(t/c)+125 (t/c) 4

where CFO is the friction resistance of the section, e.g., CFO = 0.008 for

Reynolds number of approximately 106 and CF 0.004 for Reynolds numbers of

approximately 1O8.

Options for using alternate nonlinear CD distributions, or a constant CD

distributions are also available.

Final Pit..n Ratio (P/D) Input Option

The final pitch-diameter ratio (P/D) distribution defined as

rxtan where is the pitch angle is normally not known

during the preliminary design stage of the propeller. Because

of this hydrodynamic flow angle (e) from lifting line

16. Abbot, Ira H. and Von Doenhoff, Albert E., "Theory of Wing

Sections Including a Summary of Airfoil Data," Dover PublicationsInc., New York, Library of Congress Catalog No. 60-1601, 1949.

17. Hoerner, S.F., "Fluid-Dynamic Drag," Published by the author,

Midlard Park, New Jersey, 1965.

14

Page 28: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

calculations is substituted for the pitch angle ( ) in the

bending moment calculations when making stress calculations

using beam theory and when predicting clearance between blades

and fillets at the propeller hub, If the final P/D values are

known, they can be used.

DESIGN AND PROPULSIVE PERFORMANCE PARAMETERS CALCULATED

In order to simplify propeller design calculation pro-

cedures, the design thrust and power of propellers are usually

considered in nondimensional form. The nondimensional design

thrust loading coefficients (CTS and CTh) and design power

loading coefficients (C PS and C ) are calculated on the computer(Cpp

in the following manner:

Thrust Loading Coefficients:

CTS = T/[(d2)]nRR2V2 or CTh = T/[(p/2)nR 2VA2 [7]

Power Loading Coefficients:

C = PD/[(p /2)TR 2V 3 ] or C = P D /[(p/2)rP2V A3] [8]

where V = ship speed,

VA = speed of advance of propeller, V(l-wT), and

p = density of fluid

Lerbs lifting line theory is used to determine the

propeller lift coefficient (CL), circulation (G), hydro-

dynamic flow angle (a), axial induced velocity (UA/2V), and

15

Page 29: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

I

tangential induced velocity (U T/2V). These lifting line calcula-

tions take into account propeller viscous effects by specifying

as input in the computer program the propeller section nondimen-

sional chord length (c/D) and section drag coefficient (CD). A

method for obtaininq values for c/D and C is discussed in the

Description of Input Data section of the report. Design parameters

such as thrust loading coefficient (CTs), thrust power coefficient

(CThd, power loading coefficient (Cps), propeller efficiency (rnp),

and propulsive efficiency (nD ) are calculated for each propeller

in the following manner:

Thrust Loading Coefficient:

CTS=fP (l-EtanBi)(dCTs/dx)dx=T/[(d2)/nR2V2 [9]

Thrust Power Coefficient:

CThP= I h(lW)(lEtanai)(dCs/dx)dx=(l-WT{T/[( c /2)iR2V2]} [10]

Power Loading Coefficient:

Cpse=fh (1+ Vtan)dCp /dx)dx=P /[( /2)R 2V 3 ] [11]

Estimated Propeller Efficiency:

"Pe: CThp/CPs , TVA/(2rQn) [12]

Estimated Propulsive Efficiency:

nD=(l-t)CTs/CPs=PE/PD [13]

16

Page 30: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

f

where CL = section lift coefficient from lifting line theory

CTs i = nondimensional inviscid local thrust loading coef-ficient, 4ZGx/xs)-UT/2V]

Cpsi = nondimensional inviscid local power loading coef-

ficient, (4Z/s)XG[(I-Wx)+UT/2V]

G = nondimensional circulation from lifting line theory

UA/2V = axial induced velocity from lifting line theory

UT/2V = tangential induced velocity from lifting line theory

The calculated prapeller thrust (T) is obtained by substituting

the CTS calculated in Equation [9] into Equation [7] and the

delivered power PD is obtained by substituting CPS computed

using Equation [11] into Equation [8].

( Other parameters useful in designing and evaluating the

performance of propellers include the advance coefficient (J),

ship speed advance coefficient (Jv), thrust coefficient (KT),

torque coefficient (KQ), moment due to thrust (lTb), moment

due to torque (14Qb), moment parallel to section nose-tail

line (M xo), moment perpendicular to the nose-tail line (M yo) and

the blade loading distribution (LI). These parameters are

calculated as follows:

Advance Coefficient:

J=V(lIT)/(nD)=VA/(nD) [14]

17

Page 31: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

Ship Speed Advance Coefficient:

J =V/(nD) [15]

Thrust Coefficient:

K = n2 D4 )=W S/)jV2 [16]

Torque Coefficient:

KQ=Q/( rn 2 D5)=(C PS/16)J V [17]

Moment Due to Thrust:

M b(X= 'TrRV 2/(2Z)]fl (x-x )(1- Etane?)[dCTS/dx]dx [18]T 0X h 0 i

Moment Due to Torque:

M~~~~~ ~ ~ (x)[ r (Z]l(- (tanB + E)[dCT /dx]dx [19]MQb(X)Pr 0 2 (Z)! X- 0

Moments Parallel to Section Mose-Tall Line:

M xo (x o)=H Tb cos+m Qb sino [20]

Moment Perpendicular to Section rNuse-Tail Line:

M y (x o)='. Tbsin -MMQbcoso [21]

Blade Loading Distribution:

LI(x)-(l1/Z)pcV r2 CL[22]

where x,x0 propeller nondimensional radial stations,

r/R and r 0/R

o= propeller pitch angle (input or aI

V r= section inflow velocity, V/[(l..w )+U 2V]'+[(X/x )U T/2V]~

Appendix A presents procedures for calculating propeller weight,

center of gravity, mass polar miments of inertia and radius of

gyration and Appendix B shows how the American Bureau of Shipping

CABS) coefficients and thickness requirements are calculated. Other

18

Page 32: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

calculations made include stress calculations based on beam

theory, parameters for making blade surface cavitation checks,

chord lengths for making final pitch and camber calculations,

and the prediction of spacing between blades and fillets at

the propeller hub.

PROPELLER STRESS CALCULATIONS USING BEAM THEORY

A propeller blade must contain enough material to keep the

stresses within a blade below a certain predetermined level.

This level depends on the material properties with regard to

both steady-state and fatigue strength and to both mean and

unsteady blade loading. The material selection controls the

( allowable stress level and the blade chord, thickness, rake

and skew are the main parameters which control the blade stress

for a given blade loading. The principal stresses in the

propeller blade are computed for each propeller. Both hydrody-

namic and centrifugal loadings are considered. In this stress

calculation procedure, the propeller blade is represented as a

straight cantilever beam of variable cross-section without camber.

Experimental results show that the neutral axis of an airfoil

section lies approximately along the mean line so camber is not

considered in the stress calculations presented. Only the

maximum principal stresses calculated at the mid-chord of each

section are printed as output in the computer program. Stresses

19

Page 33: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

for the final design should be calculated by finite element

techniques if rake and skew for the propeller differ from

usual propeller shapes.

PARAMETERS FOR MAKING BLADE SURFACE CAVITATION CHECKS

Brockett's theoretically derived incipient cavitation charts

of Reference 8 can be used to predict the blade surface cavita-

tion characteristics of each propeller once the lifting line cal-

culations have been completed. The two-dimensional camber to

chord ratio (fM/c), ideal angle of attack in degrees (ai), section

cavitation number (a), nondimensionalized with the section inflow

velocity (V r), and the maximum and minimum fluctuatinq angle of

attack (max' am in) in degrees are parameters that must be deter-

mined before Brockett's incipient cavitation charts can be used.

These parameters are calculated as follows:

Section Maximum Camber to Chord Ratio for NACA a=O.8 Meanline:

fM/c=0.0 679 C1 [23]

Section Ideal Angle of Attack in Degrees for NACA a=O.8 Meanline:

ai:I.5 4 CL [24]

Section Cavitation Number:

a:2g(H-xR)/Vr2 [25]

where g = acceleration due to gravity

H = static head at shaft centerline (see section

on Static Head).

The maximum and minimum fluctuating angles of attack

20

........ .... ,t' : m 7 - .

Page 34: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

(amaxamin) in degrees are calculated using the method derived

by Lerbs and Rader in Reference 18. These calculations can be

made using the following equations:

flaximum Fluctuating Angles of Attack:

amax=ai-(-As)F(x) [26]

Minimum Fluctuating Anqles of Attack:

c'min"i-(+AB)F(x) [27]

where -AB = Maximum effective angle of attack in degrees

(from wake survey data), and

+aB = Minimum effective angle of attack in degrees

(from wake survey data).

The parameter F(x) in Equations [26] and [27] is dependent

on the hydrodynamic flow angle (aI), the advance angle (a) and

the lift coefficient (CL), and is calculated on the computer

using the following equation:

F(x)=I/[l+27rtan(a i-0)/C [28]

The Burrill Cavitation Charts 7, can also be used to give an

approximate check on the cavitation performance of propellers.

Burrill's thrust loading coefficient (T c) and cavitation number

(00.7) at 0.7 radius defined as follows are parameters that

must be known to use these cavitation charts.

18. Lerbs, H.W. and Rader, H.P., "Uber de Auftriebsgradienten vonProfilen im Propeller Verband, Schiffstechnlk, Vol. 9. No. 48.p 178-180, 1962

21

Page 35: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

Tc=T/{(p /2)Ap[{V(l-Wxo.w J 2 +f0.7xnD} 2] [29]

Burrill Cavitation Number at 0.7 Radius:

ao.7 =2gH/[{V(l -xwe. ) 2 +0.7nD} 2] [30]

where A. = propeller expanded area, fRc dr,

A0 = propeller disc area, nD 2/4,

Ap = propeller projected area, [1.067-0.229(P/Di]A , and

(P/D)i = propeller pitch ratio at 0.7 radius input or

estimated as 0.7ntans I.

Keller's method9 of predicting the minimum expanded area

ratio of the propeller is also calculated on the computer. The

minimum expanded area ratio, based on eliminating back bubble

type cavitation, is computed as follows:

(A/A) KT' 6+.6)K2 2(AE/AO) K= KT (2.6+. 6 Z)KT/{O.7[J +(0.7n) 1 [31]

The constant K=0.15 was used in this program. Many possible

alternate values of K may be desired, for example: K=0.2 is

used for single screw ships with bronze propellers having rake

of approximately 10 degrees, K=0.l0 is used for twin screw ships

with copper-aluminum propellers, K=0.15 is used for twin screw

ships with bronze propellers and for single screw ships with

copper-nickel-aluminum propellers, and K=O to 0.05 is used for

propellers for fast ships such as destroyers and frigates. If

a different value of K is desired, the expanded area ratio cal-

culated in equation [31] should be adjusted to account for changes

in the value of K.

22

Page 36: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

CHORD LENGTHS FOR PITCH AND CAMBER CALCULATIONS

The final pitch and camber for each propeller can be calcu-

lated using computer programs presented in References 3, 19, 20,

21, 22, and 23. The programs require as input the section chord

length, (c/R)LE and (c/R)TE nondimensionalized on propeller radius,

in terms of the skew angle (es), hydrodynamic flow angle (aI) and

blade outline (c/D). The parameters (c/R)LE and (c/R)TE measured

(- from the leading edge and trailing edge to its reference line,

respectively, are calculated in the following manner on the

computer:

19. Kerwin, J.E., "The Solution of Propeller Lifting-SurfaceProblems by Vortex Lattice Methods," Department of theNaval Architecture and Marine Engineerinq, MassachusettsInstitute of Technology, Cambridge, Massachusetts, 1961

20. Kerwin, J.E., and Leopold, R., "Propeller Incidence Cor-ection Due to Blade Thickness," Journal of Ship Research,Vol.7, No. 2, 1963

21. Cheng, H.M., "Hydordynamic Aspects of Propeller Design Basedon Lifting-Surface Theory: Part I - Uniform Chordwise LoadDistribution," David Taylor Model Basin Report 1802, 1964

22. Cheng, H.M., "Hydrodynamic Aspects of Propeller Design Basedon Lifting Surface Theory: Part II - Arbitrary ChordwiseLoad Distribution, " David Taylor Model Basin Report 1803,1965

23. Kerwin, J.E., "Computer Techniques for Propeller Blade SectionDesign," Transactions of the Second Lips Propeller Symposium,Drunen, Holland, p 1-31, May 1973

23

Page 37: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

Chord Lengths Measured From Blade Leading Edge:

(c/R)LE=Xes/(57.296 coso)-c/D [32]

Chord Lengths Measured From Blade Trailing Edge:

(c/R)TE=Xes/(57.296 coso)+c/D [33]

(eaI is used when pitch is not input)

SPACING BETWEEN BLADES AND FILLETS

Propeller designs should have enough clearance between

blades at the hub so fillets are properly applied. Hill,

Reference 24, derived the following equation, which is used

in the program to estimate spacing between blades at the hub

without fillets:

Gz = (2r rh)/Z - (th/sin) [34]

where € input pitch or 81

Based on a number of full-scale propellers built with standard

fillets, Hill's blade clearance equation was modified in the

following manner to estimate spacing between fillets at the hub

during the preliminary stage of the design:

GF =(2?irh/Z) - (l.9th/sin ) [35]

A layout of blade sections is recommended as a final fillet

clearance check.

PROPELLER DESIGN THRUST AND POWER OPTIONS

The thrust option can be used to make lifting line calcula-

tions for propellers required to produce a given thrust at

24. Hill, J.G., "The Design of Propellers," Transactions of the Society

of Naval Architects and Marine Engineers, Vol. 57, p 143-170, 1949.

24

Page 38: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

specified values of speed and rpm (this is accomplished by adjust-

ing the input tan 8I distribution), or the power option can be used

if the propeller is required to absorb a specified power at a given

rpm (in which case the speed is determined).

From each calculated power, a new value of speed (assumed to

vary as the cube root of the ratio of the design and calculated

power) is obtained and its correspondino effective power is obtain-

ed from the effective power input curve. Design calculations again

produce a new calculated power, and the process continues until the

closeness criteria of design calculated power is satisfied (two

iterations are normally sufficient). Smaller increments of input

speeds in general cause faster convergence.

(Once the basic shape of the distribution is defined (see the

Hydrodynamic Flow Angle Distribution section) the final tanB I

distribution K4 tanB I is determined using the thrust or power

options, making lifting line calculations of three nondimensional

thrust loading coefficients (CTs)l, (CTs)2, and (CTs)3 that cor-

respond to three hydrodynamic pitch distributions, K1 tanB I, K2

tanB I, and K3 tan8 I where K1 = 0.975, K2 = 1.0, and K3 = 1.025.

Once these calculations are obtained, the following system of

equations are set up:

(CTs)l = A+BKl+CK2

(CTs)2 = A+BK2+CK 22

(C = A+BK +CK 2

25

Page 39: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

from which values of A, B, and C are obtained. Then, values of A, B,

and C are substituted in the following equation to obtain the value of

K4.

2CTs = A+BK4+CK4

where CTs = design thrust loading coefficient (Equation (7)).

COMPUTER PRCGRAM AND SAMPLE DESIGN

CALCULATIONS

Liftina line theory of References 1 and 2 has been used to

derive a computer program for the preliminary design of propellers

using high speed CDC computers at DTNSRDC. A core size of approxi-

mately 60,000 octal is required for the program. The average run-

ning tine for a design based on thrust is 25 seconds and 100 seconds

are required using the power option. As mentioned earlier, Appendix

A presents procedures used to calculate propeller weight, center of

gravity, mass polar moment of inertia, and radius of gyration.

Appendix B shows how the American Bureau of Shipping (ABS) coefficients

and thickness requirements are calculated. A detailed description of

the input and output formulas for the computer program is ptesent in

Appendix C exercising most of the available options. Design calculations

are presented in Appendix D for a sample design using the thrust

option and results using the power option are shown in Appendix E.

A Fortran listing of the computer program is presented in Appendix F.

26

..-..- ~ ~ :...." ...- :-- : =:" "":= - ;. :

Page 40: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

Vx (, 0

(r-V0 (r.0)I

Figure I -Typical Velocity Diagram (or a Propeller Blade Section al Radius r(The diagram is drawn Yft., all quantities positive and the velocity vectors represent the velocity of

the propeller blade u'ction relative to the fld)

27

Page 41: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

0z

MUD, wIw < z

ccr

w4~~ 044f- ~ %I -W-3:C

4~ uw 0oW CCLLAc 7ui Z n Ww<sJ U U C

-j -jz < :. 2 t

g U. WCL LC~ Wa

0 z

-a - - z

~w C)JL

S0 0cr.

w 1IL w

0 I

28w

Page 42: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

BLADEREFERENCE

LINE / GENERATORLINE

I

---- PROPELLER REFERENCE LINE(PROPELLER PLANE)

REFERENCE POINT OF/ BLADE ROOT SECTION

PROPELLERHUB

FORWARD-.4..HUB DOWN

RADIUS

_SHAFT

AXIS

Figure 2b - Diagram Showing Recommended Reference Lines Looking to Port)

29

Page 43: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

PROPELLER REFERENCE LINEzAND GENERATOR LINE

BLADE REFERENCE LINE(LOCUS OF BLADE SECTION

REFERENCE POINTS)

PROJECTED BLADEOUTLINE

TRAILING EDGE

LEADING EDGE

PROPELLER HUB REFERENCE POINT OF ROOT SECTION

[email protected]

SHAFT AXIS

NOTE: THE SKEW ANGLE. Qs. SHOWN AT RADIUS r IS LESS THAN ZERO.

Figure 2c Diagram Showing Recommended Reference Lines (Looking Forward)

0 )30

Page 44: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

PROPELLERREFERENCE LINE

-~ I

-u

W 0o

- _ _ _ _ _ _ _ _ _ _ _

_________________ - HUBLEN

FIGURE 2d -INPUT FOR DETAILED HUB OPTION

31

Page 45: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

TABLE 1

List of dimensioned input and output parameters used by

computer program based on English and SI units

Parameter English Units SI Units KSI (I )

Shaft power (P ) hp KW 0.7457

Effective power (P E hp KW 0.7457

P ibm/ft3 kg/m3 16.01846

V knots 2) n/s 0.514444

V ft/sec knots (2) 0.5924

D ft m 0.3048

H ft m 0.3048

2 4 3P lbf sec /ft kg/m 3 515.3788n rev/min rev/min (3) 1.0

T, weight lbf N 4.44822

V ft/sec m/s 0.3048

LI lbf/ft N/m 14.5939

MTb in lbf Nn 0.112985

MQb in lbf Nn 0.112985

M in lbf Nn 0.112985xo

M in lbf Nn 0.112985yo

Max Stress ibf/in 2 Pa 6894.757

SKEW deg deg (3) 1.0

RAKE deg deg (3) 1.0

Mass polar moment Ibm in2 kgm 2 0.00029264of INERTIA

(i) Multiply English Units by KSI to get SI Units.(2) Computer program uses knots in both English Units option

and SI Units option.'PI These are not SI Units but are permitted to be used in the

SI sy-.:m according to International Standards Organization (150)Standard No. n

32'

Page 46: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

APPENDIX A

PROPELLER WEIGHT, MASS POLAR MOMENTS OF INERTIA, AND CENTER

OF GRAVITY

The approximate propeller weight (W p) and location of center

of gravity (CG) from the propeller center line is also calculated

for each design. In order to make these calculations, the density

of the material (p) must be specified as input.

Hub dimensions can be input, or a solid circular cylinder of

equal length and diameter, with propeller center line at the mid

length of the hub can be assumed. If the cylindrical hub is assumed:

Wp = W+W H

where WB = weight of blades, OpZfl a(x)dx

WH :weight of hub, (irppDH/4),DH = hub diameter

a(x) = area of section at radius x, 2c(x)t(x) f I t(x,x )dx,

c(x) chord length of section at radius x,

t(x) = maximum thickness of section

t(x,x) = Chordwise distribution of section thickness (NACA 66modified thickness form is used in program)

x = nondimensional coordinate alona the section chord, (r /c),and

= density of material considered

33

Page 47: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

'Iif calculations are desired for a noncylindrical hub, the follow-

ing dimensions are input:

DFH = forward hub diameter,

DA = aft hub diameter,

LH = length of the hub,

DFB = forward bore diameter,

LRL = distance from aft end of hub to propeller reference line

The hub is then treated as consisting of two frustrums of cones,

joined at the propeller reference line. Again

Wp = WB +WH,

but now

WH = WAF+W FF-W b

where WAF = weight of solid aft frustum, (lTp p/3) (DAHDH+DH+DL)/4

WFF = weight of solid forward frustum,

(-r p/3) (D2+DHDFH+DF2 )/4

Wb = weight of bore, (np p/3) (D2B+DABDFB+DFB2)/4

The propeller center of gravity (CG) with respect to the blade

center line, where plus values represent the distance ahead of the

center line and negative values aft of the center line, is calculated

in the following manner (see Figures 2b and 2c):

Center of Gravity:

CG = M /Wp p

where Mp moment of the propeller, P pZfx a(x) B(x) dxp3 h

34

Page 48: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

where Mp = moment of the propeller, p Zfh a(x) B(x) dx

ph

B(x) = distance of center of gravity from propeller reference

line,j + +i

x = the distance of the center of gravity of the section alonq

the chord line from the position of maximum thickness,

y = the distance between the center of gravity of the section

and the chord line of the section, measured perpendicular

to the chord line,

ri = the radial distance from the shaft axis to the section,

R= rake angle in radians of the section,4-,

S= skew angle in radians of the section, and

4 = pitch angle in radians of the section (:=I is used

when pitch is not input).

Then x = the component of the center of qravity adjusted for

pitch, xsin q +ycos 4;

y = the component of the center of gravity adjusted for skew

(=- vrtan4 ) and rake (=- c ri/R); and

i = the component of the center of gravity alonq the shaft

axis of the specified hub, aft of the propeller reference

line taken as positive.

35

U L

Page 49: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

If the standard hub is selec-ted,

6 m= mass polar moment of hub W WH DH 2/8

otherwise,

H PM Tigp ( PM FPM- B PM) /10

where A PM = aft mass polar mom~entLL 4 3 2 jIf 4I~)1

L L(D H +DHP D Ali+DH D AH hIfDAl"+AN)1

Fm= forward mass polar moment =

(f4 3 +D2 3 4C IL RL )(D H +DH D FH+11 DFH-+D H DFH +D FH )116

BP.,1 = mass polar moment of bore =

1(D4 +D3 D D2D 2 +DD3 D4 )1HL(DAB AB DFBDABDFB DABDFB 0FB )l

zpl= mass polar mioment of blades

Z c Xh xe (x) dx

Then P P~m = propeller mass polar moment=

Z P +11 M

and K z = radius of gyration of blades

?:1 B

K = Radius of gyration of hub

PM' H

K= radius of gyration of propeller

v' P /W,

36

Page 50: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

APPENDIX B

AMERICAN BUREAU OF SHIPPING (ABS) COEFFICIENT AND THICKMESS

REQUIREMENTS

The minimum blade thickness at the one-quarter radius is

defined in Reference 25 by:

tl =K 1APs/(C'NCZn) + CSBZR/(4C NC)

and T2=K1I.APS/(CNCZn) + CSBZT/(4CNC)

where PS = shaft power at the maximum continuous rating,

n = propeller revolutions per minute rpm at the maximumcontinuous rating,

Z = number of blades,

ZR = rake, positive aft, at the blade tip.

Z T= rake and rake plus skew induced rake, at the bladetip, positive aft taken as positive,

and

C = as/(11st 0.25) section area coefficient at the one-

quarter radius

CN /(UfWst 20.25) = section modulus coefficient at the one-

quarter radius

A =l+(K 2/tan4 0 .7)+K 3tan4 0.25

B =(K4(AE/AO)/(Z) (n/lO0)2 (D/20)3

C =(l+K 5 tan 0.25)Wsf-B)

where K 1 through K5 are constants which depend on the system of

units employed

25. American Bureau of Shipping, "Rules for Building and Classing

Steel Vessels," p 621, 1972.

37

Page 51: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

as = area of expanded cylindrical section at 0.25R :

2c0 25t0 25 f t(O.25,x) dx,

WS = expanded width of cylindrical section at the one-quarter

radius,

t0.25 = maximum thickness at the one-quarter radius,

10 = moment of inertia of the expanded cylindrical section at

one-quarter radius about a straight line through the center

of gravity parallel to the chord line,

UF = maximum normal distance from the moment of inertia axis to

points on the face of the section,

c0.25 = section chord length at 0.25R,

n 2 4 A = the pitch angles at the one-quarter and seven-

tenths radius (or BI if 4 not input),

t(O.25,x) = chordwise distribution of section thicknesses at the

0.25 radius

AE/AO = expanded blade area divided by the disc area,

D = propeller diameter,

f = material constants in length/weight as a function of w

38

Page 52: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

w = a nondimensional parameter associated with the i1aterial type

as illustrated in the table below.

Type Materials Units

2 Manganese bronze 0.30

3 Nickel-manganese bronze 0.29

4 Nickel-aluminum bronze 0.27

5 Mln-Ni-Al bronze 0.27

6 Cast iron 0.26

If CN 0 0.1, the thicknesses ti and t2 are recomputed with

CN=O.1.

39

Page 53: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

APPENDIX C

DESCRIPTION OF INPUT AND OUTPUT

Data are input to the program in unformatted groups. Within

each group the data must be in the order specified, and each

value must be separated from all others by a blank or comma.

Variable names beginning with I,J,K,L,M, or N require an integer

input, but other variables which happen to have integer values

do not require a decimal point. Zeroes must actually be keypunched.

Beyond this there are no restrictions on how many or few data

cards are needed for a group, except that each group must start

with a new card. The input required is as follows:

(

i 40

Page 54: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

Group Parameters Description of Input

I IDD Number of data sets(each of the groups

2 through end form a data set)

2 UI,UO,Title Use SI in columns 2,3 to pecify input

in SI units. Use SI in columns 4, 5

for output in SI units. The remaining

66 columns are available for identifi-

cation of input data.

3 SHP[FL/T] Desinn shaft power or 0 if the thrust *

option is desired

TANBI Use 1 unless use of an exact (not ad-

justed by program) tanB I distribution

is required, then use 0 (see hydrodynamic

flow anqle distribution

TANB Use 1 to input tanf distribution, or 0

for machine calculations accordinq to (2)

XPS Use -l to input a skew distribution, or

input the skew at the tip for a linear

skew distribution (both in degrees)

RAKE Use <RAKE< 0.01 to input a rake/D *

distribution or input the rake/D at

the tip for a linear distribution

POO Use PDO 0 to input a P/D distribution,

otherwise i xtanB I is used as an approxima-

tion

* As used within the Fortran Program

41

2 "' ,/ i ,

Page 55: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

Group Parameter Description of Input

CD Use CD>lO to input the radial distribution of

drag coefficients (CD); O<CD<lO to input a con-

stant drag CD=CD at all radial stations; CD-O

causes the computer program to calculate the

radial distribution of drag coefficients using

the equation CD=O.OO8[l+l.25(t/c)+l25(t/c) 4];

-IO<CD<O causes the computer program to use a

constant frictional resistance CFO=ABS(CFO) in

Equation 6 CD=CFo0l+l.25(t/c)+125(t/c)4

CD<-lO to input the radial distribution of

frictional resistance (CFO) values to be used

in Equation 6.

3 TYPE For ABS minimum blade thickness calculations

coefficients use the number corresponding to

the material type in the blade thickness

section. Use TYPE=O to suppress these calcu-

lations

HUB Use HUBtO to input actual dimensions of 11UD,

or HUB:O to use solid cylindrical hub in

relevant calculations

4 DIAM[L] Propeller diameter

EWAKE Effective wake (l-wT)

ETHRUS Thrust deduction (l-t)

42

Page 56: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

Group Parameters Description of Input

IIEAD[L] See section on Static Head, at the shaft

centerline

DENIM/L3] Density of propeller materials

RHO[M/L3] Density to be used for water

5 IVV Number of velocities input

VEI[L/T] 1VV velocities

EHP[FL/T] IVV design effective power values, corres-

ponding to the input velocities

5 IZZ Numoer of different blade numbers input

JBL IZZ values of blade numbers

IEA Number of expanded area ratios input

EXX IEA values of AE/Ao. A value of 0 input as

the first AE/Ao will result in calculations

being done exactly at the design AE/Ao. If

this default is used, calculations will not

be done at other values of A E/A in the

list that happen to be within 0.005 of the

design AE/Ao.

IRPM Number of different rpms input

XMM IRPM values of revolutions per minute

43

Page 57: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

Group Parameters Description of Input

(The remaining five radial distributions have eleven values each)

X3 Values of r/R at which other radial

distributions are defined

X4 Propeller wake (1-wx )

X5 Hydrodynamic flow angles (taneI). If zeroes

are input, Lerbs optimum is calculated as a

default distribution

X6 Section chord lengths (c/D)

AZZ(25) Thickness to chord ratios

(Groups six through ten which are specified in group three are

defined at the eleven radial stations)

6 AZZ(24) Blade skew angles, degrees (if XPS<O)

7 3(7) Section drag ccefficients (if CF>0)

or frictional resistance of section

CFO (if CD<N-l0

8 B(8) Tangents of advance angles (if TANB>O)

9 RAK Rake/D, aft positive (if O<RAKE<0.0)

10 P Pitch, P/D (if PD>O)

11 FWDDIAM[L] Dimensions, as indicated in Figure d

(if HUB0)

AFTDIAM[L]

HUBLEN[L]

FDBORE[L]

ADBORE[L]

DISREFL[L]

44 '4

Page 58: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

A Description of the Output Generated by the Program Follows:

Program Output Description

G Nondimensional circulation

UT/2V Tanqential velocity induced at lifting line

UA/2V Axial velocity induced at lifting line

DCTSI Local nonviscous thrust coefficient (Defined in

Equation (9))

DCPSI Local nonviscous power coefficient (Defined in

Equation (11))

VR [L/T] Section inflow velocity, equation (22)

CAVV Section cavitation number, Equation (25)

CPTI Nionviscous thrust power coefficient (Equation (10)

when r-0).

CPSI Nonviscous power coefficient (Equation (11)

when c =0)

ETAI Estimated nonviscous propeller efficiency

(Equation (12) when (=0)

CTSI Nonviscous thrust coefficient (Equation (9) when

E =0)

CPT Thrust power loading coefficient (Equation (10))

CPS Power loadinq coefficient (Equation (11)).

TETS Projected skew angle in degrees

RAKG Rake/Diameter

PE Effective power

4 )45

Page 59: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

Program Output Description

PS Shaft power

ETA Estimated propeller efficiency (Equation (12)

CTS Thrust loading coefficient (Equation (9))

CL Section lift coefficient

ALI Section two-dimensional ideal angle of attack

in degrees for NACA a=0.8 meanline, Equation

(24)

FM/C Section two-dimensional maximum camber ratio

for NACA a=O.8 meanline, Equation (23)

CD/CL Section drag-lift ratio (c=CD/CL)

F(X) Parameter for calculations section fluctuating

angles of attack, Equation (28)

LI[F/L] Propeller blade loading distribution Equation (22)

(C/R)DLE Chord lengths for lifting surface pitch and

camber calculations, Equation (32)

(C/R)DTE Chord lengths for lifting surface pitch and

camber calculations, Equation (33)

T/RD Ratio of section thickness to radius

PC Estimated propulsive efficiency, Equation (13)

PS[FL/T] Calculated shaft power delivered at the propeller,

Equation (13)

DESIGN [F] Design thrust

CALCULATED [F] Calculated thrust, Equation (7) and (9)

46

Page 60: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

Program Output Description

AEPA [L2] Area of section

XBAR [L] Longitudinal position about x axis parallel

to nose-tail line from centroid

YBAR [L] Vertical distance about y axis perpendicular

to nose-tail line from centroid

IXO [L4] Moment of inertia about y axis perpendicular

to nose-tail line

MXO [FL] Bending moment about the x axis, Equation [20]

MYO [FL] Bending moment about the y axis, Equation [21]

MTB [FL] Bending moment due to thrust, Equation [18]

MQB [FL] Bending moment due to torque, Equation [19]

MAX STRESS (F/L 2] Aaximum stress

WEIGHT OF BLADES [F] Equation [32], WH=O

WEIGHT OF PROP (BLADES

+DESIGNATED HUB) [F]

(CENTER OF GRAVITY OF Appendix A

PROP/D)

(CENTER OF GRAVITY OF Appendix A

BLADES/D)

KELLERS MINIMUM EAR Equation [31]

SPEED COEFF(JS) Equation [15]

47

Page 61: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

A3Program Output Description

Advance Coeff (JA) Equation [14)

THRUST COEFF (KT) Equation [16]

TORQUE EOEFF (KQ) Equation [17]

PROPULSIVE EFFICIENCY Equation [13](PC)

BURRILL THRUST COEFF Equation [29](TC)

BURRILL CAVITATION Equation [30]COEFF

CLEARANCE AT HUB BETWEEN Equation [34]BLADES/D

CLEARANCE AT HUB Equation [35]

BETWEEN FILLETS/D

MASS POLAR MOMENT OF 2INERTIA OF GLADES [FL 2] Appendix A

TOTAL MASS POLAR 2MOMENT OF INERTIA [FL 2]

RADIUS OF GYRATION OFBLADES/D

RADIUS OF GYRATION OF

HUB/D

TOTAL RADIUS OF GYRATION/D

ABS MINIMUM THICKNESS Appendix BCONVENTIONAL RAKE

CONVENTIONAL + SKEW1INDUCED RAKE/D

VALUES USED INDETERMINING THICKNESS

4848. .

Page 62: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

Program Output Description

SECTION AREA COEFFICIENT Appendix B

SECTION MODULUSCOEFFICIENT

AREA OF EXPANDED 2CYLINDRICAL SECTION [L2]

49

Page 63: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

APPENDIX D

SAMPLE DESIGN USING THE THRUST OPTION

50 ,.

Page 64: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

OPTIONS EXERCISED IN APPENDIX D

Power or thrust T

Calculations with input tana I N/A

TanB I (Lerbs or input) Input

Tane (Calculated from (l-w x) or input) Input

CD (constant, variable, or calculated) Const

Multiple RPM No

Multiple Z No

Multiple AE/AO No

Check AE/AO of input C/D and modify No

Skew (Linear/Nonlinear) L

Rake (Linear/Nonlinear) L

P/D (input or approximated by nxtans1) Input

ABS coefficients No

Hub geometry Input

Input Units SI

Output Units SI

51

Page 65: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

iti

1 t4~1±41:1j ~ 41

T-1 ~ T

OD +0 0

ir i .. U. . .~I -4

__ ~ z1's'.~: '.&L~:J4.w: EXOD' Il co y\C-

. . . . . . . . . . . . . .

LA i]3> :T 0 J ''u::-

-I--

II : -. l -1-- - ,, s

W - 44t ~_

I: g-~, ~ 03 O~ Zr -, .J .

CH 14

.52

Page 66: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

*, S4 40

P4 P4 th. W% 0 O,1. 4P) m 000 * 0 0 SO t4 4..

4111 C3, 42 :1 I i N (Y N 5. acn C, o 0 n 0 C T C

I. I I 1A 40 - n 10 In U! A . _1

. .... Los .Los .. ,I., . ...... a 4

ILO~o~ ac cS a x is 0 N, C, W, C 4 0 nI0 Z I. 0. . . 4. . . a' OP. Wa W WPJ NU

* * hIl I ti 3No ,M 1 New .0

.......... 404.P4.UP4 .,,,,,,,,,00., oo

N US*.* VI 4 04N..A4

P AA4PNOv

-- ~~1 - -- C 1"1'.11 nlk • U tOIl NO _ •

a, mo 41, w 000 IA, = 13, Io-P rOt D0

I€. 4.1 T 7) T OW .11 No° 11 -L:;r; Ll -1.- -- . 6-, W ....

• 2 OSA *N .14000n0 .. A.N.4IASP4P.D.. O W

w,, " ' '4 .% .0, . z P - -NN N NN Neu " 4 O.4) 1,V 0 4 1, .

OW ~ -4 l~ -.. -4 *~ --OO-o- - 0M.,0

v* * * * * * * * * * 0 fI.. W I I WO ! o O € .

No %..Ne" 11..s.4

MNNNN-NNUN S n P..0N0, C.,IA.IAJ O0~,DP.P40 U

vZ Jf*4S..4, 1 -. 1O4 .8 Co. 1. 1 No , * O 4I I I S, F, N a-

a1 L.. N Wll 416 l.t Lo. WUP44I I 40P . ) N.5 Cl- x C.,s 4 N.N W0 IN4. 0

* * -, . . . a 5 I 4 4 PIIS I . 5 * * 1

• nC .,,P4J5 , o ,.+ t.0..l l 0 S .. . .. *.... .4.. i.S

.. . 0. . .. . . .......... ... .W -. % . " T C

444 ON 4 NN N MoP.AOO4P4jiN me L1 0 4.... 4 Sol C:, N..4 .4, N -1 4

,oo .; .; ,,,. .. ..; , C! ,,D C",,,, ,. .-,,' ?S .u V)"' So, 411r.

4: VaW 4l~ . 0 5 0 41% W,4d.S~N5 M . 0.4.l0PdOCO US

04m m "OO P .** ** . . .tdI0.P .. .5.5.5~~~jy~.0 ,0 .4.4 N14-4. M.4 0,N0~~ 43 1 o

5-P. No0.( N oPL.4 U'. 4.. 2z ,cC 0.0C ,wC w00 4 40 C ( L,

14.., ONMIAO.4JN m i, %.44 . *o000(404000 144 O0 ' .4, 5 o. t'. 2'.

In ~ ~ ~ ~ S .~N4 JI I . r &' N. W' L ,I N I nd~1O4N4I

-r N P4MPt. o. It 0.' A K+ N N 5.4.. . . . . . .-+ -. o' , u L O .4 . Nol4 ,, , A N e

W 005"00540 0 WL IupNtwwu UN Nnr J O

2~~ 5.'5,'4..104W1, 1, :.14 0. N~ C., 1 0 .( ,, 0 4n n 0

.4 5.4 NJ U USN..US0USIus w d44444..... W, l... .P .11 1, -1L, , w1

no ~ 4 l mJP' N r.C' N,1,t ,50 C NNN N N. W 4 Lo'

ws's S a, AAJP p:P~t :IL!.45s.0.!'6W 14 .sW 00 o tv NN. . .i.. N. 4 .

PN. AS 11.. . . ~.N~4S J(40I b -l N...44.... NO.,to wNevNilN N 1- ~ ~ ~ ~ i ?I a, lo N0 0C . . . . . .1 0000000 nC

.4. 05.5- 45 5 ot N Ij 5; 1; IA A.. . . .0. N,,4 'A I

I~ ~ I1 1 5 5 5 4.5 5 4 I5 . . d. .0 N 14 4 5 4 5 5 .J . 4 5 4 0 m c 5

1. L. 4.14.,0, W "'.4a*NJNNN NN N j C!1Nc:1 . 4.Z4 .4 CI.: N'P P 0'C' . , - 7 Clo4., L, Lt . 4P :: CP4.5.*4410

4*- WO w0 NNNNNNWNNIA Igs gg s4.3 .. 4 4 (14.5 Lool L,34 " C", NNN P,': N,"C

00j I I.5..1 .~ IA I I I

N ~ ~ ~ ~ ~ ~ I C) N al s , ,, I01 4N41A54

C, 1.-3 0 4 1 . W . , 444 4 4 I I~~s C"W 4 4 N PD.) wU US US0 0 04541:0OC LINNN A5 11. vi -N . S -O 4 - 4 fC . 6

o o N, a, F, 1S 0'~,.nV, 0O ,0 V5 0 w .a. ! . . P . . . . . . . . . ,

0 5 4 N . .4.4.4 . D S M J. U SS N f o , 5' 4 V A 4 Lo N:N NN1 Lo

.0, .2, N000 . ll n F ' . f L' No0 , U oo4 .. NO

.4 40 ND U. dI1N MM MN - .15510 1 IS

* ~ ~ ~ ~ ~ ~ ~ ~ ~ ( 0. 0 0544445.1.. . . . .. 1 4 0 Z411rN.~l05400000(100 a L) .40,NV.. . IN

LI~ CL # I I3 I,0 V340 .0 gl ss Ia a I. I I C

-r w -C %L,' NO. U .4' w O'. 4. u40 0 N..NO UO,N , 5. 144441. . .10

0 P4* 0 C)N NN N l PN ' N..00.W 0. .l U, a,% Lt 4 aNft~~~~~ "I51 V, .0 NO 0 4 N MI' 115 44 W 4'01..l I ..

.4. N .UAJ M4 N 044 - C.~C.505

N: 44 N4 44 -N. eSn4 1'S n *4* 0~ as.

LI.4 C, 00 P4 '4 IU,01. C' t1L .N'lul '04

O N 0 "C' a1 a 1 1 1 a I I I -

0 N NUN J1LA 4O C~ .. t,*2 't .NI . aS st O 2 C) C, ~ 4 CIS"c 3Z No c. IS.I1 "1 0 .4:1 4 . caJ 1 o, ., 2 .

W E 4 - .O, E44 N IIJM P "1. AS0M NIJ' M0 N0M0.:o. M C4 N00. . . . . . . ..4;. wg we

4..~~~~~~~l 5- P3atl0Jl15 .4444.0.. 44 C;0( .4W

4,3 N N I- seal , 55154 54.14.~r~~n.0 10

C 0. 5- 0 LJ4.l~~~4aI.t.,4a4 .a 41 .44444444441 P

Page 67: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

4MI In4mI

Ir, C' In tC, M '

in in. IIIi 0 S t'

84 :,: N .1 S ILI

.4US In u .1, .2 'a

K~~~ ~ 0 C ( 0x.

0 .,o Ic ,t a ,I- U

-~~~s ILI SIAN '

ON~~ 0 AN

0 . I . 4 O N .1. 0 .

N a4. IL 1-t

.- 0-

64far4 xi 4:,

............ . .

. . .

# $ t IA N .. 2 1. 1. C 64

;m-~~~ 5-4c x & a, o n

foI

cw00. IA u IAD w

4. In C C 9 L

. 6 I A N Nz

IA N

PW N

C!i 0 0 0 N, C w4,j & -

& 0 Nv - H w MhLN

+ 61- UA I.- I'

.2~~~E In -1- . 4 . 41 V a

14 0 o Ia

CD 4D .N 11.

L.NNN C 2K NCU' o 4

... OOOOO~~~iO !i .I . .6 .

N6,.IW W. Cf bA4. C f- -0 IA

DA Ini r >=

0IA0.4IANLO 0' ILL 4 'ae.0I' I

N~c (v EL Cw.IS-

z 0. C'i O 6. .

-7 CS j 0 0 4 0

.x V.3 1,3 K K 2T 6 l 13 -

.5r w 66.6 0 2 :i "i 0CC C Ix N a* IA I

N NV w4N 'I N N n.6 Ni NC ~ O N II0'ulIO 0 * c 4 w 6.3 L

N1 N C 0' In N. C6 V 6 .

.4 . . .4 .. .. N:. 1.2

.4 . .ZIAIAAJ ~0' .3 N N N1.. I L

w4 N.4Au -. 0 ~(,. 4 () .. '. ., C1 IC N' C7 CI L). CVf C .1

'o .0NNN w A N0* M W 2o 43 4 13 i 2

C" w~ .4 N M. 4A V% N 4

5 44 Z i6. / N

Page 68: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

.4

- C,

*U W

'a ce

9.))

p 00

oz

.4 u

71 w

145. U)

0 ui w.

75 00

93 u~ U .8 -

C, *) * ih

-~ ~ ~ t 1. hMh,

CD N)

d l) '~

N 0 0 V, 0CD'CC

z 0 c c. 1-E. .4 A

-9 " g.-

*~i CA~C 04 9

U LL4 0 Vi- I-*

0 z 5 owh

7 -j 0 51

14 vi w

CL -N 0' 9- L *Srt ~a .~ 4 '!~J UI- 44 V

7 0 c 1nC) fn 6j .b

.4 - v.4 4 9- . 455

Page 69: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

30 f C N 4DO N1 CiciMNY 4 It ~ 'f

W9-

-VV 0000000-0

0. .4J, tC 4MN 00 '3Mg I Co U, Cor O.

0in

r_ LACev N f.t' .50 .o tp4 fl

I, .4it 4DA o t0 0I-n

t, 0' .. W N 0 A K., -9C

~ l~a 4JOCLCOP56

Page 70: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

" u., p. .40 0 0 0 .0 0'0

C, cC 05) 0 00

00 0 0 1 1 1 4 1 0 6U%1 .o

W4 6 sails .. ,s aI al amass . 2.2woa 3 0.0"..-. 'WuWW WW WW a-wW0wwso - -

I0 0 00.0 ty0.4-0. ~4P-.50'S'o~. 2

&Z oan~~~ 0. 00 50 a an 0. . 00% N .J N..'. pJ4'0eN444-a

be.D .4 l'S4.V,444444..00 .

.4.44.4 ~ ~ ~ ~ ~ ~ ~ ~ ~ m .40 'O 0.11...*...4.0 0 0 0 0 0 0

~~0 0 0 o 0 0 0 0 0 0 0If Vaa m a a0~~~ ~ 4*c**4 W~kWWm.a,

*h9 .s. %n*. pl5

5 . 4.. .t

*1.4 .,.. L.i 0 ML * >**.44N'404 U. C, ,

*SN- J.. N - -Ic, aOOOOO~tpo0 O"I

III.N JJ.. C C.. e,.5 0t l"' I, 0 . . . .. 1rama ama V ia Vssl se 00 L0nj. . 4 , . . -0 0

wn al4na..Daa N .0 a,~q5.a 005N, .lo

QI 10 .4....444 0 N . .. ~ a 55 -. . . .

a-~ 1 1 -'.'.as.a. -% -. -0 ) o 0 0 - 4 --- . 0

U. I'. ri ..s 1. "1 U.s U, 0Y N Cyran 00 .an .a 0 . z

V, 01 aiO b,.5.k5. II I

.7 .4.1 %, v I.4.41444.. 1: f 4 N "N N N 104V = - 1 0oo1 fl C a w4:N I n..anrana- "

na. m a a a a I a a m a .. . . . . . . . . . . . . . . . 4 jJ U a ' lan . 4

2D ~ ~ ~ C N.5'.aa,55 W,.55 4.4J 40O C C0.0.O 0~

44lc "I, asi a a, mamm m~f il --0 J 5'"

.00 W IllP- C* as u 'Us i" aA., ill- L 10 M az .~c'. ' ...- ' ppN

Na, ~ ~ 0 c 044444444 04 J A0.. na ~s . . . . sC- ~ ~ ~ ~ ~ ~ ~ ~ L 00abtaa..c................a Ioaa.o- ..

C n.. 0 aa 4 4 a aY a N mV m a '4 4 4 . . . .i a m CN aD N i m5

.49~~C I? .4 .- 1, 0'5',1N.. *444.54N N IS i4s r.an'00 ~ ~ ~ ~ ~ ~ ~ ~ ~ OD% 4-. 4MMMNN'4 550(50040 554,annn

44 ~ ~ ~ ~ ~ ~ ~ O N4 MsCMi..N aa assa

NP- . . u .an IVP N ILI [.3-NJ Ill U000 .Us U

N ~ ~ ~ ~~~~~~ Qp C:ai a mC' % 40'5S..

an * -1 s Cs L. r1 -: LI II "I N a. 5~ V m a1 C. a .4. ON N . I .9 O . ..

DN ... C C:5. r: 1.UNO0.OS Lin3 w Mc-4 ,b,4l~u .14 a 1- -cy L0 N m ., UN 0N .09'J, Ip' O.P N -1 NI vNNNN05. 5l, Cpqat' C) a0 P-'D I J0 N 08. .O.a . 6

P.J. m~.* N.NP-PNtM. miama5m

a, LI siskaJ~a~sI~~aa.IlkU

Page 71: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

Ln . -t 7. A. N 1. N

LA COa ao

fo m, C. 6. a, .0r

1. C IfUNN Is.

: * . * # Cd

' COO sCA0

- F, m' . o u. w IN

*q.. a,4MM ai

ON.0 oN

N u.s

w 4a 4*

us6.

Lii m

t4 f '. N N La

.3z .4. N. ..- ...............

'o 4m

. Mh

of 0cu, 0 C4 d04

*' 4*CI* .4

"I 1 u, N - a I 2v C

-8 'C U. q.

Ll,usNNN Is CD LLh .

.4 W4 .4 .4 w4

z. - -4 N- i's '. IV Us

A. ell w * N- h

ev al . o

cIa i~IA . Im 1.'V ~ ~ 4 0

PiM.% .9 Z, ! - ..

hi0 0U u

eiii h L- u% Lm hi

f-01 0

c0 sms w o4

Ka W) wL-A.

_j of cK * 0 0- u. u J

4 . .Np 0j=j.I i 0. Lfl oA " Zi U "I C.

)c MO 4iI ll hi hi

0, ty .3h.. 0* a 3 .0u .1

cx P" N~ ') I- .'

0,

N " r

.o hi - 1 4 Lw _ j j -

N4t 4e N6 1 3 0 I4 X9 3e 0 K A hi- w L .)

MMMJ ~ r a. ..i.

N M ih

c" * . -- "" , 0 4 0

,

0. ..

..4 '1

N1 .4

04 K

-1

.W 0 4l 12 xi Nj Li. U)

t Nlr

cc, LA

Li o Ins t2 ItYe

Ciii~hWi.~ .i Li

.i

.M4.CW NU.U.4iUs04i 0 Zi so LiiV4 4

K

).M43MP(3.L iNUNM'L'c

M4Nu.~IAMUC)J(DLi ~ . . 4 ~ ~ hi.58

Page 72: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

01 tmL Y, wu 4

tCv

6)L-4 W%-

Ib b h

VV

0 .1 oww .W inIw 6i 0.1 0 00u44 (D OD

0C.-~ x In. i

* A. ~ C-9 ALU Nw u2 . I ZCV * 00 UA

CD l'- Z 2w 461 o iz. O i WCL - - 02 N hD ; - 6 i

0 . z 0 04~6 .0 0

0I 01-, U4 w L I I2 N

2 0 0 wih w hN 1.. : U I.,r CL 0. vi 0 7ar 01 4o Q ti11 i NCC

.j V) 0 0 , N N CIn 2 2ihh h ih

wL1 0 0 4C i 0' ) I. -J I-a U) ul Ny 0 0a,N 0 C) L V i CI C)

2 0' N N . U h i 9

Page 73: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

IAI

.4 on f " H 4. 0.1e

LL H4%mJftia for f lfi.4.a, w S f

4.) .0~ n n

'a 'D LC t U in

ft t

4 .4 'A 444.4 -

a

i

IL

WIL I

4

21 W,. ri P O W. es .

'.4 01N.4 . 04& r00--f % 'I'I

W60

Page 74: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

00 00 .cp ~ c u ..i p C0I ! IlI V. =I. i Li Li Li 1, ...... ... o LiL ~ i

40 0 0 O 0 M fID 40

M CDo¢ oxo lo .4 C)f f j e yfC , 4=1 4:1, in 91 Ac 7 T U% 7 40 CI

* IC ,.. . . 111 6mm 1 . 4 . 1., 1. €, W,00 0 0S0 " WIWI0 00 00:

:P0l0,0.00 0.. ........ . .. t! I0. 4* ,.* $A jI ' .6 I 4. . .0.% 0 .0 0 'J . N. O ' •. .-I 4

%& 00 100000 0 0 C. C0

02 ~ ~ ~ ~ ~ 20 VIJ.0.000 In 0N.0 ',J.4o

C)w Il J MN.4 ,.O-i ai 5.14N. - ,lN'

%. 1 - 0 6 1 1 5 1 1 - * t

7 P . I, In w ,a,0 .o

.. i 0,, .d ,C,..40 *aP'? , , W... ... N. .... 0 .

0o .0 U. j no w teO,-'-

1 11 1 4 4 14 S I I O s.

.,C..NM* 3I, N * * .O *.•t4: r IMPtO N Ci:.,L C,5.1 ..... - t

1.1 i.~ ~ a., S ,,, 8, I C I, S,, S S. I t I S+. b I I+ S., Ot. i-. . O • • N. •. .. O in.4 i 13Lio..£3 ii. 5 - 0 ,,,. P .,,.3 ,;.

.. ,. . d.: mp C.. ei .. .. . .... , ,C) m . a. . . . . . . A.,

104 IZ 4*. ....... 0 J.... .... .*D ..... ..

,.: . ... o.LSI. , i.... . . ..... ... ..

W.. ...~t. ,+ %( 0.+ ...... . ..

vs 11 * * * * * * * * • * * P+I .34J ,i44 . . .4 i- .. i - • 5. i i wU.,L OiA

b N UP LIP L) I.)0 wUP Ii ., ,

L s,3 WP U Is U P6 I-A U w. ,

'IN - a as InsAt., w Ina-', nrI0~P tt 1 1 %0, 0 0 , ) C %C :P.i..0.0

14 "i I I I II I6 I I I I. . . . . . . .. 4. .JV InniLl i InInI=0 .I'. I. I., LI. . s L. u 0aN0, , g .2 qP .o - U O L. 1. tat

*~~I In N.'n . NCC . . . . . . .•, c ta

+ It, rhll T Is, L, J , I.I ii st . 1,.I I5.

00 0... " U P,

.,..C P .. O'flce"oro o In00 U nrc C , . ;, 4

r es In, at, Cf, eI I Nt, lA

I.- K N1 1 4 1 1 .40 N, 10 04':P =.I

1.3 .., . ) 4.0O ' .. . U i . ... 0 4 N+ N l1.1 I 5'1. l l L i l ' 5 ,,L .40 N. . . . . . . .I

... m 4 0 N. I ' 4* C I+ S " 5+' 4 )l rl ) l ~ I I O I N - - - - - . 4 ,l - i-U.4a II I I I a I 3'.~

.i w +, w ++ W, n ;. .

3li- ,J, Il ui U It

Sa N Aa. t. Nj no N N N I s -a U N

g4 .0 C201a, 0Pc- .. 4u . II S 44 tI I I IC I ttcV CPI i. .4,ia .hu 1 .1.4 .4. ON N AN O -

N-W. fC. UPN. I, IN51. N N N 3N Lvn , m I0 N InNc-m %U ICP IC'.C O~.44 i u4 CP0 0 .'C' i

N I I.4e4.3.N NAN . . . . . . . .s N .4 I I I I a I 1N P I S I I C UP UP UP SI w UP' I' I4. N 0 O .

(4 ~ ~ ~ ~ C l' .1 to, C)' u44 0 41 8 I., I (1 .C, ~ni N NO 5 n u.40 0

N~1 C0 NO44NN U' .!j

no N N.4 .. . N no Y Lf .4 N %a I, '. 'D T I N I I0sn 00 to N, ,5 n 0000 0v1 I

L) 0t1 U1 NL.luiiNIfts.LI. v. x

W "WU-L utwU £4J5I I"00 1 .4. "1 5.4 00 Ni -t- NIf j N a 4K N I n N a, 0 0 mi W, 40 43 .ry " .4

W. u4# r) 13 *1C fl i40 m -l m A), OCi1N3In C' 1 ,31 1N N 440C0 Ii'.1 *r P, (r UP upa.4s '-4 '. I,$e., , L., 1!, s

4

It ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t Ini aiN . 0. 4 ~ N 0s.ll~...l.'a.i3a L~ t

0 15 1. ,, .......... 'ii.40 .44 - O..ci0 0, N

C. 0.? I I4 N N N N 4 .3 ''O O,)0 ',0 .I3 0 I ". .1

.45w P:C fin. MC IPI I 43 0 9: I 004,44..... a Cc i i 40 ". NS ON. 4 4 4. I 4 I C MOt 0 3 0 , asp , .2 CI I* I Io ' a a a

Ca NJN z0 l 444 N V..W N in .0 N. N A 161 5D N w01 CUSO3a,5 4 U Li ~ iNJ 5Nlf O' .

.4. 0 0N 3.3'N01f550 0 N .C0'i0'in61'

Page 75: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

4n

-0

II L" 1 A MI4'4IA N - 0.' .04.5X. T 0.0 7 T 7

!www

E .t 00N N N

V. V' A *2.~t I

r tv z0

n.

*N Nam N0 V%

0-

4 % A A fA U0 -

7h hi Wi hi i U) do A** M N .0- J IV D -P

ey e N .4 4. N Ct a. O N

a a NLj ..- a 0.- 0 Ci

raL. A ,D 000 L. 1' W 2C

**** -D .w . 0 C,7

a. U, S Nr X C I N. ." N0 Ncou0 a4 07 .ON Gr.U0

r. a) Up UPi 00 :f.)~~~~ ~ uA LA biN , . I .)xL 3

0 0f U.. I4A0A-a N 0 a- wI

C.aV..N t3 0L-y U, I- w w00 o.. 0.1 wV 7A u

03 UiL v )C N 4

14 .4. 0: U % .4 02 - w

to a. p 6 *d

U. 0l I'. .4 U.0U IA W -0 jw .11J$, a Co 00a N a - N P Y i

m 0 4.. f JIt i, u 0 Ixi C) 0 1 4

N , s 0 a, i i NCI C or 0 a, N, o C. IT- " Z ZG.i, - 3 U' ' o 0 N a x 1, IA

Nw 0- hi hi mOC O 0 4 0 . . 4 i hiXU%0iIlu N .hi 441 4gaZz . W C " 0 U

"NN-N4' N x a- QAh

o. 4N a T N%7C l 0 N NI i

:0 4 NMIC .. or-.4 w a 7

tvCJ 0001)a0 N NA .. ty FqiU N 0 in hih4I I II I I hi

I- .4 . j I!,.0 , O I~~0 10 4l .1 to t. III hi ul 1!0 00. . . ..D 4j N. u % 0 U rJ 0

7.4 4 4....4'NO 0 N- a- a- 1- a A a hi 1- N

-. ~...........~ 0 a, U I. 7 44 la ~ a . -62.

b-e Sll 7 *@~4444 -. a Ca-7ahi7*44'hlh~~~~~hih~~~h~~hi 77T4.i..I 77777hih a77s . i U ' N U h

Page 76: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

.4 .4

-howCo w

a ar

ooC

4v40 X to i

44 4 .3

or-

I0 e9.4 00

4n L5L

too T -

to 4 i 'b C .

W ~ 00 % U,

t4 94 A 4 -A.. I, z G

S A. L2 . . .* 00 L, 0 , w II &

.) a CL~

to a. 0 M)40 0 i *i0 0 Chh a0Ci

C, ell 4 zt 14

4L A00a. 0 0 00

V,'d 0- 1A. -d4I~ *. 1

V, I- Ini~ ,2 A

x h- 0L W -1.- 4

A- Pd 0 ' 0 h 1~ U 63

Page 77: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

in

4 4)

N.44JUmw wo-f-.o

- .4..4.4.4.4.4 P4. m

w. r U

40 .

0

.4mcfy*N.OC.

w N c4 4 . 1, P4 P.,0

1.5 . .4 4.4 .4J.4,J.'D Li D es A*.4NP.*C C

ow 0I0Mi M mll N C, -C

to t L f%"4 m -"

IL 4

.9

U C3 C rl 41 M' C C%t. r NLAs . S 'lC

.64

I-e

Page 78: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

CO4OOCS 04) IU10 , "II I I 6 I eI II IIW WWWW . IWI WJ.0 10

m . 0 W0000-.

M% W% fif In 9% oAI U% In IA -.4

* .... 400 W00004.4-0.4w40.4.4 * O-N'ft Nft"Nfy

0 0 e i 0a4.4.4 .4 2.WW W 4a W W W W IIW )WWWW lh W .WWusWWW -:0 0"0T 200000 7 ~I 0. ev " %0I ; W% m0 ma-00 2

1- 444 4 4 m g 4I 4 . uPin u W ir W I I, PN - C3 a, N 1.- 0-

*40.~N 0IV000 0 V:JD4.4lO0 . 200. 0W2 r - . C!..:.14id 0IA* 00 00 0% O V4 M N -4 -4 W OW

&.4 , ty I V NN U0.l4 .2N " V 14'42P2N4, C1

t:DN I " U 0- 1 o <.4 .4.4.4 .4,;.4 0a, a- a- 4.4-4 .4-4 .444 .4 .4 C,000 0 0 0 ,

m.g... ,,..,.. ,...... - N 9m n....n 4M~~t~~aNP~~quN~~t.J4%l~ IAIa4IAAO4 U.UIA t a0~

00. ~ ~ ~ ~ ~ i UCOOCO UI~0J4 00. 00.4.4 I aP1N

4.r NA. L 4? l C w4 1 . .4t4.4 na ft -4 00 4~j 4**~N 44~-4O* *13.. .44JJ4 .0M4Is.0la.IJPN.M LAW T.a a oc o o o T

IA .N 0 N . ? * " * *N# C 0MMfa P 4%1

04~T 4 44 4v4 4 N, WNNJ). 64I 1

I.% .4 .4 .IWI.WWW. . . . . . . .IA0CA. ..Z P. .J .AnWafl'0 4.1*AO .ONC a .1 ona (4I D l L 1

I.,..' ~ ~ ~ ~ 4 .4~044'1L *( 0r W4 ~ .. 4 m-1N

II .IiI)0j11WWW O N 0 1-w t: C..W WI . 0I 42 M0 P0 0 .C. 3.a IA & N'100,ell"W iN I I * * . *.. . . .

.4 4 I Ml AI ISIS. ... . . . ...4 -tIIIAdII .4W .40 n C

W. LaOO S0t W '* U%1 J 4II~,S',S M. N t,1!.w 1 1'. l 1.1 L- 4 M4 7'0 0 O' l . . aN "4 0 !2m n NW 4 NOIA CP

cy41,c4 - 10 15 15 5 -'rA - ONL.MtA.4 n

C0 C, NSC, NoO P-OO. 01~ N p.000,-1 11

.4l:.44 0 LA4 44 5 M I M ft in In I . .. 4 .. C4 I-L W en t SI S I I S I 242 0 Jw IIWIltIU3 IC W AIi.W.W~ I .

m K0 N .U-i P: , - % P It m0 " Ir, = , 0.PNI0 m 40.44.44 4N N c- fuNOt l A4 . . .4....f4-t % I . I ~I 1' 0

I4II4 ID M0 4 1 NI N I I I 66055%51 % , NumWI-l4 Ia UId.IWl.I., 1.111,1.4 1.41: 0NNIN,',N 00

I, .W N5 N44OP .8 4MP . 11 .0(I .AO . U, 4

to . CI *44 N4 .44 O W) tI S2c 0mI* 1-J. O'OI W . W 1.111 A1IJ N'1 . .

N ~ ~ . "4 . 4..44N J'J% . . . . . a1 .j 0'-De~e N

C.U WW IW..LWl u 0 0 0 0 4.4 AJ.4.v4NOP1

* q. ,WW.WW .4u *40 00 01 0 30 3 1--5.-14-- NO " I.OA N 00 0 x c % C c 1-2 C) -O' .2 3i) 00 000LT W " WW I N.. . . . . . ..mIW I *IA 44 .4 000 0400 S S S # I I I I 4 N 1 I1f1JIr0

1:1 l I 1:11 -0 10 11 t-M O' 0N N 00 0 0(' .4. .44 '

CL jI yW )a .s )c V... . . . . . . . . . . . . . WWLS. - .. IW1WW

P1 K;'; 5; 4 St SI m Sa N S0 N I I, LA. C.o 0 f ' . 0

.44 0 .4 4 "3115.58WJU. .414444444.4 S I. . . . . . . .4

*4~ ~~~ M0 C2 0 CD0 C)r O ' I ." n 0, CL0) O O C . C3- 1 - N. 1 4 1a O C I5.1 ~ ~ ~ ~ 1 C4 1- 4 qI 4. C..4'u .4SI IS O Na

It w, - 0uU 0mq0S ud 04.. c44.-- aIb, ,941IIl- I 04 NO 6. 1 17 , r 0'4 .01Il~I 4,OOIMI'Ip#IS Na I444414... 4IL0II. SN 11 . . . . . . ..MN 0W . . .TNP1WI# 1 aJU, W II .4 1f Cr O..-4..0 4 K1

0. . 1 A 0 " ,t. 0 4 N11N W I -) 1 N 1 N P140 ' 814 13W #"WWTATWT .I0 SL LTN7Z0.40L U AD4 11% 01 N~l N n0Ma n0U t q r . 0 1a1 1N11- M1 O 1 1

.;A4 gg1 W N W1L UJJ 1 M - Ut(8 R- 1*1 0 1.) W I Z

N4. U44444..... 180:- .a.0cN?-1 -0 z .4IC001C .1 4 . . . . (

P- 4 zI.1 1 Il I I SI I I I " S" C' I 0 4. . .. 4. . 0U)0 A S 1 8 1 1 t. % 0 II

0 4 X- C4 C, ,J 0 *0 1 C 1 "" 11 111 .ILI 11!So IIS W II IoA1 r ,C C C

1. 1 .1 to N3.1 a4 O0Au-C3r 2C2-1.i ' u x II0 S41 1 . % ftJI.Jcc,* . W1 W L)4 4 4 1 . 0. uIA e - o ,0lo oW C C.. a u~I m. UIJj C,0 011tI COU1W.O3A 00000013 7 toD 0. .1 %1 M.eACOuO.! NV: 2IA0'81a.CIMI %a4 CISIWIa 0

x 2 NO IA.N )tU,% 1 0m --0~~~~. m .4444444444 ON 04 40 a, 0-0.44.40

13 .4 CICI.CO(003 .. 4.0..4..4..4 C65.

Page 79: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

0 4= C. ft 4m~

lp * . .

119

0lwuiw* ww.4 4:

a 000 W a na

ONt 4.4 in NO

X% . t

a3 99

N.1 * .0.4.0

.4.00 .*

.00 U)' lIAj U'

K w14WW 114W0 Ne

O u'%99 9.9 4

11.1 1#1 t N a Id, lo

3U,4.4 * 0

0IAJ W' MU' 44 N .0 0.0 9 I

U, 0 000 N

K 144W .91J 9130 1I. 0 0 . 0 '

4~~ In_

)Im UO 'I 0 Nt IA .0

a. M 4w 14-0 q% m.

0. 0 W3 So. K

4 0 N,, I-. IL It 9

N MM Nl

In 0f 10% aw

K~~~~4 4159 9 42

Ifl -in 0 U .

In Lr~~~~~~1. N P-" U K

-awo-c Ou

00. l m ") r) 1 . N ow. U'

y...4 M9.. 13 ft ft (V j II. 14 m~ x4 u N

~~i~ 9' Z 199 41, 0 44 1 4 W Z

WM03NVN. t.I'.4 4.40~.4' C 0 0, 0o W ta 4 . .

0 ry 0, *.e w 0 K 0

Ili "I 999 4 1 us 0l

W3 uWupIIww1).0 &0

4...44 -CJNN N N 4v 'M NNW) 4 g1341 4 0 W t 0 0

N IAN C3U J.S

ft96..4.If99w9(J 0NIA93 NN.9.

co .44 9N 4 . 4* 44.49 O .444 a.I40 w7

0 0 5 0- .U994 0'0)

No O9 a, 0 f vm "C4 " 7 0 j JV" l Y

9...W 0..

. . . .. to = CL got 0 &

66e I 4.a 0

0 w C t, (.2 n 4.. l f jC C 10I-C

Page 80: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

.4 .

.4

.4 .

* . 4 4w

C) 1 4t .V6 M' V

j i tN UN4"A

l.-. IA 4

P., 6. ccI O

2 94 z .4 40 0 3 t

fu 2- 4.. .4fU W4

on .4I In@

%40 Zy 43 w

WQ w 0 11 "1 Q

0 4.1~'3 ~ N ll Io4 -A .fl 9. 00 IA IAW

z .. ) 0 "1. "

ly 14 U. i 4N

A. 0 0 3

4. d' u . I i N11

x C 1 41 p 2 4 N 4 4

L2 go IA 0 01.,- 0 MI.

.j 0 0 % n zi z. LL it z

0 2 - h N I. 0 L 22 . IA V) a 0 0 0

V) 0- 0 0 1.- CA -j u L I.

-9 C> tv ld hi c 0 )o.4~~V IA k n 0 A .4 2 h

*j .4 0 0 4 67

Page 81: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

*1 .4

w

IL

-9 0( U, - .1 41 , I) CP,

I. . .1. 0.L: . . .. .

&I

M .4 .4 ImJMNM0

w k I 1JJ6).4MDN"

inz

-~. 14 .4 .4 g .4 .4 .4 . S

a1,4a 1* s.P J flVif4 N 6 U N 0 4 1 '

* t"

xf el H r4

K i68a )c

Page 82: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

C', 141,9 "I mI 1. mI a, a,0 0 a

m 4ww w mmu

* 1. I. N.4 IS a aIa-

.444. 4 - g .. 4.4 4.4 "..4.4 cPC a ,.4441t64461IQ %*4 1 11 I Z

N N N Nw NN SI 0,0 41 SA CI t 0O A a P2 tCO'a 2-l 444 34 - - - 3 Z Q .4N 3 N A I * 4 illdN N 40 .I-U..w'.S8-a m

%0 43404 O ~ 3 WNA '4O NA .L I"I LP,.1II01n *N .Na

.4..ID i * IS,.Z.4 41UNN.4m30 I., "

~00aaaa~a W4 Os 6 I S I 77"7.044444444444~ _W W WW W WW .

U14 w 43 N.,.,f.I~ W* .* 114 &* * ... ,.C.P n0

z IS 0'Oo W 01 1W M.4 INS 4 0 1. 111 O N 0 0UP44~4 44'. 0* IDi C1 1 1

onA 1 -4.W~ a I W 60 - W I" W W 0 0 VA.4. . I C: inCA. N u . U a V 1, 0a 1 ,.

WO' COCO43430IC In 0 0 A InMM a N I 4444',s0..

on6 4 PO 4 4 . 4 4 . 0C WM.0 * , t -4 m 0 0o8 6 4 a l 1

All C IM o 0 4C C, Pal..4 '(4 0.0 40 43 3 4 4 $A-- PI ilI.44 CIDA I4J M 6-A 0 4444444444 0--.11

In4'4 . zt0 0 .4 4 US0 W0 I., US W0J 1.1 .. , UZI.

C2n c -in I, PIP PC

N 1 4404l l 4- . r' r ., C 0 Mc usro.I. I. .3-K.4 C430217443430 0, r: a. (), V t, I.0 0 Jc. W

W 30I-1 1 10 1 6 . . . . . * IN. C.*004446 t% .4 DJ fI

P,0Po U. 4COa N C' . P, V 6- c:P 4 *~ o' IM

4- (4 . 01 40 6 e. 1I 1 1W * I W I 1I ': : : S 4410,411. 1 1

*6I0 04 MM V a11 0 -! N4'30I.*( w1C)

.0(3 t" N(4N3SNW0I0NJN43N440 NfN.444 L~0 4In4 OnlsP. US.-.0 ptpIII = N33444444.44 11 IDUm Inn S . 1 -44 PAL)4 44 IIICP 7

4 .4PIwPU a 0, P-,- 44 61 >e 0 4 1* CY.4..4u4.14.4.. 51 3 1 16 1Sl LI 2

=1 w. . UPWWWLLIbUW U 31 U. IJISJWWLWW SW

.4) *c: IZ " : q=, a, I,n I. C,110 44.4TIL .'4 0 N NA 0. L=1 a C.jO'N0It It N44 * 0 - ww3400 I, N eels II I Ie ISI

N. . . . . . I.I,.,aww In -4 1- x~ .

0. 3 . .4..a W .0 4M N 4 M 4-. - a 0 0 3 N A III, UP

430 .0 US W US 4161 W US .II i IIl

N) IS I- I4444444444 . . . . . -* I I I I I I CS 5m U- IS .11

W. IS 0- ON e- LCI gel semIS UP' I. a. O''00 ' '!M' 1" oI0 ISO 4 1JWLqW0, .0 PJr N 0 0 * 0 M M N

43 ~ ~ ~ ~ ~ ~ :1 I?4 IS 0-: r, 0 o '0 , , c 143 L4 I 1 30 II SI . . . . .IM. - - 0 a.404 N 5600Ie0' j-* S. Nj0t4 C

N PIP NMNOO.4 AS N NW N CJtiNN Dt D. 043.0I (44 4.44.04 4 UP IIIOU,- L LI" NN(AJIJ( INN l f r U11 1 I N a 4 e1 j a CIS M I S It

PC4. P' SID4.444444. 4,444444411UN. 44)MM443Y 0 . K fl( I .*0 .4 M0( 0 I4. U,*0(4341 .(

.4M it N S I IS I 1 0" 0" 4O- cu .. I a .1 In TVNCI M (4, I-4* 0 x D UP W LI o ...I I ftI, .WotIl C .444.4444.. 111 1I. . . . . . . .4,,

*. 44 0- I 03 I M " 1, -2 o - Pr, - C, m b I 1 1 1 1 1 1 S M1w t.,. x C % 4 ,. P' 11 1.-N "1..~fN 1i.I.1I ., 1% 1a.J I I,,s.4. .0 .

N O C, 4 ' M '0 I A 4 4000 N.4 * N O'N O'C N N O 4 4 44 4 4. . 4 IZ C0 t - I" a, .4 A NN ( NN. to In.14 *0140c e0 (p n U% I I I I 1

0w I's -T 40 * . F'4 t"CNM 4' C 404 w. I I.4111 1.1 l. 1(444PS0.n% Z 1P D IN 0 1 C " IA tUll 0 D N4 0 ~ III III

IS 1 il , d if, N) OI U40 4 004 N4/ U.NI .. IT,.4. U Ib444444.44~ I00 444 P.*0 .4.n40r"04to 40 I

0 .4l((3fL434 01.0 . . . .1i..a.,W 0- 0: .4( 0' C3 6 Z CO u 6I I 6 c~ 54 '6 6 334..4444 4 U 4430C.)0((4((4 In~

V) - -1C N IC I .W .I I I 4 1,, 4 c 11 .II C'14 , 1 5 L 0 C2 C

0- 44. PA =4 60. III 04 . 14 4 I44 I l I U l l I It O I I 4 . 4 1x - C C,1. n C51 V.3 n4 440 3 .

1 n :PUUII ! I S : l Ill.41.11W1.30,141IfJWW 1. .. 4444. C0.r..

2~~~ ". w4 043 M1 0 .0.-.4 Q Z0*4 M0O . I 444 06I -toac :P3.uIsI7r C ,IcPc * 4* . . . . . . Nl0l.* 1 3 4 w1 . Il01 SW LA ilIII IL 2

V) n -I V444 1.4 .0N4 .4 4'.-0 * 0 0 . 1 ll" L 0 A0 U N*0C 0p" J . L" cc US N 4M0* 4 . .. 00) x :.0 ;cz. n. f a1 10 m U. ,I% J.444. C: C: C NM 1:0((444 4 4 0.4

1.- 44 W MC3 O 4 I.01 t4.I.44.4.4..4.4.40.4.4

00 .- Z 0- ~ ~ ge 1 64 3 ll3'4 I*31LI69

Page 83: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

W% VI, W%.99 4 4

14J* JUJ 44*

C o w 0O'

4:I I 1 * IS

w s w LbIII Lb 40

0 %IS V0 CIJ I

-14

I- ~a.% U% 41 9. 6

2W~~0 6-

w b .

W9 .0 40.' C rN 0 o f.

2.*N 014287~0 N.444rZ~~~4 1' SW '

on, Cc.14 p4. 94 C

.a P. '.1L Lb0v . .% t CAM

2 *o IA in x

CZ .0 0 -h

9 1 1 4 .0 0 1 . ,u

X W ) I. W UJ lJN 0 4 deceu

2 0 0 1 W II f

94* ;L ZZ

PO If NC'') 0 & 09 .9'9 w . . % lix4 -94 .48 -5 " C, IV -) w A

.* .3 se 0 0 11440~ a4 7 7

PI to U% N b~I It w J 0. o v0 o- 40N

. w W 14 0 0 % 0 I

w Z S2 4, 0 - w4 4 CO I

ac 9. .~14 40fr 4 1.- 0 '

1 J C 1

Lb 14 1. 0 2 C Ili

'.' .. 2

.116LAI 4 IAI 111~ 1. r. w. IA

I ) l 0 w a

-I.D~~b.,. a. 94, ". A, 20 . 0 9 %' 01 n ru a4 L

TC M)C '4 Nn 04 in 01 Lb W,

2

I- C / b

*j 0 4 - jI 14. 11 Q. % "0 CMM w .0 xb .4.0 ~ b

444 w U. T w L) x 04Zil26- u 0 , U

P- w 4 ' 0 0 a .. 0 .4 a 4.) a.

m N 'O 40

40 o- x Cv Lb

I V1 1 nw4) j

AuN 1.? M .D N Mb Lb z w Lb j

d) N. W, c0 In. a- go. 9L N...r1 4 4 A W

14 ~ ~ 0 P4NNNN u u

XT4 4544 219a 4 0 4 a 0 CA

Lb Lb 2 4a42

-W~i, W b b q.4.Ua.aI.Jb1.lI "1. .4 .4 III .h.

.1 .0.

.1 .. . b L

N 1 0 m , C 3. UN 01 4 . C '' 0 0 0 U) 011 9.40

)( M W 4 0 0 1' N .4.4 NJ ij.4C 4I L . J .

"1. . . . .0; 44 NU N C:2 01. N M J U% I.

a S

41 . 0 0 .. 0 ...4.444 . t4 4 9. 9. 1J Lb 44 *4 C 0.I %

Lb C. 0l 144 0. 0. f IJ CI '.J- mc

w wIII.I III 4444444"444LI U u II IXoW On n I O "bCC 0 1.11Lti114l r. C

4j, MM0 jL a't. 41 41 k I

1400DMO 40t.9.49.C

59.9.4089.0 .0 8J200N70

Page 84: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

14 .0

.4U

* 0F, w

Ir a

N 0 j 0

OD It ac a,wa W *6 4

4e 0 0 #4M I

1i %1 C

x 14 - XI 17 za In

I-. CL z Ww %Aw-9 00 Nl t .4 ICIl9

to pq IV (rIO'01 p MIf I

-9 w. a 0 i

93 .. H- law aa a Ci

V U 4n ac w V l n

4 x4 V) 00 x 4 x 4n 0o~~c co 1-. 93( . 4933

z * m 0 I- (A (A 0 H D.4 w Z, vI i "i 2 6.4 V)

r-J -V) 2y C3 &L -H.- LL w 4 .

0. u. 3, UAS ) IL C.)

.4 h 0 H .4 HW- h 0 &L 0 gn 932 (3

j w 4 A 99 2w i.99

rh C 3.j 2H ZZ V) -C Zl 12 12 - 0 = 0u cl Ili4~ C, 1. i&4 In 4 Li wAA . w .4 x ~

a, V) ,L L, 0

- 0 0 93 I. i Ii

2 j V -4hi ( 0 h 0 Z

hi 4 1 C, H- w. 0l c 0 mA h .

I .- V) gn AA uA 4

.. i .4-v0 0o4 9.4 h

ILI2 I.H

Page 85: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

IWO 4: Ma

o

43

ps .,4A.4. d ia,

*8 .r = or M p It

.4 N4

Im.

0 '0* Ut8 CIC4u

a'w

tOu

.4.

.4 -0

0 e, CD N 8 lI 06-P 4 111w "8 '4i f

C2 U,40"..n I

19*4 4 J*4 IL4

.44

to 72

w w a so .Nfl7Z

Page 86: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

AAPPENDIX E

SAMPLE DESIGN USING POWER OPTION

(7 I i,73 "A

Page 87: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

OPTIONS EXERCISED IN APPENDIX E

Power or thrust Power

Calculations with input tano I N/A

Tans, (Lerbs or Input) Lerbs

TanB (calculated from (l-w x) or input) Calc

CD (constant, variable, or calculated) Calc

Multiple RPM Yes

Multiple Z Yes

Multiple AE/AO Yes

Check AE/AO of input C/D and modify Yes

SKEW (Linear/nonlinear) NL

RAKE (Linear/non7inear) NL

P/D (input or approximated by wxtanai) ApproxCalc

ABS Coefficients Yes

Hub Geometry ApproxCalc

Input Units English

Output Units English

74

Page 88: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

94-4- -

CL. ~ .- L~

M0- RV

In * '4-tt-- --

'F- - - - - -. - . - - -

V- 0 ~~--..

_~~~p6 I_%.o-4r

.~Th1mio.LO~71l :

~7

Page 89: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

4o " INS 1: 1 6 1 so. S T1-a 0-1WWJWWJ on We

.. P2 14 .MNP-OMO

.4. 4 o 0 w0 0 dOOO44.4.44.4.4iCA CIJf't'N ICI c: O

44 66 16 6 %IilgOil'ge =a> w6IjaiWWaWWWWWIW A- WWWWL1IWWWW

a 1- IS .0 NIS tbJ UN 4M.Pi lw

14 wi WeN- 4-11

a.. N INS N INS t..0000 0CA0 OC000 Q 0 I 64 40 .6 f i I.,* .

Qc oco oca ,, he 4.14N eeA wv .C A .Oc CC Jn PI.AS.M

Yb- MO ' 1 C CD U CA- I F. . .. 04 -- - I rUS0C 4

0rj 4 (iN t 4 . 4 = N "" V 1 4 a LC tci o. C cn

z CA....... .14 ~ 4444 NO * l Ill dl m .

16 61 3 ", 6 %al CVI I0OIC ONOI N I I.4 i i awk 6. i h h C C %-0 a a I.. L., N u G i U -L

4.W I. 611 1 uO .JC 41 OO 40 NO N4C.(3W 0 . .44 -4.4 At OC 0 ID ' N - " C -. . . .. . .

too - 09 0 cC COOi0 3CA U *11NCNtNf o NO4 4 n ofi . 4N1aN .40P.4 1,to SCl * 44 44 44 C JM4()4011 '.1 to s, 6

6m. CIC2 or. cc Pt CP. 4:n c.NI C" 0 P~ -J 0 ; , ,- C C!11 .4.i.4i..i.,..i 30-.J 0.3 SeeiN i LU . Up4hilC 4:lO CAco o T O )w

See I-C wO 04 N4 N. ILI444~4 b-. US US Li~Lohw W 0%4Z ".. . . . . i'IiCCr OC, V10 (1C.4 ... 1.N*hLt 2-

0' W c M c NMW 4% I 6 I I 6 Ia I I I 6 I- i. C..4 M We .N !:l 0

.N4P 0 .4 .80 .4.%*uf C n.4NMOUtraa *I44-44.44.4 (w Pt~l 'n N T I c eaU .1q

7a t. UiL U- Is n ISI I.U.LUW2IA1 D0 c,1N1: Stt.f CA u 0C.r u C C V it'f-,C.C c 1of" r(1-r I'W N .741tg r I . 4 4 4 4 56

Ua toC 1.~l OttaN ee-O,, .r Iab u. tal uji be USIlSaPst.i* .1.i.40~ ~~~~~~ 13 e1' P.c NiC.OcC N.a44..64..4 (' (I 040W ONC or

Lila D OCS V VIJ 1F" P) IOn %,hU2-beU)jUt U W UI. US I. US1LIS IS ( C . . . . . . .)CII~0 (3 fI*.i s, b- Z C Taf I. f.t.u we P. .- 0 o -Stvt C. loC .45 U C c- la N-fb.

6Lto1 1 *b V 04 4 4 .1 1. ta L W x~NUU CO 'tt 1-( 4 . 111 - - - -I-C 1- 0 ,IoCCA- !.JGi CN C. ..-. . . . . . &60 mn C Jl~ai -

4S" LI br C. NO . I :.b 11 ".41NNNNN t"t. I I.. C4"V 1, 0 C -

o 44t )U N UNCO~4 . 11P6 hIgh L

on dPI N DC'.N- -CMC'Ncuor, 'It" aN OO C' OO C 0= C:lc ~ z.C 4' IA : ' .v4.4.4.0 NwNCAwNa.6.. . . . . W4.14ON W, 6111 'ii W, U a1 'l I

.7 1 -1 1 1 16 1 1 4c,' 4. 4:0cN.nu 4= P") 3ISwN vC u( .- t )co uu La.~ a.-I41 1p,.LJALIoI .'CAC 6.) C. C' CI 0r.Dt I %

I- bZ So0ti iSoIC CC a C.C It II . . . . . .a 4 I1 0. CCC'Cto a0C N I . . I I . I I I -t C3NN "M"OIA DCw 0

en 0Z> N Li US 1NCN USC iUi 66111ey or .4 -6 (3 f We .1 .ItaiUtaK -,. l

SoIIa II I- I6 T1 1 00 Ii. C~le r. o 1 e :t A t'0 Sp 0 yIN ICD w~w k u~w U.U,4.*IS. - .4.-4-..4 .44-1.4 1 1. . . . . *z a.', C:. C C moVc.Cq, ote- . " Ci CCA lno~v~1zpc2 b I.- c' NNN.tv- 01.. c' I. LwI- I +4 14 (37 CDt0'aCL. It-0',r I IIII I III I NS o' 400

W.Lbe I Uit. US '4 0'N- J .tiV*NN M L L W 1b,I.L~L I .1 L lai Lie "#A O .D cc tolr.0 'rl CN ON .3 NC- to 4 -1 44.4 4 .. 4 eC

USN CC .4NN N NNI NC N~ t a~ i C *SoI II6

111 N SK 1,10 P-I OO ACO4 4 Ua34W ) eNC N , S

C,1 u4 t I A i Y- X =0 L Ib III be U I IL 61. 1 C, S- 0 iri4 4.I6.. C.) C I J M N N C.7

44+ Q I- I a6 c " CC a lC(Crl l 4 6 n . I I I I I I£>

C' N~a 3 r Lilao) NN f &47j ,4K C4LNSaNSUt aluwuWiiii.In tv .4141.1r11 41.141 aUSIa m41 In ON 44 t- (11ttt1a474N ft)MNU.Cwh400See .I.4 II iIIII

(4 ~ ~ ~ ~ : 4 w)1 P* t'o . . .. . . .CNS! PM..4CNO' .o l'UI Ita~all a c)P: Li IS! C: 4OA)JbCCC .4 COMf.4.11 t Ii l W111t4U04.

ISa, 0 .c 0er . . . . . . . . . . .ai L C t- 4C-0 . ,'v .C, z- D o , afN .44'CA0 PP 4.P .4CO'PinOtPtlfPOM

CD0C3c0UC CQ V) 444444i444i C NM 04MNN.4.4.441.a to

4 a N 1.4 D ~ Wi~aIiaiJliWi I I I I I I 6 6 6' Ib 4 Ste ,44.444.44"vi.4.l'I

up II X- ISI a 3 0 0 C.JC)CIl>cO X IS.4 JCbe0IS' 1..4 6. 6. 61 6, 6S 11 64 6, i 4 '.0- ao 03 Q 4=> CI C CAO IAfL' W x C.r,4CC'L1 ifnCCo, , - X6a)IiJ.iw"~ I.. N

w 1kM0 Oz. NCO0'..4 a . . . . . I O C 00w A CAOL (4 N0 We .44 In r.i. O4; , NC0b 0 C ** .. .

76

Y7'.

Page 90: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

LZ 4 ** 44 4

3 CP P C, N S ,0.

IO.SL w Cw III w w w 10P.4

o f - lo 6J C1 .0 4 b

0. V. " U tJ, m4. .9 AID

%1,~~ 0 0InWer% z

C- # . 4444. . 0C.W 61. 1. W U I Il0 4

wl 0N Z: N j N 20 0x 4 I N l P, tr -1 0.

I- . 9

a . 40 U

0. 00Ul, . 0 C

S6.. ~ ~ ~ ~ ~ . CC(1 IC '- ~ I

C .1... ., 0 0

.7 ", 4 -. P a, 6'. 0

Or a, 1, .0 p0 C

N S

41 W6,0C C0 .9 u0 t 90. c I o4

jr4 * 4 x. zt C

0..L6.1i. wi 6.W.035 ' I tP. L9l.. 17. N f

Q %S. a-.ISIS~1 To C2~C' 6.

fu C. c . CN6 0 I 9

5. 06Ci.0 Na cK w f 0 a. .4 C a6.C4 (I L .. V =SoE 05 0, 6. jf

62 6. If w. C

L4 . N s, 0 04 0 -9 t,. W 12 4 9 s ul

PSSPPNV GE ., tI U.i 6.. 4 S LI)

OJw ti,.'.6I.L U, 0 f 6. U) , PS N1 ill U3 .0 1A W W-j U

.4~ ~~~ ~ ~ 6. 6. fC . N . 0 0 .

if 0N OL 2. A w ..

CO 0ut ~ - 4t 6N it 4, N4 6.9 6.. .4 1.1, V N o 0 0 0fIt,. . .4 .1, 41 D. ND Nn N. S' it.?11'(

if- Sll %II IS S I t. 6.J . . .. 0 - 3% 5 W* wN3 MILb P-LLLI.WW6 I C. 0n W-. 64 4 *4 v4 l 6. 0. N- N-

PSN S*PS C S . 1-1 7 6. cI LI I aiw.CO I2 N '0 w w S. IL C% C 0

0.. . . . . . . .INSW-NN 5-10 U U 4 0 0V x 0x V) . L, I

4......4'0 C.f 0 4 4 6. 6 N S + #UO Z .p11W W0l L lIIilla - l .

4~.4.44 .4 -6 .4 0' " .4 6. . 6. LI.I'

Il U.S IL C ~ LI L C U., W . 1.2 C. I!4 t2 6.. I. I I. a, 3

0'14) 4 4 co CD 1i 444Co14 .. a . LI m 04

NPPPPS.P GDV ''4..... 12 N2 on N11 .5% CS a- af

6. 773 V . a~ f 0 69 6

Page 91: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

C..

4 a1ww

.)

Z

N ,

CCC

4- 6.4L C. 4Lin In

.0 6A 0 I 1 0v

.4-9 w of U

0 C4 of &N I i r

Li 0 6- 1

90 kg

c .ZZ I- mvt w z

- 0 .40 0 l U0' CK e"N L)U

0 a V t

1. 10 In I . SN I

U 2 - ObU C0 xU

j .4 4 60 tO

CL n In 4n 0 0 0 00

In o. C ' I .N 0 0

4 c 0 9 W~ to ccN

19 0 *4 0 44 UPN

0 ~ to-. to Uto78

Page 92: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

60 .! 40 4N.0 1 &~ 0.n m N % W

U

* .L. . 1. usIW

1'

Inr

O N WM U-P'0h

-j4 a

.4. -t 6.

'a 4D P

.4 f0

w a

a N UU~3w t., P. v 1, cr (p

I.~ V~. 0'0- C U' It 179

Page 93: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

Li N mNCIII C.)m CD C3

t- COMCIOOOJ I,

4 0 -0 0 w aAn 4C

US 00

0J N N N N Iv w w N N IiIS

00 w~N. CJ U S S 0"D* SI,0 R 4I nI

.1~~~~- CS N NM N ''S

.44.0'0 C; C; -1 C vNNNMSS C C % ,

00 0 0 0 0 w III0 V ~ O L00W I W ' * -1...91*IS I., ~ l C, m m 7 m 1

z- wJ SI C .fN SCI W..O000''~ 4c ZI1 WMI aIni( , -t .11 C. .D. C IS C SU N N.i~ON 51

-d j0 O c 0 N 4 COS.NN ) r ICON S

C;" WI, SZ .- ,I C N L. - 1 . I" I .. ty,

&. .41 41 n.. .

0 000 m0,0 0 0 . S . . I I I . .W. 144 6, 6 al W . .U J L W WW W , L ...

C!,~~ 0 JSr, 4 P wC, C - S, * -

M 00N I it 0m 0.5t r . , I

4..) C C , C O N C . 4 CNr C N q. .. c 4, o rCO0.7~( NO77I'IJ' 'r IS

S= Li N St"S1.55 . C O C OC0 C C O SLL, . 6145 4 SS/ c S I S S I I S S* 0C

I/I NNCS5.JA o C.DCS, C,.Sr .7

h..i ..U...N N N---- 0 Li 00 Itc.-rr C/SL

C,~ C.-. C, CZ. C.1991 W.V,1 2 N I% 0. N S C, > 4444.... .4. -" "I5~ I L L' I L "I) 0'A

6./I~~~ CC 4 -Jt M . t-.. . . . .

.4, 0 1 ILJ' N Nf M~oNSr.4

- SS, A N I, 0 N' 00 .13N f .00'N

C: SiS.,, Ill > 5. IM.C C ISb ' 4c1 !i 1, 4C

-Sc I , S/ U .7 m 1-C N N - 0 N S Sa*

5. *e 'N C C /C 'UP C.) 5c N, C, 11 o Li 5.1. . L Li( . S t 0 1 . . C .

a C. .0 11 11 NNNNNNAC cP.Nm C - 10 C; 4L,

St -0 C.N0' 0 vI II .. I tvm 1- S LA t; IS.c ,?I W mw WOt~t M 0II L.....N' / W PSi SIA.OI C /f

Li C 4 i .. M CWIK Cc.4 L i 'r S a rS1-S IpCO ~ ~ ~ ~ ~ M N5.V 5. w L .S i5 isS .5 .. O NN C'N NN/.

7 % MN nO .- CNfI'MCN NS.c0N0 .CC.c V

Cs N5/ N. 0,1- .4S .CC Iz S, 5,P

C ~ ~ ~ ~ ~ ~ ~ C cc C3 4=0.NN N . . . . . 4 .. II S S O.3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1-N NCL~0,~.5 mSN~I~J N. 00 aSiJ.Lic

ft -c S S S S S I O N .'.. 0.ICC.)C,.,.7N..W W C

~~ L C, S" c"0 mcc~' ~ r0, C' NNCNNCN/ NsO "N C, LIS./5..to

5- £3. 00U%/c / 1-S. Li .1 o N N - N w7. N C N P, C' N D w/ N' NC5 . i/ ' L . C .

UN N C. % "S t IS:C . , It65 1.C' cc Ir f. N LI LJ ) )NNNN "T vj 1 )It'.W WJIAli ..

-C ,0 -oo o o vCO'O cPIS. xi- S l lI I00 5. S C N NO .. c 0

W 4A w. to 07 ge U lO Wc'CJ Vi 115 11 -NU - )wI jU U SIIW.- -1

-S 0. m4 0 " 0C N ft4L, f5wSICN t aoI%4tN N . S /N 4C, 4 w0 a C, .C3 ),m .4c w0' C aS0 N ~ o. . .. l z P- Si StN . ., w C , " c , ,PN .O . . . . It , IN#. in 1- S, InONPNC)0O' won/ L InWSC.SclLJUia,.scU,' t%-r-I. 0 cS 4cC 1, 411 ISI 0 e .7N NM.W 2.' S

7, SO 0 01) Mc N S -4 CS 0-0

0~~Z 0.c 1- 170 71W '.L 0c.. i ciIL03 i,,0-44~II I- I4 50 C'c .CCc OO c c 45 . SI S I

Ni III IIIi Us Lii III U) 4, CN ., 11 '. 1 1 1 1-iSicIO S o uiJ W .4, 4 .4.c f4l .i . .0.

4 ~ ~ % Li MO U. 0 Z)1~i.-C C N 1-4 N)4SiiS 0 C) I 4:, IN'4~ ts C.

C0 0 >0 0 ziL t0 ft)O'Ift s na.St 1C . pCL (i 4t. W'S/ c c 1,f,0,a

Page 94: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

sm a 0. -sC aa

I.D -1 .4****4oi C 1 - # M #' S. i . i r h

3r X 0- N tv U. 10 Z. i.

-i. Lo 0 IDU 0' In

I.iC> w a ace£4 . 4. Z

c- a I '.-. s .'*-kA4 .

4 N 0

r . 4 0NUm . a .6a

22~~ ~ %r Li 4- .0LiI

w2. as w . w1 L

q. Lb 40 0.0a If ISS.C 0 t. C, hi Li

W a4 S.. v S. C-D i;.h

In U S Wi U' Na a -

C. i 0 cl ir 2 e 6 IAIj o U.5 .. P Of . w 0 j a-

w~~~~ ~ ~ ~ w if It S- ( rI . ) 1 l US.. r 41 1 c .4 u. Ck 5 r. W 6nC ~ ~ ~ ~ a i ft .C 1 1-

10 V W0i sly~~ ~~ S. N r - s s 4-L - ; l I

93 so 11.0C C, L- C. 0, C , 1 0 , i .L . U

-9z III l . I-wwwU .LAupw sUss IL 0 U Iis) Is a - t01 2CC A wLUk* ca~ ; C 11L = I,q~~. N7r w NC C!0: f* C, I It %I: . Uwle u

MCMM N . . Ui Uf " - D D .if S.. hi Ca) I. 1. 4 n% 1P , .1 o0

OJS.4,S..-0.-0..4h4 - 0 IV w. 0 In W-a-~ I0 .. l w Li ItD wo rC0u C, >- 14 hNk.. 4 4 4 4 * I I, I I2 I I I I I I a A

M s .4s M Un S.D %Ds ,1rcm 0 0' ai h w U -.C: ~f 0 %, % I - a -*: 0: V. 9: -. & Ui S.. 2

N N N m4 . . . . . ~ 4 K. r) 0-- a- x. IL S. IL 0we,0 Za 4scooa vm oa o 0 ft or -A a- L Or .w

L -. U 0- s0 2 2r W

wr 4= = W t~ A )C 'U ' N411. ~ . J S .0 0 0 0 . S. l c LI.

o C O J C . If.'0 - P. P N Is , H1 Us 1.. .1 Il IA. U- I110 'r a S.% .10 IT 2. - 2.

.1 0, 1 L - IL 0

11* 4 4 * 01 1 1 1 i9l a! 0t S.. C3

Ca-MU'I-'0J~a- "I i'0.s .u .C~ 0" 0s 0. II U. 1. 01 a-"14. 4.t.0 U''C,~~'L. N a- a- ft C, H3 ct UX i a

H . . . . .el 0 C)D hi 0, G.D 0W= D I. a

.- Lc Ln~ t 0 4a,,ra.,s-

4N*4* 4*4 . 11 1481

Page 95: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

.4 .

wotoso w

W IA)

'D c.I 4o* * S 1VIn La(A-

6- 2 %S11,o

Us 41 s, a 4 f 1 1 '

1. 0 LU to4 w0LsU

4 00 ca0

6' o ;r I-I-.4-

j. w a I. z 6. LO5tI6- IV 0 Is C.0O) .62

z4 L A -c v, 0 4 x4

N . . YI .DD U c,Lo A4 -m o- C,. -

f- %I InO .. e o z2 0 c) -a .4.1 V)L, z A 4,C

z s, c)Z ." *, 2 7

z. w I- OLI us m 0 uLI

us I 4. O Z I .0U

mI ok v) cm ~ .) .3 z "4L0I u, c1 m'0 7 I 0 7.

o' 04 .4 m1 V . 4V

v - L, I- g 4 Vj wI wa, us w V.1U'U 0 aw IO

41 114 s) N) o LI-.

.4 LU Il ~ 43 I 62

I- 3 0 % C. . 37 AU .

Page 96: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

CCC

IC)V% oC2 .4 f4 4v~CA C' C3 CAONI

onon .8sCAMMVtt P

4L 4 N Cy r i w on 1

(Vi I. b. N~ M U. P.. M hUa U.

4c 'AA W) t- r' in t- 4r 'o

I-

.4 - 4 4 .4 e

In Vs 40 M CM IDus Us N -0 N Vsi'

9o 44 VJt5

c* .04-~ ~~~~ - Ca.ssa.C(Vt ~ t .2 C.fi UNO'p tU

P:)5

k8

Page 97: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

9 P. P,

il N D I.. j .4 U%

J Mg4M. ', on.

~ NCC6A.600.tM*

*4 6 61 6 I.-66 6 16 1 .J.

W 4 4 w~i~ib . 2.0)IL

I. .i P.I 1 1 , - .1. .* *P *2 N.44.i24. C C Co.of

W/ I.. w, wi Iii w. Iii 6% NI 61 6.6 i, .4j CI 111 N2 U. N1 0% -1 - -

M aac a .NO, u0NMJor66 6. .0 0 1:, N > w K or J

z . .t ''~t~' "' w 0. L...

L U. 0Lot . w N*'t'4... CC, 00.46 45 £ 47- 4,.r- C a W.4.o4f 4

Zj .4C4..,44 NC Li 6626 6 6 a... . 6112.4 ' 4. V .e) C6LriCU% 1c, .4 11 0 h hWL1:! w. W I. U,.. I.: U;

a, C3-c'~ on.O .0 eUNI'-MCS % a IDMI-. L' f1a .6444... ft N J Lot'0 t, L 0 w . 4r

I06- ... 1L.1 ** o44 f4 C.! .M4 1, o N 0.( 6666664/I D II I'i'0C . N O O , ' C 0. .4 . I. . . .4 .. . ~ . ..-. - w S vN Lt of u LAP . hi fit CiC6'~I .

m e,, 1 0.4 M l-'0 a D u . 0 4NO a** *4 N4M o'.. e C c,4 J.J .CC,..6. . C', 2 J .3 It, 0 6-h tiJW . hh 0.

a ,IL ".. . . .. C 'C i)1 6 .... 60 a- .4IlN I41i 1.1of6. - L% U 6 >. U l .6 - hJ t, 6WL! Li La hi L4C _.4.j f

6 -

Nt 0ot C6.tI0O.. -

ca 66 6 6 6 6 . . . ..Q. 4. aM M M.M UN4N ....CVL-C,(. .iN60 jrtN*S 6/h h lu ihw i Ii I i U..7 1, .3 .06 In i aa b c.....44... CIO- .7 1t~ 1"1. - a

6. I~ a, a. o6 0 JI M 111." mAll %3 4~4 0 ~ , . C Us I a

U..,~~o, It) UI-4 .,4 i NIa j4 s~0 w i W. N N N III- -

Li ~ ~ ou CC o", CJ C, 4=tN .Li 0 C3 .4; ,&i a, ti s iC C iCi 4iN N 4a~~4 44 Cl NJ CW tJ . 666 11 6

C ~ ~ ~ ~ ~ .6/l 0i 11% T 4c a/ C' ") /6 /I i6,6 44 .. N 'NNN' .N.4~~NN N N N P,' C 11'.ClIrM M N..1 MC .4V.616 C

ID N : 6"666 6 N. ID m F. w 0 -C.w

16, I. K N 04 C)t CCW ioiIC 4cNN NJ c:, I= L.iCO t0Ca I a, N.Z 0

0'C'P CCi W,0I C I'l 66..

IPf z/16 .6- 94WNiio' 4CL -hlJ~h66 ,1- .4. zk L M_ KN.~~~ to. a. . . . . . .tMN C . ..h I N%

a/ IL C) % ... 4N J .L DCI. I'MPN JO C~C,U4,1 hJ N NN M 6 " 0N 3 t L4. 1N a) a 1 P. 10 Lt 6 4 Nib 1 1 N a, C1 C, a aa

UT " 1 .4 e 4o " a 16 -N NM 666166666

C, In 4. %0' ."!44... M..4 6

.. i.,.L .4. '0 LIN' NJ i.' It610 ~ ~ ~ e .4 N 041 064./7J "0 uI I--ii6-666h k444446... . I 6. . . . . . . . .4

0 ~ ~ ~ ~ ~ ~ ~ Il Ott U, Ta '.1 ib46'M4.0 aaa ac a a W6J ON4.., It6it

.t4 4. 04 N.'1 ' NN 'i' 1311/ -i CIhIhh~~L~ 11t N'C lIAU.U

N.n . . .i .1 0 MN *Il..N iIV, or,4 j N .606..M 6,~' NM 4 ii~ O2.

44 ,- 64 60 C PCPC~iC~ w 46f6)6P66N

6- of I~ i N .4 0 Li 1 LA t )11 n0 .4 P 1 13' N to W. t, ri N M "N - II ' M I 6 I I I I 6 I&If - 0' IA-. . . . . 43 C,,. LA 0 >/ Witlhi~Ji~6 IL 2DW Ct I 0. x U :

2. LiJ tv In 2 %. ..P. ..ma,. . .6LC) V) "C;. knot-444..44 40 1, 4 C C: C..I.44i4 hiC3 0. N/~ C C C i L rn Y 1,1'1 0 P.itoiV4CCCa' .3

N. P r N 6 6 66 66 64 C C~iCC c. 'P.i84

Page 98: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

: .Ad 0 4 0C . 6.15

C,1 I 4w

* -. g-. 4 0

h 6.. w LI u: w9VJ9

T .0 to.

~~~~ u Iah .4.6565*

wl I-

9.44 44.

Si &1.6. 6.. u.. u. 6.5f

Z~~4 p v .P1dJ 04

i . 6

** I* U

Z" 44.*, 05 C"

9.6~~~ Z.. zi

95 .

2.1 6. o 0'.

1- 6'6

4t 6: C,.2I

or a 10 a4 I

-4 A. 4, -. .9. 01 1. I' *.

00 . 09 0 . v .6 :. 91 o- it

t4 v- 4 w wa r*-.- o - " a 1 41 lw "

.6 6. PZjd 9s.. 4 41

U-W W 1,C fL-6

*, - I. .. t.) O * 9 "

.4~~ ~ ~ .44. 44 -c20. to. .9o -c r % .0 Asl

31 '4 4. v

. i .. 1

42 %'a 4j 4's Ls 6* .. 65

.5 .5 h

850 '~

9--654 OV9 6iO'-~9

0 0-449 - h .69V*

Page 99: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

UP 44

v 11

.4a

o0

a,4 PP4L3I-k a,

w4 w

I.-

k x 0 i a IV j &I

*i u 0 C,4IC' .

- D V. a 4. ri~ la arc-0 -27 a .4

IL z U.c m z

LM V) 5- Ci0 0 0 Chi i

1- C, C. £22 Li VI

60 so C) V) V) -

C -. 86

SC %. 0 %Ilk

Page 100: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

1fw

I'l 1S. . 0 ti , a 1. 0

V, 6

U. C, 0 W,

43, a CM C C, -

~~44 NtS~t~A

U.-

0

n 1&13

v ak

V87

Page 101: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

o0 or t W

40 lese 111

WW ft Ntv 4 0 C. 4:, 4m

63 ki4Jd~3C4 la*I)wS i10'4~ 4.4 .0.

0. . S

. 0 0 .N . . . .44.4.oji 03,1 -1 ftft0OC- 40 if -- 1 M

*. . 1 51 1 . 4 .51 . 0 Jw ww t.I4,towhih W440',b.IbD

fo CIOO.* .4 44 ftJ -4

4e4( - 44 a %t .

02 U~4 .40O4 .44.4.40C0O014

UI.Mn0 o,00 o. a, *e*

L .. t I L'. L L) o", 4O.0#J'.!44,0 -@IN4 % t% . t->

0,,m1 orl 45 0 5 1,. W4 .0 '' ce 0. ft Nw tr.b.t,..bh r34 ;.4.'@.. .. C J & .

fZ 4,i hih -j UC P,

4.4 .I..~J .O4n 6- cl 04m,30.4 Vs

44 In 4.0 430 0.o, N lyJc c -t,4 v o h.S.4'.&. 0

C. OM£..MJ4l, -.1 f. q e I I . 4 .1- 4t * I/b 1 J 4 4 4 A. . . .

fl 4344 J. .. cI -, L -0P Nf I

ty N40..4. ir u ~ t-h 4, u b.S14J 0 a t.' 4, b. t- 5.

44 ~ ~ W 4,, 1. . . .51 1I %1 1. 51 1. 1- "S al I NJlJ .1,4,.W '4'

04. ~ ~ ~ ~ ~ ~ ~ C C.4 u o,,.5 .

4. -. 04 1. S 3'4PUp.C O

to -l ooJs~ c L-4 . . . . .s pi ty 00N 04m ft

IDL I'd I'ss.hW,.iiii w U. hit Uihii. W I hft oo 0.36C r44.4 m... CI " , 5, 0 ! . C 0 .,

0L to 1- .. - £ . J i ' I I . I I C3 In U. W

05 -S' 0 f- 044 W 6 L. 44444 W04.4J0 4.44JW6W 0I I

CL .JI o- o.J iL4 34 .'M I I-

4, 0 nt $I . . . NN N . . . . . 4P a I I I I I I 4Ll

CA -_:4, " 0 4-le N11111 C)11 0 - -N 4 P~ -U Ci V.. 4. 4. hi 5. 5. 45. hi. % I .a t; l,, F. ".. " " ,0. -.

CA nO 4, 0 a. 04 0 aot1 LLA00t4 . . . . .7 . ,,-)e , - I44 I-/. ., t4 P:P: IIII 44 M J / 5' 4 4 0

>- 0,0 1- m0....... 1, .- . . . J4 Js J w U.

. 4. 1- on --- ~nn~t. 114111111,L, . to m w U. ,JL..hi4,ww 06 L.ft to3 l . . . . - - - - . . 4 4 4 . . 4 01. J I . . 5 ~

s.~~~ ~~~~~ U) 0.. N o,~4 .l 0 fl.l. .WhhIJi.s, N1 0..4, c0 l - 0 4 N.4.4'WfS4 400.M.0 t4. U% j m.d.m 4..a4

- 1J O 1 1 0 1 hi 4-4 4-0 s. . L . W0 .-~ t.Lt wi .. 4 lo!.. ~ .N ot 1 .. -L1IlU o I III I ,I f - -S -I -I - -0O4 h on

5 A IL4 1, 4. L e.nt4M4N4. C.4, -V.O 9 U. toU'

0 144 5 04 2u C ol5 Ip4IL,4 ,L..1 o *c~. 4 0 - CL 1-C .L'L.L . 11,L .

4~~~ 1: 4,15.3 L 4,.5 I.i V4U4. c'N'It,. = Cm.4.~j4,, .4.4.~*4-.4NNN 0.U.

ti54 oNo . 4. "f In A 4* .0 o 4'%4 ' 24 4 4 i c L &'I 0 .4 % . II5C/bf~ *4 N14M w In. . . . . . 4n34''.404 4 or, WbCe:5.as,. C ".IW5.,

CL .4 NO ong J.I D44~4 I,4hii'.0 In 0; a, 1' 0443

L4 s . . ) ww U UM4'NSON408b

-dam4 34- 44.OCJMMN 0 3. IP%.4.4 4

Page 102: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

i3.

Isw- 0 Is a w

Sq j 61

0

0 a 4p -.

I.-.4F

or

I 5 aq orI S IL

" 4

.49V4

. I4. .

IV 4-y*.s. I

-4* V% - a

0 10h hhiii 4 .ftCl&P.6 .6 N

UP a

1,3.be 3 U 0 0

s- -4

"v4.0ib. . w Z t

is. -- t . %:T bN I i 4 lo p. er a r v 0 m- 6

.b.te J. bew a v U 0 r D Z

a --tn. %wo0 .c. so N. "%0i Nt

Cl mhiIf r '

N 92nt'II1 9 . VI 0 N1 - CI LI "1

42~~~~b hi It e 4 c iII

)Z( .NN V 1::c . 1: . 1 .e "1 c: 6: C: ..

.4 v, III so I.W . be 6mt -4 .r

89 h

Page 103: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

I w

*c 0

a owl

Ic 0.% .,L5- -I v r.

-D 0 .-s 06

L) oa U a

M )a " V0

x0 0 ) 4Ai %

2 00 6L 5f 's5

w 00 0 0LI.- C) 0.* b1

r *. 3- 3--ag VI w

aS #1, .1. U. a 0

C 0 0 z. .Ia. V) 0 ~- . D-a .P 95

V) 0 L) U G

w to yl V)7 IL .982

3 N a 00 Pi0 290

Page 104: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

on

0 -, V, LA W% In j. .4 MN D

m I nM n ,t

UN .

4 C C Co

V, 40. .4tO N 9 C

41. 1 C

* 91

Page 105: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

0 0%0 o00 ow ad

6*0 W.44N 0 vt.1so"

...4.O0.o0 NO.0*4'*I I I

Z 6*6 . . . . .J6.6. P6.*****. .. . -

woa 0 t'1.-1 N1.," '.; -. .0V 0 5. % .. NJb

2 1. A. T00 L, 9

6 1 4 b, U6*6*666*6*.%.W.I* L

0..J.C A .. n

10% ~ ~ ~ 0- V W * : - v E L L I z : ONO.4:907 . .* .*6..6 . C*. O V. l Cl I 4 1 4,W 4 1:

a. . %I00' IA% 0' -- -- 1- Z V0.: . ." .*4. .. . .4 .9 . .

C .504. 44t.3 6z6*. .O 0 0C 4 O 6z . f 4 - -- ar a w 1- 0 1* 1. .0 * . P

In,6 VI A i* N60..1 N- 1:..1 6. 6. L- W

O.. . .66. 66' - #I ' . a -- .7 p. - - - - .

.6 ** A. 0 JN N I p 1S@-z I.6 c "L, P. - - - - - - -

x 0r u . A. IW 6JU V U W*' UP U45 UC444~

u, 0 .. MPT 44, ~ O t. J *4 Ao~l 6*6 * 6* . .. 0

N -0 (tcg.,S CO AUIP NC V 4 7

P~w O0LfNyl . -l r,'gbggt N N ft N L.a.~" a "6*.6666 ev 4:1 CC -PJg- ,

= N A. .6 UPS. Jb. .~ i5

L. L4 Li - W, l.". D

L) g1 w 11 g.. gg, g. U. . lo, N. wiS- Sj

42 * r 0~ CNW .. C4JC) 0 N w ftNNNP. aC

-1 x U- ON &A Us Li U. UP UP w 4 '9 * 6 666'1-66

4z, A) .9JC N : .'. C.r' n 'g0 .1^ - :: a r * C 0. w 1-

*~~~ ~~~~ I. ks LaOSa* UP UP~-.0'pN.*

4-fr - 'n .*6.AS0Il- -- -- -- IJ Ip

. , - 1C 6 0IS * .L 1a 10 6 00 0 .1 6.11,0% ,NAJ ' L .a I ww 0 a gag A-, ,W * *a ag a

V, .C U.*a.**66666 U .1 6**.**6666 g6

- V0 500 - - N. - - -. V) N O V0CV.00N',:'.N0 ,6'. O06a*0006*-,:0.*

S~1 410 .1 %.40F00NCNW *tL JO z' S. 1wIl .I 1 ,U. C IL C1 . C3 .4- A O.4. C N C20 40 ' 14

U) GO x 6, U. A a.4. . cc AN a PIN 11 gg1a gg _Uu6*Www ~.20N, 1 mm U ft.2 soN 0 .3.3..0 N05i 'D6 C, 6 *1 .6.6C, .O

U. 9 M- *1i. , ? z0 t NV U - C

0 - 0.0 Cl 0. . . . . . .t4.*~ N lW -lNfr .4wW c

I., U'. 0 01 Ua. S'i,'0 11,0 00 L"# . . .f0- xS N a L U41*N 1* gag, aU aS a .1

t 6, . 0 C, CU C,0 L 4 C L . . n . 1. "c-4..j#I o

ut 0 P -> a al ac a a 4, lC l)C ca 40-L x 6 J W J N0 * 00 3U W IW ..

Z0' C:C 0 0 U gl 04' '..C 4 N . N V 0 51 LO4S4' 404101 1*36 4L 3O P LI W L' VPC 5 0 C'C'4- I

6. ~ U 0. .C 3 :C C= N.00*P' Liu0S OJ 0 0 0 N . . .. . 01.

ON 00 NN JML0N 3 Nd N .U,0'P) .1 9% 4 a a, a, -4 a: a ICL US0W~N0'SN 0I3 S* * 66* *5*.* 4a

N .C U' *ga C NO4N P.00 92

Page 106: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

:3. t --. 7.

U,. au W- b- a 0

* - ---- haa...~~c 4* 7U"~P

0.0

~~ a,.,.' Z

a x-- co -a. - It

V.4 C , % y w

a a . q- C zf

3. Z W ac0.1. aa - a. - I

1?a CA S.*'-

a bo

S. * *t 0 004.8 0

4r.%. b..hhS 00 a. Z.4 * IA a, 0 w

a. w 0. IA

3- N=9$- 6m41 : C: C0aa. 0

0 t 2 .a 0 w 0

ft fCt f b. -4-

I' u ... 1. 1P Iv-& N t - 04, b

- g P. C.g 0. ll U.S i

l l I I IL t o I t 9 1

-ol 4 V, I" uh 43a.Lon% a.

- ~ P) .a lb if -t G. V.

0Jhah%.~ a 0 e U.P193

Page 107: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

W Li

kg hi

Gn It Ct TI

vx wo4 #

3. c 0.4 .4

W0 0 u

W U. 06

V. W IMU u

.0 %A .0

6~ U

orL i 0 0 uW00a

. U) 6nIu'~ 64 - n0

~LI zg LJ W .

-. -, In IIII~

L. 0 P0 JJ* 6 L

- 3. v .

3. s- .in a

0 0 viOI. 0 0 z W

IA *4- -4 n

2. N 4A 00 U, a 901-~~C F.IUU. . P

I. .3 ~ 0 2 I 094

Page 108: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

ii

1h,

4.

C. K w - - V 4 tj

- ~ 4 - r ftN~

0- V

4N

ft. C CC

in U, Io I'C*~..

'a h W . Is 4.4.h h IwQ

M'

61 N 'rcp.

LI: ~ ~ *.WC.~1

.195

Page 109: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

10 e0-do

IN Il tv -a~ -fO 4 -i - tf f Wf

4~~4.af inPCB4 .N C a-

*~I -4 -43, - w Oa

4- e, C" f c.00

* 5 * 2g * * * * - .0 4. , e * .

C I . . - L . I

&ON C-00 . 2

Uoo ooo Coo Z* CCCC

. . . -0 C .C F*C t. .CJ.PC. io

C. 0. ; Ia .I.~ t S' F.5beti0$IL W. qp ft. b&. I, -

* r - *S 0 4. - F J C U - 0'. .~

0I . C - C eg e . e

-- Z ~ S~*4~ . b . L . -

jif 0 &c - , ' C .d -- - 0"

"Ct 10 C.0.C4 4. W"B)5 ~ ~ ~ ~ c 41~~ND C 40 % b O "C o .

-. C eu0 F.0 0.Fe**tg------------ -- -4-eL6a4.. S

46 .e ItO 'o a. AL ' - - F.C C; 2

4. N O i s - -P44 b L b 6 4 U . . . C . J S . 0

6- gC -z 6- a t

0000C)00 3 $I,,u Cc. IF,

CCef *SSSCCI -6 -- -MS ~ ---le -" I U2., .S,* 5t ,. L . S

Is I . . .~ . " P . -6 b 4 be h b h . h . C-

F.o .I P~~~~t5~U usr p j .s - -onV lrC.. . t V .

CC, '61 * @ U 4' P . * 4Ca .%- - -- - - - - - -~.S si t ne W.W .V- - - - - - - -c

- ~ ~ ~ ~ ~ ~ ~ ~ %4o 1,C~4 Oto.Ca . . . . . . W aOO~ . 00

U.N CC..C~* g e ~ e.S 5- - - - - -t - e .... e96.

Page 110: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

3. 144 .1 M M. C: M*

U' Al C' L aPIPh.Z 4 S a a

" - e MUA M

C op 0. .0 .11 .11 .1% b-.

K . o. vD 4 6' wC e

3. 6 41, N c P- i I. a'41 c nf . I .

10.0.010I UI U'SI'. S

i L I 0 0 . 0 .9 h

31 C - .1 1' .6 -

fUJWi~3~S -1 4J w.aI

3K 2. C- 4 l.

c. 4n ux

U?' SI f'i.C

L I

1- m Al% U, wD M ., o C, 4:

.00to N. p ft4. 11 z 0 C

43 - "C W9 -. 51. 4D 0e7. ' y a.J c v' w "I.(6 1 f I .W' " A

x ''US w ~ . 5w o-- Li U. IA WaPWU i Pl A3

O L I S I I S I S L I S A N .a M ~ 41Li

ov vQ 0, N K N 4

Al-~c c", o- If. a a aAl 9- S.. Tt 42 c. a L4. u. a. n, I .. : . oM, WM 1.1 1. u. ul ... 1. 1. 41. 1. 11 U. &L P. L

O J S .S d . i . L i L -v 0L to Ur f. w9 w. or oc~ v' C . 0 5-cw o ,.4.4M 'U'O~Ih.5 e .i h .5 '. . of Li.1-6 U . .6 CL & 4 I. C.

cy if N' hi Ni N Iy C' 4:3 vi a 2 I W Lt Pt a a 0 U.0i 0U AAAA UP h- al W'

IS ad .4 w. L s5u U. U

t. : Cl 3D N w -4: N) r4 .4 .4 0 hi UC1 aO NC c a aa a c 1. 1; 0A if *4

c; t; *.I

g . 4 .4 14 o.4 0~ 0 6 ' . U Z q4 of.

3a' C, C-1 r 1 1* .i " C, 0, LNO. . . .ILP Nl o cCc u . .3 5

4 0 .4 .4 £j e. U. 1. h S)c:4 .i 4 i 5. . . . . . . . . . . .c.i if. 1- if 0: 5. Li. eI. lt. Li4 4

1A.0A t'i'.L o L. N . M OOA( 0v 0 0. 0.

) C'0 N J. L i O .. ~ . ~ '.. M 0 6' N .40 N U9 7

Ao, ' .1 .

Page 111: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

a aS 41

P:

10 W.614

4a % *

h ci C.hA

a.4 IRV P4

C.v C. 00 c

a 0'V K I Lo

P. 42 dUo hi L)A

hi2 in .hi *4 .4

-9 co 00i i~~ i

'4 ~ ~ ~ ~ , L oITh d'IV

-~ v U' 0.4 w4 P 4.4

to 2 I- Ohz ii 0 Oih

.4 -a us in &I

IA' .4 PC 7

* .4 Ct L)4~ hh i 4 ~ ~

0 -0 . .

0 hi OD 04 h 4 U i2i .4alii

. Vs Pv .44

B'~u 0 T .Il U i '

S.) S. S. 4-S ' n 0.- 1.- -W 4

0 w 0 * . ' ' U S. 4iS.. P 41Lt % 4

4- U e.~ hi S. 98

2 7"'7F-7777hi0-37772

Page 112: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

*1

SiWz~ ~4' - ~Pd U~ ~, Pd ~

Pd.4 C) a S. C) C) S.

Si PdS.*S.E.a~P4SiW ~ J NPd

V0

I

ii at, a ot a a aof, C I~ C~ ti CE, Cl

Si l.*i.*h..h b.,h .DL.~N .4PdS-JJ~P.S.~

* - - .4

I.,I

SiSi4 ~Si 2 ... Siusd.S.~..c

S Ju'.4~E.flS.Pd - .DSi.~SS.W*C.S.Si

- -I.4 -- SI ~

.4 2 ~P.W..PSWtJ&,** Pd

Si * MpiaaMv.~~u,.r*4 ~aI,0

ft afrJ*gaMS.fr~

z -Si .4MS.NSiW.,APdSi

~ PIP.Si 05.5 1 ~.JJk.Clt-ffPg.C Pd MJC...Ip

- 01111 .4.4o .,5- SiV SC

*4.4~.4.4.4.4.4.45- a.oc.aacg,

0. 4.5 L* 5. 5~ S~ 5* 0.5 S.. 0,5Z .tMS.CC-r.p...Pd * C' hi C" ~ P C" Si SI

4~ .4.OC.4Q.4W52UC.o5.45-.4a

Pd .. IP.SiSi.flJ.MC. .t'tO'Pd.4SiJJ.4hI 4 ~#'5J-NPd*N.

&o za- 40. 0-

-j44. oa&,aacogooo SAC) C CC) C tiC if. C4 C P-aPdSi0...aP.ftaft SC At.as~~a0C"JL.

Pd NM P Si ~ P-a C. a

.4

1; 99

-i

Page 113: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

0. "ft" ... .c2""j64 TT56TT05515l

Ut0 40 44

4.) .. . 1411 141 4, 4 D10

Z. ~ 8.a m W LIwa r)Lswil III I~ we3- % % 1s.7 .8 =Ar sof % 5a,.* 4 w f 05W . x5

r-li~hhSihhhh s- e iW kh1h w~ 1 co

N. 14Y1

a4l a c ill 411f 1, e c i

UP~P WS W W4 W. I. I W .

a- 4 fJt Ct.. A. PS It, ~ 0 1 : 184!. 1 4, M.F-P to ft .1C z 3. ft.4".?..%C.4C....4g1"'

t....4, 444 8L 5.*JC ow IF u~h I- L~ hII. L,, -'

. AlI 4h'i.b5 hhh C'l 6"J S.* 6. dl w4 4

-y Ua hic,:! hs.s-. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ u III W F' 6 ~p C. ~ ~ . .4ep . . . .8 - .41 . u. -j C

. .. 4.x ,ftc 0. 0 c. -80 . 8 bt ui ft .. v tU fV xCCP 8 48CP h'% w I I I I a I I o- I- -. "Ova-C O'.a vs

hi~ ~~~ e..4 4 . o Vrg 4 'o 0 ft P a5- Ce 08004) 4.-A~.,U e

14 *a g sea sa. WI LI'4 I- 1 1 -UP1 o f -0IMIrc & JJPw.C

4P 4 ~ C . 4 r . r ! . D f5 ao v r 6 r v 4 4 4 4 1wC

c.~ f. ft *.JC PC .. 4* 1O'*t~ 04.4 CF a ccS. .u- -

f, fy 4 I I I I I I I I I I 5l o5 o .4 5 5 .*

4' f. .o . .y ', ft0C IV8ft.ft0C" .a

045 %iii hhW.W-. ft le hh iiibhC. e5"v0..cI. el I-. ""Cl ::JC.e8% w f " 5U4

-4 f -u ft

oD ** tv ".P O P 81 Nl ~ ~ .

cj .C 7 14C C~~ C.7C "1MN..P 8 op. VI KWM P%. It5I CS 4:PC4p N. 0 C 4 IN 5y N5vftNr

cx 6 clc ej4 o hU M5S4Sg Ill4c..C 51 13 "J.PC..CCc .. -1 .o

4 ~ ~ ~ ~ 4 u'l -6 .44..4...C C .1 0'. on SI s a "oS ~ ~ ~ ~ ~ ~ I ZC I..0 08 I C - a'. Ce~. -'ft 4.D w s.hIrl c s .. w p

U ~ ~ ~ ~ ~ .Whhhi'hi:hih . .1 0 ~ CS j

IL 4U . O I I I I I I &1 4,,E o o Ill. hilw -N) vs

41 Ch Z wi aP U C C 0 C 4 lli CJLW W =a) z ,o l ,l t 93 o .4,c r -I . I l pt ~I- ~~ ~ l C, In I.. . . . . C ... 5.5O . -i

.3. 4 0* cl g.4.C -.. P *. 6- t4p.C5p. 1 .1 P.4 o"l..CCP5o I USC. 0h cp wp.@V0. 0C 58 ,

.v NP 1. 8 Pa444 .4 Itf., wa 41 . ,I" . '.s,.1.

0 c a, mc =1 L. wI ., 11 -'.. " u - 43 'r o~ c c C em 1L' C2C....C C -c-.

M . w I" s. . f lt o I5. w, 6n.I~p 'v40C.J fti.Y.JhI uA U U .1 111W 6.4 oo 4 1-.I .J 3.to on0 .4 jiC c' 0.55F.4 Ic. . 5-SSm 84 5CC .:5. w o4..4.46.4N.4F.oP CO t *r w.8 . . . . . Z CC- C.CU O .0 - 8 0 8. @4

US 4 41 w 1'.l .C OC 11oa.wvIrNCCN- cv

C 84' hi 88 34 heWS. ~ ~ ~ c I".J.L15.,C5~ C8 C C .fC LC 6

y *. toS. U, LW .4a C .C0 .5w85J , 1.W LWS..S Ieih I 4I1. 4 .4 ..4 4. Lb' cI. Inr Wa l-C' ell IJ* C C .. '. w C I $M j W b :1 11 14.. p c.v ,o c f-- t

If I Z tiC. LO V1 p ~43,[email protected] LI- to0c'wN449.1 o I M u c 4. es sa ee I -w. o C2sP :0 5454l.4. . . . . . . . . .lC 43 ^oC".1: """o4D o- 6 IC III hW .1 111hiS.S*. II-w Fz4 v. -5 I 00 Z a.Nc. N m% P .0 c 4j4. s 5% 52 . p~aC'cS AS

.) 0 .4 II ... . . . . . . . . . U 'a5.) S A.C .0c N.4 4 2 .20 4/ CL N1; :9 .c : 4c

Cs 4N t 0 N4444.~ 9 f w. a- W~5J. . . . U)h

I 8 C.8 c.~t. C. 8 4 4~4.4 .4 4W00.

Page 114: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

b- wAIVaa. -j hi hIS h i h i

wi1 hl- 11 N N.*I

&WN I r: b, Nu NL* aa.

-h . "' Vi V. 49 h I ll'

son 4 4 *4 6, a'a Lo Wi hi us NY M i .8 w 6.

S.o -a

14.4 a .'a0 N a a

L.a 1 i Pi hike ft 14. hiaSi * - 0. 1 v Ch b-1 I

ZZ~o 0. CIS01 i

- . 0

, a. VW C b 0 t .I^- IW18 4 ... 480 L%

-~ O U 0

40 0 0JPC'. U, iri a IS As

11%~an hi 0 0 S

Cam WE us I.. 4D 160 ISN27 0 co Pv C. C .4 ; y b

4 * ( 1.., 4 .. I'Su

- I, C' _C, o 4SO4 ON, 7. ft i .

a 0 a0 N a z

w

I2 94 5' 81 1 U.

84 .14 i fit. N q . L.* M.

op P. 40 P, De .. 6 1

z hi "' 0j w hi a a14a. C: 32 2 N

4 a4 a a .D14

C., 'a C c iwr.rn n ec u2 I . L . N 8 i h.160 1ass ,0 *.a4 a* *a . *- C lel I.'4,1 , W h~iii~i.154h 14 IS L, a3 4. U N

14 5* LaISit PI,0 Us a, ev .8 to %a C C.0 IS

U.~C ft U. Mw a O

a.. 44O 55 55 44 840 N 14l. C o w ft aL IVMl. N4.*f NLNhC .4 Ci.1a C. C. Cbf CL C 3 Nw 0 N I

4AP L, IP4 ' A4a , ~ ' & c c NISa . - a I .. hi I a a E

Z. . . . .Us i.5 US C! US &. 2l w~ u L W N" u

.4 hi. 1* hi,4 0 4: hi 0, 3c ' LIaI

hl O LISLISM aU l1. a.1. 1.1 1. .

81 Wi'815 hip 101

Page 115: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

~~II

.4 ..

n C5

a v A b .U

4w .4r I

2'-r . S.6

0U .0 hi T

CC 00

0 0 #4MU SA 4#3 4j - £ 4 6n

* .4A W t. Lab __

.4~~ 0 sp. ...*C z 0i05S. m m S . t~.1 4 * 7 . w u i hi * Z

4us .3 3* in7

5- up -4 1A 4444

S. 0 VOO U V i102

0 hi 4 1 hi .4 U hi h

Page 116: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

4x

1131

P . I

GA , P. . . 0 Z t

16 8. W e. Go Ce

w .D @a O i 41. Ll 4 .P-4

to - - --

It 0..j

ae'-- a,

if P3F..4104.3,

Page 117: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

*11qw W%-WO.* W P

I . . . t o4100

5.. nw~faW*~nfl i30

4 s*5* 81145 C.5~.' hihi-iuSiW.bW1'! N

Z~ W.4 0A 1

.5W,, .4.W I~ Ie te * -8

10 41 U Cb g- ct U. ft 45 .5

t ki.Si

atm moa ma wiw m a It**SSIS55SI1. ItIi* * i* J

amI.4SOC W% w.a. WU'N W~ U U

W.9 W~IC~ 'woC- 20

H~~~~ C.,5 It..44z P. 4 C c

9.0 t. ev C k' 61 Li It 0

4ta m m m lbd ~ ... mIt .m.a.a. .o.

U m aCVw 0I . . -S .

'...NCNP4 a-c 0,S 0,a-~

v .. 4o rWN. ,ft. Uy 2. L.t, Z IUIUuU

4 ~ ~ ~ ~ ~ - ff le S5.I 4~ A 'SSOF ~- .. 5 4~ sLZ~4 %mcp;4.4..4N."01 1; 4.

ir 04SF ' a... 'Ni . O J CO * ~ i.

Sit CC .44. a Jr O~. .C se

C.4 L. 45 00 C Ci U. -ftV f"S OZ I, qCC ~ 3. S U

0z D . w w 61 Uhi US. Iti5.VC ttP 9v.S E CS.J*EN N f zC U 43 1i %

FZ U). lot5% Z.~ .0 .

CP 10 0c TN w a m ft &P, W1 0F. w 5 .si 4.4 NN h . h ~55L .S i C

I.~~W . . .F SO.NCC ILIZ.-- -

0 n oo t - -P .C J -

0 l .1." 4 55 .545 11 5 i 5.- U, - - - - --

2. 5.' h1i. wii C. uo.I C: -NJ N - l - S V"7 hw Os.tS' C w w:

d l c tCN A . N ' 45 * ' * * * . *

u -1 4SV-. v . * P~ S. bS'5SCiiSi51J P8.1 It O~tO .. P ODA$ N. .4~4 s% r r~c~J~f C c

S~~~~~~~ ~~~~~~~~ uC a jr .0tPPP5~* ~ ItCt..* .C i tr s. , .S. ~ ~ ~ ~ c N.. . . . . 5 I 5 is . -1 e 5'~'S 94

Ukm - NW rb SC NFF. ItiS iS . ibS i . . . . .... t ~ ~ A pi s.rt.5 ~rwcv -ft*O.4e.V

3- ~ U. CJCLstWFFw U U

S~~~~~~~d'l Io. In4. ~ - 10k4~Si5~aW -:j~ v.. e -* ~ ~ ~ ~ ~ ~ ~ ~ ~ O .f ftiOStt~P . . . . S ft ~JOJC~*

C~~~~o isC.PS..Q5CF 5 8 111 0 1CS~~~~~~~~~~~~~ ILi C~ .L ib-.i .SS5 .4

0.. ~NPN .

* w IN9C.N O O M CN ~ 5...A OseUV C4, a, I@ C'. I r' O .~ *f 2 * , ae"

NC~~~~~~ NSSN5f O.N Wi APSN NASN.4 LPs~~~~~~U lU Wp N W3.O.%SSOeS U- CO OC O .1. UC .. U'S 445N F.NN .... .... OP N g,s s ft ft

- 4 1 LUi I tiiiis .1 .0 .. 'j.5 S. "t"5."'' t"0 11a

i *z14 21 N tre . ,SSWISCCS aNJ N F N t.L) De 1"4tr cU S O"C. C7, 0

u w -. SON# C: C: . 5C:. .C .C C C ~ I -

o 0 1,a N M 4S O C ' at 0 @-,. a pV9 : 4 493 a Su s.ihw hih

NN O ~ .e..4..e44.. ~ 4Pe.SF.104S

Page 118: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

de

"C Tc2 C2 4119

SIC -j Ni 461 C O - . :1 X

0.- 1 P on I'll

f- .0.0.0 e W, V

K f.30' C."" Z

maN .0 -7" CI a I" 'D 4 SO

r . .- ft. F' .4cz U.

000.. 17 C 4 *

PU 4

Z 'N4 C "%4%

.3~~4 40'.14

&o~U S. so0 .~~v St. .00..(

6-= C) ft a C3 I.

ft~~~ ~ ~ ~ ? .I bS o 9

:0 jP" ca W .-

In C, 4. Z. z' w Sol.

U" 0 N' a~ w3 c -OX 3 .4. 0. So

j w * U, L oW a0 a ma ma wN

L0 0

.4 N ft & .0C)4.4 L I o

Co .' a CA, ".i.m i. a 0 0 L .

Ir ~ ~ ~ ~ ~ . 0 1 u o 0 . 03

w I IIS '-w wi IWL zww 11. 0 0, I00 b

.L .. t' *-. ;.. 0 0 .

An G AfA 0- .b

.4- -- f 1 . 6K I4 It 4 = III.' b- ot-1t A wtC o4 0t UJ 0. Si 3 f

mamao 1.- NmrC LL, P. U. f, 0 #.. 0 0.3 o

.2' N N' a. - U' a' P. b. L e j -

IC 1: .4Z P! -. %4 2'.

.% .S ,u

j.n.3 4% U% V. Wr a0 9 l W I -1 II - -

C~4 CS 4% C' w'

ma U'. U. W ) U. La *I U, US US.1U

MNC) SMe 10 0' 0' Z. .-. tv 4v Gi

1. ma -T -U' " "S Wr .4W. fua00 ID M . 2"

40 0p 0- a, P to I If IS, .4

.. 4N 1449 4 .4 .'. 0.4.C..4 .4.4' w 5. 4 I

.rno~w mm14mmm "ns C , 3'- - A

Ul - U 1. . 1.Sl .4 S LO Ul U) Ul W UJ Wc- L..4 I C% co : ma, 0' 01L ,

.0 MC!Il..0V.2.-

ma -i 4.) 2 x 42lL IS V*

a to 4 .4 .40Z Z~f P.. ore a-. &

.4..44.44. ~ j C C ~ I. 4' .3 105 m

Page 119: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

I o b

I, a ,

c w

z 2

aa C.

.0~6 us*

7 00 a. Cco N. Z *

V. A .4 2f L)U I

p 4

4. V)ca

in P4 0 - z 0e-

IL x V zAi

0 0 0C IL L OCA. N .A.A t4 ZA.A.

6n -K 0 00X C 2ye0 41U. * A U1.. J P 4 C 2 I 0

0, a4 -9 -i hi A. t V3w 0) W &nI di

4 A. U Ua0'106

Page 120: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

31 .4

In.

RO r.m P0. w-

0t4 C ci C S

MD W. . . . P:.

.7 I...iihhkq, (A.3NS.

It W~i..7~

b1Ii'

GM W . .4 i

to. .. C.

.o7L-1

4i v

o1 6

L.us-:

jlq @ *3V.

* eqZ S U 01 W* .a w .a

- @. '.4 . P 0.

10

Page 121: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

APPENDIX F

FORTRAN LISTING OF COMPUTER PROGRAM4

108

Page 122: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

PPOG'RAM GMAIN(INPtIT=256,OUTPUT=512, TAPr'=INPUT,TAPC6=OUTPUTH

DIMENSION CH3RO(11) ,THICKNS(11.),CAMtEP(tt) ,PITCH(11) ,SKEWP(11)

DIMENSION I(38,3P) ,DENS(61,62(181)dR3(1'1l)

2 8B15 (1 P )#AZ (11,I ), BHt11iIt) ,C.(12,t?),Cr(12,12)DIME-NSION X3(tl1,X4(tj),X5(1it)11),VL9),EHP(9),qLA(9),EXXI9)DIMENSION AZI(IJ,38),ASHP(q),XM()CAV(q)cAE(),F(l),F1j(llIDIMENSION VEL.1 (9) ,EHPI (9) 9AX(I1) 9RAK(11 )YTRI it 11PXT~fl),SX(7)DIMENSION VSU9RSQ(II),VSU10(Il)DIMENSION ARE-A(7),XBAP(7),YRAO(7),AYEXO(7),AYEYO(7),EMXO(7),EMYO(7

1),FMT8 (7) 9EMOB (7) *STRMAX (7)DIMENSION W(13),FMMX(13),YTX(13),TX(11),CV(11),FMX(11),Jc!L(11),

1 ARPMI(I1),PM0X(II) Q1)S(),1)DIMENS.ION TABS(6)DIM--.NFION t4V (9) OME(9) 904X(9)COMMON /UNITS/ SIUIUOCOPIMON/CWEIG-iT/X ,CHORD,THICKNS,CAMREq,PTTC4, SKEWP,DIAM, U ,OE'I, AIKE1,PI,P,PP8,OPg,PPII,EWAa(E,VS,RPSSIGMAFAQ,rtT,PProO2 ,FWOOIAMArDIAMNUBLEN,FDBOREAD8OREif)S~'FLCOMMONl 'l, 132,83, ni Rh9I*A9H

COMMON CCoNU11i),CCTHO0(11),CCTH4R(11),CCFORt)COMMON PPiqPD2,PP3*PP,PP5,PPF)9PPl3COMMON SN(73),CO(73)

DIMENSION XR(20) TANBETr(7o) r,(20),XSL (;P),(ST(2fl),WAKr(?O)

OIMrNSION TLES(10,2)PEAL NqNIqI4PUTvLFBSLIN~,NLINRDAT! iAPU*E~ARF / 8H DESIGN ,8H4 INPUT/

9ATA FM.'X 1.0,. 2712, .442,.'~qQ3, . 9 63c ~ Q,)13,1.,. 97%, * 8R92, .7a27,1 .35fib,.17139.C/

flAT4 YTY ':.C6.q7.4.67

DATA DENS / I.5I86, /3$1jslLIATA TABS /IC'4ABS MINIMU -;Ij4H T14ICKNrCz ,1'HS TN INCI"E

2 I.HS (USING P 910H4 ,ICHDAThTr,S,UBS,VBSiXOS / iCH/D=P?XTAriB *1114T)-

2 1GII/D INPUT)- ,10H/DATA SHPP,S'4PTI ,SHPT2,OEN1,OErN2,OE N3,ZS,?Aq,rQ P4SrOMMA,Ar)r)J

1 /rH 53P':,7H THRUST97'I OPTIDNJ,tOH, OrEN"TTY ttgO'0F POOP(LP,2 8HM/FT3V= ,3H 7=,5H EAR=95H4 OPM=,2H9 131H AgJtU'TEn'

DATA TLES / iOH x .104 1-wY lSH d/O2 104 T/C 910H4 TANR3I .1014 TA4-13 1014 TETS(DES) .10H RA'(G/l .10H P/fl4 ICH CO 9 1C'1H /

DATA I P~L-B*I~NIN,)TrTC~TCL /104~ INPUT2 ICH LERBS 910H4 LINFAP ,10HNfNLITrA03 1CHPIYTANOI 910HCONSTANT ,1OHCALI;ULATED /

DATA SI /2HS1/DATA UVE / 7HFT/SEC)/DATA EXAURPM / 514AE/AG 99I4(PEV/I4IN)DATA UEI19UEF, USL /'.N(IN) ,d.H(FT) , (&H('4) fDATA VL,PE f 2HV( , 3HPE(/DATA ULEUL3 / 8H(LBF/FT) 9 8H(N/M)/DATA USV9UEV / 6HM/SEC) 96HI(NOTS)/

109

Page 123: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

DITA LVSP,UEP / 3H'(W) , 31*4P)IDA&TA UE09USD / L HCSLUG/FTS) ,IOH(ICG/M3)DATA ULE4ULSULE2tJLS2UN,UItLUPAUPIM2 /5HCINz.)95I(r*-)9

)ATA UFEtUFS / '5H(LBF1 ,5H(N) /DATA 4J129U03 /l3HOF PROP(KG98H/M3)z /r3ATA PSiIIU07 /13H(LBM-INZ)z ,1GH(KG-MZ)=OCIA GRI,GRZ / 9HRAOIUS OF 9'H GYRATIONflATA EFT,UO'. / LHFT.=,4HM1.z3ATA EIN,J05 /5HINCH1,5HM))ATA EINS,UOb /7HINC-4ES= ,7HMETERS= /3%TA E.IV,SIV /6H RP4: ,6MqAD/S= /34ATA PINS,J08 / ?HINCHES) 97HMETERS)/n&TA PINS,U09 / 6HI4NES , 6HM--TERS /DATA LFPtUIO /.4FT): 4HM)=

EL2=1. EL I/EL Ir-F: ./.30418

JC :11OKI=1. 6S 78

P1 =3.14159265

1'0 11 I1973

31 C)(11=:.OS(AC)

10 1'.72 NDIA=1,rlDSJM=6 ./P12READ(5,10108) JI,UOQPAt)5,*) SHP, TAN8I,TANB,XPS,RAK(E,POOCD,TYPE,HUBDOtAO (5,11 OIAMEWAKE,ETHRUSHEAD, OEN9PHO

I(J-3L(I),1:1,IZZ),IEAv (EXX(I)91:1,IEA),IR0M, (XMM(I)tI=1,IRP-i)

I I:1,JCV ,tAZZ(I ,Z5) ,Iz19JC)

IFOWS.D .. iO.)ED(,4 REAZZ(5,1 ('3(19J) ,:,

L(CTANB.GT.O.J RLA(5,)l (83(I,8)oI:1,JC)Jr(0AF.GT...AND.RA(E.LE..o1) READ(59*) (RAK(I) ,I:IJC)IrPrhJ.GT.3.) REA(,') (P(I),I1,1JC)I- (HIJB.NE.~O. REAO(5,') FWDD1A~1,AFTOIAMHU3Lt.N,FOBORE,AOORE,

I nISPEFL

c N! DATA 4EAD AI4YWHERi BEYOND THIS STATEMENT

IF(UI.NE.SI) PF=OIAM*12.IF(RAIE.GT.O.oAND.RAKE*LE.,Oi) GO TO 14.0

PAKE=PAKEIRFGO TO 14.2

110

Page 124: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

140O 0O £41 I=iJC

1.42 UOEN=UEOI0EN=OENIF(IOEN.LT.,2) 10EN=4IF(IIJEN.LT.7) IENODENS(IOEN)UL=UEFV U tiE VPU:UEPIF(UI.NEeSvI) GO TO 2413

IF(IDEN.LT.7) DEN=OEN/DSI

UDEN:USnUL=USLV U:US VPU:USP

24.13 WIPITE(bvi]0461 100IF (SHP. EO,..) WPITE(6ti0020) SIHPT1,SHPT2dr.'=N1,OEN2,DEN3,OE-N

IF(SHP.NE.o0) WRITE(6,i0021) PU, SHPqflEN1,0EN2,DEN3,DEJ

WRITE(6,10027) VLpVU,(VEL(I),I=19IVV)

WPI TE (6 , 10045 ) PE,9PUt (E HP (I) v,1 1VV)WPITE (6.,10028) UL9 OIA M9EWAKEq-THqUS, UL9H=-AD9UnlEN, RHO

IF(TYP-E.LT.2*) TYPE:I.

VU:UE VP U:UE PUOEN=iJEDUL:'JEFESI=EINFSI=EFPANV=E AVSNIP:PINSSNIR:PINSIF(UO.NEoSI) Go TO 143

VU=USVPU:USPU OFN: USOUL :JSSt'lIr-P U09SrIIP:Ui3ANV=SIVOEN2=U32OEN3:Ul 3FSI=U1:ESI=VC15

143 IF(UI.NEeSI) GO TO 14.9

C OPTION FOP SYSTEM INTFRNATIONAL INPUT uJNITS

SPSHP*PWRDIAM:C'IAM*ELFHFAD:HEA0*EL FRHO=RHOPRHO I00 14l: 1=1,IVVVEL( 1) =VEL (1) VS I

t45 EHP(I)=EHP(I)*PWRIF(HUB.EOsO.) GO To 146

FWODIAM=FWO) IAM*ELFAFTO IAM=AFT I AM*ELF

FOBORE=FDOROE*ELF

Page 125: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

A OBOR[ = ADBORE'ELF1 0 ISPEFL2OISR(EFL* ELF

146 IFIRAKEGT, 0..AND. RAKE Lvo .Ot) GO TO 147RAKE :PAKE*EL IGO TO 1t49

14.7 00 148 IlJC14.8 RAK(I)=PAK(I)*ELI14c) CONTINUE

IF(XPS.GT-0.) X(PS=XPS'JBL(i) f3639nlA=OIAM

1315-3 TLES(I,2)=INPUTTLES(7,2)-TLES(4)rLINRIF( g5(t).EO.09) TLES(5,2)=LP'3CIF(TANS.EQ.0-) TLES(6,2)zCALC

IF(XPS.LT.O.) TLES(7,2)=NLINRIF(PAKE.GTo0eoANOsRAKELE-0) TLrSf~,7)=MLlNq

IF(C.O.EO*0.) rLES(10,2)=CALC

WPIIE(6ti0041.6 100

1004.6 FORMAT(IF ,4X,1'., BASIC D SIG4(S) A;Kzr) FOR*

IOE N=ENIF(IOEN.1To2) IDEN=1.IFIIOEN-LT.7) OEN=0ENSIfN)IF(IOENGE,,7AND*UI*EO*SI) fl' No--N*35I

IF(PHO*EOo) RH.O1-9905

PSC=144'*s3605*OIAM*OIAMl'2PlAN= PI)/ (PI*X3(l))

DUN=9FNDAEH=HEA-O

IF(UO.N;-:.Sl) GO TO 1l5CAIO=AlD/ELF0UNO0UN/DSIOAfY:O9AEH/ELFOHR=OH/RHO3I

130 C ONT I NUE00 1 1=199CAV( I) :VE-L(t)CAE (I) = HP (1)IF(SHP) 103,102,103

1.33 PVEL=VEL(3)PEIIP=E'P (3)

102 CONTINUE

@LAS=JPL II)IF(XPS.GEo0.i GO TO 7

nO 26 I=1,JC

7 EXXS:2*.BLAS /PI4SIMPUN')(39,(6qjC)10,.03 FORMAT(H ,2A2,66H

2)JEA=0IFkEXXW#)NE.Co) GO TO 1000'.

Page 126: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

EXX(IEXXSJEA=1

10104 IF(CO.GE*1O.) GO TO 90T?4t6(2911CFO=.1008

IF(CO.GT*-10. eANO.CO.LT.0.) CFO=-CD00 10037 I1,JCIF (CO.LE.0.) TM~i.+i.25AZZ(!,25)125.*AZZ(1925)4IF(CO.LE.-lO.) CFP=8(I,71

10007 B(IT)=CFO*TH93 00 15 I=1,JC15 AMZ1 ,23) =X3 (I)

00 16 I=3,JC16 AZZ(l-lt19)=X3(I)

AZZ(1,19) =X3(l)DO 4 I=1,11

PXTBI (1) =P(I)AZZ(I,36) =AZZ'(It25)

4 AZZ(It37):AZZ(I923)00 13071 IE1,tIZZ3(9 ,2) =JBL(IE)XSX=XPS*( 360. 0/B (9,2))AS1=XSX/(1.0-X3(l.))AS2=XSX-ASi.00 IJ073 KE=19IEATLES(3,2)=TLES(4q2)=INPUTE 6P U:EARFERA=AES( EXXS-EXX(KE)) -

I7(ERA.LT.,005.AN0.KE.GT~i.ANO.JEA.EQ.') GO TO 10070IF(ERA.LE..005) EARU=EARO

00 10069 IRP=1,IRPMKI=0RPM=XMM(CIRP)EAR=EXX (KE)00 100 I=LJC:3 (1,93) =X 3 (IDB(1,4)=X4(I)

00 112051 LE=1,JC1)051 B(LE,6)=(BLAS*EAR*X6(LE) )/(8C9,2)*EXXS)

93DEL=A9S( B(3,6)-X6C3) )IFABOEL.GT**0001) TLES(392) =AD0J

00 10,'52 LE=1,JC13352 AZZ(LE,251 =AZZ(LE,36)*B(LE,6)

)O 30 I=199VEL(I) =CAV (I)

30 EHPi'):CAE(I)

IF(SH0.NEo 0.) GO TO 5100 53 I'kYitIVVVELI(IG) =VEL(IG)

53 EHPI(IG)=EHP(IG)GO TO 21

51 VELi(i)=PVEL)

113

74i

Page 127: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

21 00 5 risii1AZZ(I,24lzASI*X3(I)-AS2SKZzABS(AZZ(Iv2.I)IF(S'(Z.LT..OOCl) AZZ(1924190.IF(XPS.LT. 0.3 AZZ(Iq2'slAZZ(Tv38)

AZZ(Is3S1zAZ7 (I,24)PZZ(I,25)=AZZ (I,3fi)

5 l17Z(I,?31=AZZ(Ij3?)IF(SHP.EO*0..OR.IV.EQ911 GO TO 1S

')O 114 J=1,IVV411 (A =VEL (J)

itu R3 (AJ3HP U)Sl=VEL1( IV)CALLOI SCOT (SiSlBilV%383,-120,JC,0,S2I-HP1(TV)=S2

NNzGRJ1I.JB B J

JEE=TAN3IJDO=00JJO=.666667*F-OAT (JC)

R (29,1) =CO-!A3, 1) TAN8

P(7,1)=:000

P( 1,2)=*i(2,2) :1.0q(P~,2) :PHO

PSL=37, 21/ 0 14t59265*B t5 2) 3 ,P2 1)

IF(AN9.GT.0.) GO TO 101n0 1',035 I=iJC

101 AJJ=I.CIF( 9(i,5).GTo6'.) GO TO 10019IF( fl(5,1)*LEoG9.) ~5j:(r,

101J9 NN=N?441PAKOP=1IF(PAKE.LEo.O*ANDoRAI(EoGT.o0) GO TO I90RF

00 3'. 1=1,1i

1031~5 VK=B (7,2) /1.6878IF(,(I.GT.0)l GO TO 85AJ.i:1.k CWWITF (f , 10025)PHSzSt4P

114

Page 128: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

00 152 ritV9IF(IJO.EQ*SI) GO TO 151

ON4E I)zEHP (I IGO TO 152

151 OIV(I)=VEL(I)/VSIONE(II=EHP(1) /PWR

152 CONTINUIEwprTE(6,130'8) UI,0OIF(SI4P.NE*.. WRITE(6ti0021) PU, PHS qOEN1,*0N290EN3,0UlNIF(SHP.EO.0.) wRITE(6v1002O) SHPT1,SHPT7,OE-Ni,3FN2,iEcN3tOUNWRITE(6910027) VLVU,(omvq1h11,19v)

WRITE (6,1028) UL, AIOEWAKEz,PETHRUSULolE4U')FNOR

2 AI.,'=*,F8.I., jRHO',A1O,~x, IXF9q'., )

WRITE(6,910031) EXA, (EXX(DI!-19IE-A)

10025 FOPMAT (111)10'123 FORMAT(/,2A7,2AlQA89FiO .4,1)10021 FORMAT(/,* PS (#,A3,,'z',1PE12.4,2Ai0,A~&2PF0.'.,/)1303 FOPMAT(2X,*ZQX,913)10031 FOQMAT(ZXA~q5E, 1P9El2.'i)1i]C32 FORMAT (2X,#Nw ,A9,IP9E12.'.)10027 FORMAT (2X,A2,A6,2X,lP9E12.4)13:45 FORMAT(2X,2A3,4XIPE2..)

WRITE(6,10100) (TLESU,1l)qP11,1O)WRITE (6,1010-1) (TLES(Iv2) ,1,10)

10103 FORMAT(/,1X, 10(3XAl0))13101 FOPMAT(IX, 1O(3XAlC),/)

DO 10111 I11,jc

SRK=RAK (1)/)IA/12.10111 WPITE(6,10102) X3(I),X411),R(I,6) ,A7Z(It,) ,VI,5),3(TI,'),

2 AZZ(I,21.) ,SR,P(l) ,B(I,7)1310 2 FOR HAT (lP10r13* 4)

85 9)Q IC090 I=1,JCAZZ(I, 25)=AZZ( I, 25) 'Bf(1,6)

13095 P(I,33)=B(I,5) 'AJJIF(JEE..LE.0) GO TO 4i?

00 2C9 IOC=1,300 2CI I:1,JC

201 Ft(I1,3 0 = 3(193O0 )*A JJej4(1)=975

9 14(42):1*000c11.(43)=1.025no 215 IJ=41,'.3IJT=!J41Jp=IJ .S00 216 I=1,JC

CALL SUBr14(*JTI=PP7114(IJP) =PPS

215 CONTINUEJK=44

115

-iA

Page 129: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

TTT=P(6921/ ((8 M2)8(3,2)623@14L5927*t(7,9>)"2) /A.I IF( B(1,2).GT.0. GO TO 10JK=18TTT=TTT*550*18(792)

CC (l,l1)=814(JI(*I)00 11 J=193K=3# (J-1) 4181t5 ('C+I() 81'.(4C GJ)**(I-I)

CALL SIMEO(3.CtCC)

11))48 (Ili 49 1:1,JC

147 JE,=0CALL SURPP11=915 (181) *ET I4RUSPF12=EH01(IV) ,PPlITHP=P (6,2)

AS14P (IV)=PP12!F(SHP) 55,1035C,55

1. ~ 55 COWiINUEKI=KI 1IF (KIGE.6i Go TO 10050

2~ NI:.33( IF(TV.EOQ.1) GO TO 823NIAtLOUG( VECLltTV-i)/V--L4(IV) )/ALOG( A'cH0(1V-t)fAS14O(IV)

AVL=VFL1(IV41JII'(AVL.GT.CAV(5) .OP.AVL.LT.CA'J(1)'. WRTrfE,9??) t&VL

q22 FOPtAT(////1X,*ESTI1iT;O VELOCITY VALU-- T14 IT=RAT1ON FO OrSIPEOD1",H0 IS NOT WITH~IN RANGE OF TNP'JT VFLOCPVY VALUES ... */15X,...PqOGR2AM CANNOT EXTRAPOLATE FOR COROCESPONOINr, VHP, ESTIM~ATED VzLOCTTY3VALU: = IPFIO,.4)IV=IV41GO TO 21

rHP(IX)=EHPl( IX)1004.9 VEL(IXh=VELi(IX)

00 4CU^50 I:1,JCAZ7(1,26)=8 (,1l4)AZZ( 1,27)=9(I,5)BI:A ZZ (1,27)IF(PDOGT.0.) S1= P(I)/PI/X3(1)

AZZ(1,29):C11413(I ,6)AZZ(I, 3C)=B(I, 6)AZZ(1I, l)9 (I, 4)AZ7(I932)=B(I, 12)AZZ(I,,33)=fM (,13)A ZZ7(1 , 341 AZZ ( 1,25) 4 2. C

450A X (I)=A ZZ 1934 )IF(AZZ(11,25)*NE.O.) GO TO 5555

116

--1 V

Page 130: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

SLPx (A ZZ19934) -A ZZ(69340) ),(AZZ(923)-A V US* ?) 1Y INT=:AZZ (9934)h-(AZZ(9s 23)'PSLP)A ZZ(10 934) =(SLP*AZZ(10 923 1 )+Y INT

AMZ11,341)ZGLPA ZZ(119231 ).YINT5555 D0O~52 K:2b,34

00 40051 JsI,11s11() =B(J,3)

SI:AZZ (I ,23)CALL o 1ScQT(Sj,8jll83,R3,-J'20JCOS

2)140052 AZZ(I,K)=S2

0O 505t i=1,JcAZZ(I, 21zB(I ? )

;31=8(1921)

8(I,22)=B(I,38)13( 1, 23) :13 (1,)4(I,24):AZZII ,24)

T(I,)=AZ(1,25)A1.

Txr (11) =8( 19215)I~ie

C OPTAII4 DATA AT "'nOen CAMTI CTATIOnm' Vlq ';T~SS PPOGQAH

00 r.10[80 Iz1ioO:AZZ (I,19)C-0 50.31 K=20.24

50030 CALLCALL OISCOT(DOB(i ,3) ,PP,-120 ,JCO ,Cy(!))

CALL OISC0T(D,DB(1,3),B(IS5 9 ,(1918),-?0,JC,0,oAZZ(I,1S))

50',B CONTINUE00 :1090 1=1,10

50'931 P(II'CX(I)

CALL STRFSS (fZZ, AREA XA0YAAIX9A-O -X) MOE~qM09T1 A Y ,PA, P A KO

c THE FOLLOWING STATEMENTS HAVE REEN An'P IN opnOEP TO SEND THE R

C VALUES TO SUBROUTINE WrIGHT. CHORDTPIC'(NESS, AND CAMBEq ARE I

C PITCH AND SKEWR APE IN RADIANS*

VS=VKH. 6878n0 999 I#JCIF(P!JO*GT*0.) Pt1)=PXTBI(T)

IF( X(I).GTe .65 *AND* X(I).LT* .75) SIGmAzB(I,19)

CHOP0( I):8(,6)DIAMTHICKNS(I)=AZZ (I,31d#D0IAtM/2ePITCH(I)=ATAN(8(I95))8BJ( I) ATAN (3(1, 8))rx (I)=c,0IF(CuL1(I)9E0. 0.) GO TO 29

FX(I)=1 .O/(I.0+(6e2832*TAN(PITCH(l)88FJ(T)) CLIII))

2~ CONTINUE

IFZP9O.GT*0*) PITCH(I)ZATAN(1J)SKFWR%*T) :A7Z(I ,38)/57.?951

117

'7- 6

Page 131: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

AV = 1(q4) 46(1,121) 2

vSuqrFSO M VS"626(AV *9V 1VSUB6t(1) =SORT (VSUqPSO(1) )

Qq9 CAMB!R(I)z,0679*R(I,1si~oTAmPPS=RPM/60.00 996 rzit,Z

PxT8 (ii )P1' 1.3) '8(1,8)q6 CONTINtic

EAlz(EAR*3. i4159f0IA**2)/4.OAL=3.1i59*0. 76(7,5)AP=EAI' I i.67-P.229*AL)VA: VS 'P (7,')VRSORT(VA'42(O.?'3.1'159RPS~or1U'2)TC=2.0O'9(692)/f RH0'AP*VR**2)SIGMA7= (64*L.HEAO)IVR**2WRrT-- (69 10342)

10 . FOPMAT (I HUVD=VUIF(Uo.NE.SI) UVRZUVEWPITE 6,7e) UVP

9O 79 1=1911

VPEI=VSUeR(I) VSSRI.0.

I B8(I,17),.vQsit9(r,9)

WRIT:(6977) PPjPP34PP4,PP2,PP5WPITI:(6981) Pf~P,PPaqPP9qPP7qppl)

131 O=UL EIF(UO.EO.Sl) LO=ULSWIWITE(6,76) ULO

gn0 7 I=1,11

IF(UO.EQ.sI) SLI=SLI*14*.593973 WPITE(6,2001461 riI3vCW(1CTOIl CwT,~C()F(1

WRT~ (6, 10042)f1NV=:'AVPI2=PP12PT H: THR

UTO0:U FEfITHF: 4THRUST=UPI N2VL S=3 (7, 2)

U02=ULE2IJ 04: ULI E4UMO=UILUST-?=I PIN2IF(UO.NE.SI) GO TO 10C( U02zULS2U04=ULSI.

118

Page 132: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

UMO=UNMU STP= :P AUST=UPAUt~mUS IU TO U FSV2xUSVVLS=VLS**3048P12=P12/PWRRTH=RTI4/UWT8 rHP= 9THR/U6,T

160 WRItE (6,10044) PP11,pPU# P1.29ET4RUSq EWA KF, VL,UEV, VKUTO RTH, J'3 (IE)2 PRPM,EARU,--XAtEAR*VLPV29VLSUTCJtOBTMR

IF(UO.EQ.SI) WRITE (6q,10j IJJ2,u8,uBU04,104,UPO,UMO,UMO,U40,USTIFfUO.NE.SI) WPITE(6,20009)IF(UO.!iF*S1)r MIRITi6,200)~ U02 ,UBf,,IO4,UO4,,UMOUMO,UMO,U1o,UST

77 FORMAT (4X,* PTI=U,1PE10.4,p4l(,CPSIx0-,1PE1C.4,4x,#ETAI=4,1PEIC.4,2 4X,'CTSI' ,1 PF1O e4,4X,'CTSI/CPSI=',I1PEIO. 4)

7q FORMAT(6X,* X'*,8X,'TANBI',7X,*TIN 8, ,9X**G*,qY,*UT/2V*,7X,2 'JA/2V',?X, 'OCTSI,97XDCSI,5~,'VR(,A7,5X,'CAVV*)

83 FORMAT(lPl0Ei~oh)81 FORMAT(5X,'CPTz',IPEiC*49 5X,'CPS:V,1PE10.4,,5X,#ETA:2, IPEIC.4,5X,

2 CTS=%1IPEIC.4,t6X,'CTS/CPS=8 e1PE10.4j76 FOPMAT(5X** X#*,RX,#CL9 ,6X,'ALI(OEG)#5X,*FM/C-'A,7X,#COCL#,7X,

2 4F(X) ';XL'A,~'ET~~)'K'(C f00)LI7,4,'*(C/0O)TE',6x93 *T/o# )

2 3 ',4 - f%; A T I PE'~ 3,9 1 P10 E 33 1

2 91PE1O.4 92 3X,*1-WTT=:,1PE20.,4,3XA2,A8,~r:$,1PE10.4,?x,.DOcSIGN TH',A5,:$,,3 IPE1C*49/,4X,'Z=*,I',9XNRVI~)$ P04 A8,A5s*=*9IPEIO,4v3XtA2,A7, z 9 1P~1'3.43WCALCULATED Tm~v5 A5 t 4 * 9 PEIO0.*4)DO 74. 1=1,7SX(IJ :AZZ(I, Iq)APR=APEA (1)XPP=XBAR( 1)YPP: YBAR (I)XOI=AYE XO( I)YOI=AYEYO(I)XOM=EMXO (I)YOM:EMYO(I)T;3M E MSS (I )OFIM=EMOI3 (1)STRM=STRMAX( I)IF(UO.NESI) GO TO 74A PR=A PR'EL2XPR=XPP/ELIYPP=YPR/ELIXOI:XOI*EL2P EL2YOI:YOI'EL2*EL2XOM: XOM/SIMYOM:YOM/SIMTEM=TFAM/SIMO MQBM )84/ SIS TR M=ST RM 6594 s 7 57

74 WPITEI6,20C47) SX(I),APRXPPYPRxoIYt)I,X09,Y9TRM0t4,STRM20047 FORMAT(IPEIO.3,IPtEil.3,IP5Ei2.3)

119

Page 133: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

20009 FOMTI149Y9X*RA9W*8RtW*qR9X*X*8tlo

?0Ofl FORMAT (15Xt,45 ,6XqA4,7XqA4.,6X, A596X9A5 qfXA3,4X9A8,.XA8q4X, A 93X2 A9)

10010 FORMAT(1H1,4.X,'X',?X,*AqEA*,A5,4X,*X8lAQO A4,?X,9YqAQ*,A4,2,*X)2 ,AE~ , 3X ,*IY0',A5,I.X,'MXO',AR, 1X,"MYO'.AftI,1'M'TR*,AR,1X,'MO9',A8,3 OMAXSTRE.SS*,oA9$

WRITE (Oo 10042)WPITE (6, 10042)WPITL, (E,10011)00 73 1=1911

SRK=RA,((I) ')IA/12.WPITE (6*100121 8(Ip3) ,SRKv0YT93I(I) PXTD(T)

73 IF(POO.GT.0o) PXTBI(TlsP(D10011 FORMAT(5X,'x*,8XvsRACG/Dx,IX, 23H4 P1 YVANII DI WTAN.10~t2 FORMAT(1PEl0.3,lP3E11.3)

CALL WE IGHT(JCSIGMA7,HUBPMCWEIGTRWctG4TH,A()SEAI=SIN( PI1'CH(1) )

F ILASP AC=HUBS P A C -TSIFILSPAC=PLASPAC-.9*TPIjWPITE(e,998) TC,SIG4A78LS=5LASPAC/ 0IA/12.lLE=FILSPAC./ OIA/12.

tJF=: FT

IF(UO.NE.SI) GO TO 158

151 CONTINUEWRITE(6,9941 RLS, FILS

991 FOF'MtT(/2X,'9URRILL THRUST CO=FF T~4cq4/?Y4U0L CAVIJTATICN COEFF SIGMA(O.7)=*,ECs,#)

99,4 FO~tAT(/23X9*CLEARANCF AT HUR RETWEE-N L/ ', 0 1. //2 2EY,'CLEARANCE AT HUB 9ETWEE-N FILLFTS/'nz$,1DE12.4)00O 122 I=1,11APPmI(I)=93(1, 6) *AZZ(I,25)*PSC

12? PMOX(I):ARPMI(I)*X(I)4'2

TPHTN=PMOFIR4 P'*4CPADOGi3:SORT (PMOFIB/WEIGHTR)/12*PAOOGH=SORT (PMHC/WEIGHTH) /12.F:ADOGT=SORT (1PMINf (WE IGHTB4-WEI'14TH) )/12.PMS=PMOF113TPS=TPNIINGPS=RAOOG/) I AGPI4: RAQOGH/D IACPT=PADOGT/oIAIF(UO.NE.SI) GO TO 171i)MS=PMS**0002926.TPS=TPS#.000 29264

171 WPITE(6,9951 UMIPMS*UMTTP.;,GPL,GR2, GPlqGG2, GRH,2 GRI,GP2, GRT

995 FORMAT (IHI,19X,fMASS POLAR MOMENT OF INF0TIA OF BLArOES *,Al),1.2 E13.6,//,20X,'T0TAL MASS POLAD MOMENT OF IP4ERTIA *9A1CEl3o6,//,

3 2CX,2A99f OF BLADE/Ov# ,Fqs4,//20Xo2Aq,* OF HUR/Ox oz#s

120

Page 134: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

4 //920Xip*TOTAL *,2A9, 4/O:,F9*41C THIS SECTION CALCULATES THE ASS COEFFICIENTS

IF(TYPE.EO.0.) GO TO 570PAO=C 025

IF(8(1,3)eGE*0*25) RAO'8(1,31#*05IF(B(2s3)eE0025) GO TO 590n0 510 J=1,liB1I(J)=:P(J,3)

51J 93(J)=PXTBI(J)S1=9 25IF(B(193)*GE90*25) Sl:RAOCALL DISCOT (SI ,SIBil,6.3,83,-120,JCOS2)PTWOFIV=S200 513 J=1I1i

513 93(J)=8(J,6)*OIAM'i2.oS1=.25IF (6(1,3) .GE.O.25) Si=RAOCALL OISCOT(S1,SIB11,63,83,-120,JCOS2IOUPtLU=S2no 51.6 J:i,11all (J)tR (j,31

516 B3(J)=ARPMI(J)Si=.25IF (6(1, U.GE. 0.25) Sl=RAOCALL DISCOT (S1,S1,811,83,B3,-l?OJCOS')ATWOFIV=S2no 5E9 J=1911RII (JI 9 (J,3)

56~ 9"3 (J)=THICKNS (J) 12*0S1=. 25IF (8(1,3) .GE.O .25v Sl:RAOCALL ICTS SI,8,31CJ,;7TMAY=S2IJF=G. 5*TMAXGO TO 592

593 PTWOFIV=PXTBI(2)OU8LU=A(2v6)*oIAM#12. 0AT WOF IV= APPMI ( 2)rMAX:TP)ICKNS(2 )12*0UF=C. 5*TMAX

592 CONTINUEIF(8(7,3)sEO.0.7) GO TO 59600 595 J=1911

595 R3 (J) =P)TBI(JMS1=. 7CALL 0DISCOT B I 9SI9011983 9839-120,9JCip GS~lPSEVEN=S2GO TO 597

596 PSEVEN=PXTBI(?)59? CONTINUE

RAKE2=PAK(11) +OIAM'AZZ(i,938) 'P(11)/3C.D0 519 J1i97011(J) SX(J)

519 R3 (J) =AYEXO (J)Sl=*25

121

Page 135: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

IF (SX ( 11GEeOs 2S) S1=SX(t )4a+3 CALL OISCOT(SI ,Sipl11,83,,3-1?07,0,S2)AY 0= 2

FINT(TYPE/2)*68.+INT(TYPE/3)*5,-INJT(T.YPE--/4)536.-INT(TYPE/6)*127*

CS= AT WOFIV/ (OUBLU*TIIAX)CN=AYO/ CUP 'URLU*T4AX*2)

AA=1. 0+6. 0/PSE VEN+4*.3*PTWOFIiJ

CA=(1.Ge1.5*PTWOFTI)(OULU'F-IAIANEW:13.*SQRT(AAPP12/(CARPMPI(9,2)) IBNEW=CS*BA/t. /CASTHICKt= ANEW/SPT(CN)4'BNEW/CNRAK(11)ESTHICK2=ANEW/SOPT(CN) +8NEW/CN*RA'(E2

WRITE(E-,530) RAOS3 FORMT (///29Xt'AS COFFFICIFNTS (CALCIILATE1 AT THE#,F4o29* PADIUS

1)')TA8KIE1=TBSTA9S Q)=UBSIF(PDO.GT.0.) TABS(5)=VRSIF(PDO.GT.0.) TABS(b) =XBS8S1=9THICKlfD IA/i2*BS2=i3TwICK2/0 IA/12.ATF=ATWOFIVIF(UO.NE.SI) GO TO 172ATF=ATF**0006.516

172 WRITE(F,,541) TAPS,8Si,BS2,,~A;,CA,CS,rNSNTRATF5141 FORMAT(//20X96A10,

2 /&.OX*IJSING .0S RAKE =CONVLNTIO4AL PAKEq T/D: *EiG*4/'.0X*USI( BNG ADS RAKE = CONVENTIONAL + SKEW-TNOUCcO PA'KE, T/I= 'El *42 //2 X*VALUES USE') IN nE-TERMININrG THICKNESS-3 A= *E12.6/62X*;3 $Ei2.6/62X*C= *,E1'.6//lCX*SECTION AREA COEFF41CIENT C3= *El0.L//20X'SFCTION MODULUS CIFFFICI?7NT CN= *=I5.4//2CX#AREA OF EXPANDEW) CYLINDRICAL SrCTIP'4 IN SO.#,A695X,*AS=*g6 F1U.4)

CN=. IRTHICKI= ANE-W/SOQT(CN)48N W/CN#*RAK(ii)nTHIC'(?=ANEW/SOPT (CN) +BNEW/CN*P.",C?BS2=BTHICK2/O IA/i?.(S18T HICKI/D0IA/i?.WPITE(6,543) TABS98SiRS2

EL. FORMAT (//////920X,'FOP CN=*1*9/92OX96MO9,2 /'.C'X*USING AEIS RAKE =CONVENTIONAL RAKE,9 T/0= *PE10.4/L.0X*USIBNG AeS RAKE =CONVENTIONAL +' SKEW-INOUCFD PllKE, T/fl *EIC.4)

57: CONTINUEBLAD:iL~q(t,3) -8(1,3)DEL TA=PLAOEL/S.O)ELTAI=DELTA/2e00 132 1=1911XR(I)=B(I*3)TANBF.TI(I)=8(I ,5)G(1) =8(1,14)

XST(I) =AZZII929)WIAKE (II=3 (I,")* I UVELA(I)=B(Iqi2)THICKR(I)*AZZ (,3'.)

122

Page 136: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

t32 CONTINUEXRf12) =XR(1).DELTAlXR (13) zXR (L)4OELT A00 130 1=14,19XR(I)=XR(I-1J +OELTA

130 CONTINUEXP(20) =XR(19) +DEL TAI00 131 1=12920CALL DISCOT(XR(I) ,XR(I),XRTANBET1,XR,-044,1,0,t~TANqETI(I)ICALL OIS'OT(KR'(I),XR(I),XRGX,-04a,1,0,G(I)ICALL DISCOT(XR (I) ,XR(I),XRXSLXR-I.5.,11OXSL(I)CALL DISCOT (XR (I) ,XR(I) ,XRXSTXP,-OI.4,1t,~,XST~ 1))

CALL OISCOT(XR(IPXR(I3,X~,WAKEXR,-04i,1tWAKF(ri)CALL OISCOT(XR(I) ,XR(I),XRUVELAvXR,-044,1j,0,UVC'LAqI))CALL OISCOT(XQiI),XR(I),X,THICKRXR04,11,0,gTIC(R( I))

XST(I) =XST(I)*OIA46.THTCKR(I)=THICKR(I)*DIA*6.

131 CONTINUEUPITE -(6,133)

133 FOPMAT(1H1,//f/,10X9RADTAL ORPLE DATA FnR INPUT INTO DESIGN PIROGgZA'S(q RA)IAL STPIPS ASSU4Fn)*,///)

WRITE(6,134) SNIP,SNIP,SNIP13'4 FOPHAT(ICX9*'KR*95X9*TAN BETA T,98XG*,q7X,XSL*,A7,p5XXST (*,A7,

2 5X,'1-WX~, 8K,#UA/2VS',5X,*THICKNESS'*,A7,/)00 17'. I=12920SSL=XSL (I)EST= XST (I)STHreTHICK(R(I)IF(UO.NE.SI) GO TO 174SSL=SEL/ELISST=SST/EL ISTHF=STHP/EL I

17'. WPIIE(69135) XR(I),TANRFTI(I),G(I),SSLS;ST,WAKE(I),UVcLArI) ,STHP135 FOPHAT (4X,F10.5,3X,F10.5,3X,E243XF'7.5,4.ri'.5,1XFlC.,'.x,cI

XSL (11 )=XSL (11I )'01A*6.

SSL=XSL (11)SST=XST (11)IF(UO.NE*SI) Go To 175SSL=SSL/ELISST=SST/ELI

175 WPIIE(6,136) XR(11)tSSL,SST136 FOPMAT ('X,CO.5,31X,F1G.5,'.X,F10.5)

IF(SHP.NE.0.) GO TO 10069IV=IV~ 1IF(IV.LE.IVV) GO TO 21

10J59 CONTINUE10070 CONTINUE101071 CONTINUElOG72 CONTINUE

STOPENO

123

Page 137: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

SUBROUTINE SUB

COMMnON/C WE rG.4T/XICHOR~o THCNSCAIBrE,DTTCI,SKER,lI AM, 77,01FN1,PAY(,PPI,PP7,PP8,PP9,PP11,EWA~C,VSRPS'IIMA, AQ,8TPPO2 ,Fwo0CrAM.Ar r orAM HUBLEN90OnRE 9ADOOE 9 lrSq'

2IESO ,Oj (8),Z(II), 8(1811,8(141b),C?12

COMMON 8, 82,839 RuliCocc, ID, JB JCJOJOOJEE9CLi(ll)COMMON CCONE(11),CCTWO(ui),CCTHP(it),CCFOP(ii)COMMON PP1,P02 ,PP3vPPI.,PP59PP6,PP1C

COMMON~ SN(73) ,CS(731

no 2C021 I=I*JC

AAH 8(N,3)/B(I,3) 'AAGAAQ=13 (1,5o)IF (AAH-AAG) l6iOj, 10C18, 100 19

83(t1r -zA 182 ( Vr.0 TO 23021

T= SOcT (S)

W=SVT (V)tiE =T-W

IJ=E XP ( A!

60=. 25(=1./(2.*8(9,2)'AAG))'((V/S)AD)

JF (AAH-AAG) 103 21,o100 21,10023

P2 (I) =2. R( 9,t2) 42AAG*AAH* ( 1 9AAG/AAUI *2A

r;o To ?0021

20021 CONTINUE23142:s FOPMAT(gF12.I.)

010 2 I=1,JC

n0 3 ri1,37

rALL OISCOT(31,SI,BII,83 1133 9-i2OJC#,,Sl3 R1s(I)=s3

0)0 5 I1937Si 54(.+8( 1)97 I 9(t3 C(T

CALL OISCOT (S1 t,I 1 32 .32 , -121, JC,,

124

~~~~~~'~Z7 77 T

Page 138: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

5 1(IS00 4 1=1937

R311) = pis(1)00 10022 Lz1,35N1=37*LN2=37-L82 (NI ) =82 WN)

10022 B3(Nl)=S3(N2)C2:Z. /72.NP=72NH=3bXNP=NPS= C 0G

00 20 I=1,NPS=S+B2 (I)

23 SL:SL*F-3(I)8 (1, 9) S /X NPR (1, 10) =SL/XNP

00 4C. I=1,NH

SI :0.000 3: J=I,NPK=(J-1) 1K=MCO (',72)4i

3Z SI:SL +33(J)*CS(K)L=I~1B(L99)=S*C2

43 B(IiC)=SIUC2

IF'(CPH4I.LT.-1.5 ) CPHI=-1.IF(CPIoIGT.1.) CPIIo1

B(JC,1i)=3.iI.15927CON3= 3 .14159200o IC025 74=19,JCSMP:SIN(FLOAT (I)'8(N,1i))CMP=COS (FLOAT( 1) *6(N,1i))IF(N-i)10027, 10026,10027

13C^27 IF(N-JC)10028,10C29,1002810026 AZN:. 0

ctZN=. 0N2=-I+ I00 2LG26 KiN2IF(K-JCI 10070,10070,20026

10Z73 AZN=AZN+CON3*FLOAT()8((,)6ZN=8ZN+C0N3*FIOAT (I)8(Kql0)

20026 CONTINUE

RZL=oOIF(N2-JC) 10060 ,10030,1G030

10063 NI=N2+ino 2C036 M=N1,JC

125

Page 139: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

AZL=A7L4FLOATtL) '8(M99)*CON3

20036 fZLBZLFLOAT(L)BS(Mi0)*CON310290 TO 10030109AZN:.0

BZN:. 0N2=I41DO 2CO29 K~1,N2CKP=COS(FLCAV (K-l)'R(Nqil))IF IK-JC) 100719,100719 2OC29

10071 AZ=Z-O3CPFOA()BK9*VKBZN=BZN-CON3'CMP*FLOAT(I)*R(K,1G)'CKP

20rv29 CONTINUEAZL=. 0BZL= . 0IF (N2-JC) 10 061,v1tC030,91C0 30

10061 N1=N2+100 2CG39 M=N1,pJCL="i-1CKP=COS (FLOAT IL) '8(N,11))AZL=AZL-CON3 C MP*FLOAT (L ) *3(M, q) *'CKP

20'39 P7L=BZL-CON3*CMP*FLOAT (L)*B('4,10)'CKPGO TO 10030

12:28 AZN=.3PZN:. QCONl=3.i'.15927/SIN(B(N,11))N2:I~i00 2 322P! K1,tN2CKP=COS(FLOAT (K-1)'B(N,11))IF (K-JC) 100 72,910072 20 C2 8

10372 AZN=AZN+CONi'SMP*B(K99)*CKP63ZN=BZ N4CONl*S MP*B(Kt IC) *CKP

2 T2 3 CONTINUEAZL=. .FSZL= . 0IF(N2-JC)10G62,IC*030,10G03C

13'62 N1=N2+1')O 2C)38 M=N1,JCL=M-lSKP=SIN(FLOAT (L)'BfN,11) )AZL=AZL*CONi*CMP*B(Mv9l)SKP

20G3'3 PZL=CZLfCON1'CMP*B(M,1C)*SKPIOG33 AZ(IN):AZN4AZL

9H QI,N) =BZN+3 ZLi0C25 CONTINUE

00 1C031 I~iJCDO IC031 J=I,JC

CC 1 (I,1J)=FL(i.3(1 ) (( ,5)3(T, 8)-Ji.))

CALL SIMEO(JCCCC)0O IC,035 I=IIJC

D0 IiO35J,JC

10335 8(I,14)=CC(J,1)*S~T!(FLOAT(J)*B(I11))/i(I,4)4B(I,14)

126

lip,

Page 140: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

A S(JC* I W 0c20001 00 IC036 1*1,JC

12)

1*8 (992)iTT=ATAN(6(I9S8)BTI=ATAN(B(195))P(I,18)=2.'3.1415927'8(It14)*COSIBTI)1(1./B(I,3)-B(1,13)8( It19)=64*10 (8(4,2)-8(I,31*9(392) /2*)*(SlN(nTTl/(8(I,4)*9(71p2)

1'COS(!3TI-BTTI)) )#2IF (I-i)9,9,6

6 IF(I-JC)1099

GO TO 1110 CONTINUE

It CONTINUEP3 R(It 22)=9 Q 920 ) 8(194)

1338CONTINUEPP1:SIMPUN(9(Iv3)v8(Ivi63,JC)

PP2=S IMPUN (1 3) ,B(i, 15) ,JC)PP3:=S I MPUN (B ( 1, 3) 98 Q1,17) )JC)I

PP4=PPI/PP3PP5=PP21'PP3PP6=SIIIPUN(8(I93),B(1,22)qJC)PPT=SIMPUN (8 (1,3) ,B(1,20) ,JC)PP8=S IMPIN (8 ( 1,3) , (1, 21) ,JC )pp c~ppe6/PP 8

PP IC=PP7 /PP8

JCI=JC+1-I0O 1Z'3"O L=19JC

IF(O(O) 860,860,871fkl XO~t.O

GO TO 561871 CONTINUE

861 CONTINUEB2 (L) =)XO*B(L, 2 0)

R(192b)=.0R(I,27)=.0P(I,28)=*0GO TO 10039

8(I,26 =SIN UN (8(1,3) ,B(li16) JC)*E4(8,2)*9(3,t2) ##2*(792)**3/(16.*1 B(S921'8(9,2)3TI=ATAN(B(I95))S8I=SIN(8TI)

127

Page 141: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

;3(I,28)=B(I,25) #CI8 (I*,26)*CR I

10039 CONTIMUE00 2C6 I=IjC

IF(JEE*GT.0) GO TO 10081

00 1&04.9 11.,JCIF(e(I,6l) 702,702,703

792 CC1=CoCGO TO 704

734 CONTINIIECLI(I)=CCIrC2=1. 54*CCICC 3=0 679*CClIF(CCI) 701,700,701

70C CC4=c 0C"(I,38)=CC4GO TO 52

7:1 CC4=B(I,7)/CCIfl( 1383 =CC4

52 CCONF(I)=CClCCTWO(I)=CC2CCTHP(I)=CC3 SU4ROUTINE SIMEO(JCCCC)

t10O49 CC FOP (I) =CC410081 CONTINUE- C ---- NEW VERSION RY JACK DISKIN -- X71'.5C20041 PETU;N

END DIMENSION B4(12)vC(12912)hCCQ12912)N PD=J CJCIXJC41CC(JCI, 1)0.o00 80 I1i,J"CUIJCI3 =-CC (1,1)00 78 J=29JPI

00 89 K=2,JC00 86 1,MPO

00 86 J=I,JCI86 PYA(I) BA(I + C(K,J)*CC(I,J)

MPOM PD-IDO P9 J~i,JCIZ=CC(1,J)/SA (1)DO 89 I:1,mpD

59 CC(IJl:-Bh(I+13#Z 4CC(I+1,JJ00 99 J1,qJCI

99 CC(J,1)=CC(1,J)RETURNEND

128

Page 142: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

SUPROUTINE DISCOT (XAZATASXTABYYABZ, NCNYN7,ANS)

DIMENSION TA8X(l) ,TA8Yqj~vTA87(l)9NPXq37)9N0Y(37)vYY(37)

C MERGE OF OISCOT9OISSE~,AND LAGRAN USING BUILT IN CONSTRAINTS

NLz2IF(NC.Eg.-44) NLz3

NUPP=NY -NL00 15 lIINLvNUPPNLOC=IIIF( TARX(ri)eGEXAI GO TO 20

15 CONTINUENUPPzNUPP-NL 42GO TO 99

23 NUPP=NLOC-NL.4NU=NUPP4I300 25 JJzNUPPNUNOIS=JJIF( TABX(JJ) *E~o TARX(JJ41il GO TO 3nl

25 CONTINUEGO TO 99

33 NUPP=N0IS-I0IF(TARX(NDIS) .LTeXA) WUPPzNOIS+i

99 SUM=C.CN N=NU PPN=NN+ ID00 3 I=NNNPROC=TAFIY(I)00 2 J=NNqNA=TA8X(I)-TA8X(J)IF(A.'EQOO) GO TO 2B=~(XA- TABX(JI )/APROD=PROD *8

2 CONTINUE3 SUm=SUM+PPOO

AN S=SURETURNEND

129

Page 143: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

:1SUBROUTINE STRESS (AZZAREA,XKBAR,YRARAYryd),AYEYD,EM1XOEMYOEMTB9eM108,STRMAXvRAK*RAKOP)DIMENSION CHDQD(11),THICKNS(11) ,CAMBER(l1),PITCI4(11),SKEWQ(tI

COMMON/CWEIGHT/XI ,CHORO,THICKNS',CAM8E-PPITC4,SK(EWR,OIAMZZDEN1,RAKL,FI,PP7,PP8,PP9,PPii,EWAI(EVSRPS,' TrMAEAP,RT,P,Pno2 ,FWDDIAMAFTDIAM,HU8LENFEBOOEAD8OREDTS~rFL

COMMON /UNITS/ SIUIUOOTMENSION R&K(1i)DIMENSION AZZ(11,36)DIMENSION XE(20)DIMENSION HA(20)P4Ai(20) ,PHI(203),PNI2(201)XLI(23),TI(2C),O1(2C),CP

1II(2C ) SPHI (20) ,X4.(20) ,AE(20 ),qE (20) ,PE(23?DIMENSION A(13llB(13)tC(131,fl(i3)gE(13),F(13),G(II),H(13),0(13) ,

XP(13) Q( 13) R(13) ,S(13)tT(4 1',,U(13),V (13) ,W(1) ,Y)(%13) ,Y(13) ,Z(13I0IMENSION RI(7,IF,), Si(7,I6)DIMENSION CE'JTST (7), CENT'IO (7)DIMENSION FMXt7),TX(7),FMMX(13),YTX(13)!Z'(4(i3),XU)(1G)DIMENSION VOL(7),CENT4(7),A1(7),A2(7),x~naLA,(7)CNTS2(7?),82(13).X F5(13) ,P2(t3)q02(i3) ,AA(lG) qgq(t0) PCENT42(7) ,CENTMS(7),X TSIEW(7),TSKEW2(7),ASKEWi(7),ASKEW2(7)DIMENSION V2(i3),02(l3hqF2(13)DIMENSION ALP HI A(7)DIMENiSION XMT(10) ,XL(IC),XMII0),XT(iO),9TM(10),STLT(i0)fIMENSION AREA(7),X9AR(7),YBAR(7),AYE-XO(7),AYEYO(7),FMXO(7), MYO(71k ENTO (7) ,EM093(7) ,STRMAX (7)

DATA AF,AT,ATX, ATF,ATFF,AFXX, ATTT,GPA V/I *4O-t95, *72099, .3L1, .r8C32

2,.5'3219*40733got2714932o14/

C * * I--MPLE REAM APPROXIMATION INCLUDINGC * * * PENOIN39 CENTRIFUGAL AND TORSIONAL POR"ESs

PI=3. l4.15926536ATXY=. 2020ft4

NN~ljli FCPMAT (8F9*6)

ZZ=AZ7 (c),2)VS=AZZ (7,2)DIAM=AZZ(3,21OIACDIAMVEL=600 * AZZ( 5,2)ISFC:0AZZ(lC,20)O. 0A7Z(10,2t)=Br (1.)

O(I) =AZZ (1,20)T (I)=A Z Z(I, 21)E(1)=AZZ(I,22)C (I)=A77Z(1,23 ) 1A*12@ 0SKEW(I)C(I)/2.O-AZZ(I,24)'OIA'12.C/2.C

10ZO XU(I) =AZZ (1,19)00 3C. J=297

30 AZZ(J925)=AZZ(J+it,2,)DO IC01 1=1,7Kilt.-I( J=K/i3

130

Page 144: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

UfK)ui-U(Ii7tX(I IzAZZ (1,25140IA*12* 0FMX (I)xo0679#OIA#AZZ( IIS)Y BAR( I) =*0679*DOI A*AZZ 41918)FMX(l)=O.oA (I) =C( I) *TX £ 11 *ATY (1)=C( I)* ATX/ATV (I)=FMX (I)' ATF/AT/2o

H(I)=C( I)"*3TX(I)'ATXX - A(I)'X(I)*X IT)1001 CONTINUE

C CALCULATE THE VALUE OF F1 FROM INFUT VALUES.26 Fj=1. 9905'(OIAM/ 2.O)"3'VS"*2'PI*6./ZZ

FFI=F 1,F(PDOGT,09) GO TO 52

00O 215 1=1,10215 P(I) =T(I'*PI*XU(I)52 NN=NN+l

C .... so ... '" COMPUTE " ow. . . ."a- -- 04"o- -- *

C CALCULATIONS FOR CONSTANTS USED IN DETERMINATION OF TOPQUF AND THRUSTC CALCULATIONS OF BENDING MOMENTS FROM THRUST ANI TORQUE.

00 360 15=192F1=FFIoAnt=OIAM#0o5*12s0IF (IE-2) 55,56,56

55 00 210 I=1,iCPE (I)=P(I)AE(I)0(I)'(l-E(I)*T(I))

TE (I) z M/(31IX I

PHI(I)=ATAN(T (I))

SPHI (I) =SIN(PHI (I))HA(I)=(SKEW(I)I'(CPHI(I)/(RA~l'XU(TI))YU1(I) =XU(I)vCOS(HA CI))

GO TO FS56 00 57 1=1,10

P(1):PE (I)57 S(I)=3EMI58 F1=F1/eC.0

00 69 I=197

IF Q15- 2)62,63,96362 XO=XUI(I)

GO TO 6463 XO=XU(I)64 13=0

00 68 12=lIo,113=13+1IF Q5- 2) 659,6b,966

65 X4(13)=(XUi(12)-XO)(E (13)--XU(I2)GO TO 67

66 X4 (13) (XU (12)-XO)

131

Page 145: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

XE (13)=XUJ(121

67 T I (13)=X4(131)'AE(I12)

TI I)SIMPUN(XE,T1,I3)

6q OII):0(I)FFtCC LOOP W141CIH APPROXIMATES STRESS )Ur TO TOPSIO4 R:SIJLTIN,

C FPOM SI(FWC XT (1) =LIFT FORCE ,XMT(I)= MOMENT 011c T) Li-,.

XA=C(I )/2.OYH=TX I T) /2o.000 222 J=IqX(L(J):A9S(SKEWIJ1345*CIJ))XL (J) =XL (J) -ABS (SKEW (I )- ,54C1 tI

)(M (J) =YT ( ) *XL (J)XMTII)~xmT I) +xm(J)

2c'2 CONTINUESTII) :MT (I) '2. /(PI'XA'X-1"2.)

STI T (I I XMT (I)'2. 0/ (Pr'x'9XA"'. 0)GO T ' A4C

ST1-T I =C*Cz."54nl CONTINUE

III CONTINUEi53 FOm.TIG2 ttX,1OX,4HTAUM,i2XteNTAUL%1,IOY,7H'4 SUB T)

', 0 OPMAT(I1H,20X,4Fiq,6)600 FOPMAT(IHi95OX,32HS.MEAPINr, STRESSES V)UE TO) TORSION)

C

C LOOP WH4IC'4 GALCJLATES VOL. Or SFCTIO:4S*VOL TOT=0.*030 24.1 I=196

241 VOLTOT=VOLTOT+VOL(I)VOL(7)=A(7)f(i-xu(7w)orAM/57,

243 VOLTOT=VQLTOT+VOL 17)C LOOP WHIICH~ CALCJLATES CENTPIFUGAL FORCE AN') ST-SS,.

1F (19-2) 244,21.(,246?44. 00 245 1=196245 AIII)=XU1II)'( (xuit141)-xu1(Il/.C)

A1(7)zXUIA7)4((XUI(10)-XUI(7))/2,0)GO TO 248

246 CO 247' 1:1,6247 Ali)=xufI)+I Ixu~iIi)-xuti))/2.C)

Al 17)=XU(7)+((XU(1O)-XU(7))/2.0)C LOOP TO TPANSFER CONSTANTS FOO DETFPMrNING X~nAPo

248 00 236 I1,74 X28ARIM - 0.0

132 1

Page 146: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

C LOOP TO CALCULATE RADIAL CENTROID (X28AR )00 251 1=1,7X2PAR(Il x( (A2(i)4A2(2)4A2(3)4A2(4)4A2(5)4A?(6)tA2(7II / VOLTOT IX~ (DIAMi'29O)

AM() =0.0C UNCORPECTED FORCE AND STRESS FOR OUTPUT OF ANSWERS WITHOUT THE EFFECTC RAKE AND SKEW TAKEN INTO CONSIDERATION*

264 CENT4(I) 0EN#4oO#PI##2#VEL*62'VOLTOT*)X28AR(I)/(360O00GRAV)CENTST(I) zCENT4(1) / AMI

251 VOLTOT =VOLTOT - VOL(IC LOOKING AT THE EFFECTS OF RAKE AND SKEW IN TH4E OROPrLLEq*

DO 2b3 1=1,10AA(!)=PI*XU(I)

263 88(l) = SORT(AA(1)442+P(I)**2)DO 267 T=197TSKEWi (I) = (C(I)/2oC - SKEW(T)) * AA(I)/qSfl)KK =£

146 IF(X28AR(I)-XU(KK) 'OIAMI290) 149-m1499i5l151 'K'r KK4I

IF (KK- 10) 146, 1 4 9 11£49149q TSKE~r2(T) = (C(KKI/290 - SKEW(KK)) * AA(KK)fgg(KK)

ALPHIA(I)=ATAN(TSKEW2(I)/(X23AR(I) * 12sC)CENT42MI = 'ENT4(I)*COS(ALPHIA(I))

CENTMS(Il = CENT42(I)*(TSKEW2(I) - TSKEWII)CENTS2'() = CENTI.2(I) / AMIASKEWiI ()=(TSKEWI(I)'P(I)/AA(I)) + RAK(I)ASKEW2(I)=(TSKEW2(I)*P(I)/AA(I)) + PAK(KK)

77 CONTINUE267 CENTMO(I) =CENT'.2(I) *CASKEW2(I) - ASKEWil (I)

no 281 r=1,7O(T) = (T(I)4CENTMO(I1))AA(r)4(fl(I)-CEN'MFZ(I))'P(i)f8(r)

02 (13=(T (I)*AA (I) ii)*P() / 86(1)?Mt E2(I3=(T(I)*P(I)-Q(I)'AA(I)) / B6(I)

C PROGRAM CONTINUES.n0 350 1=1,7K(=1S (13=:Z (K3=U(7)F2=FMX(I)4.4962*TX(I)-Y(1)

00 31'0 L~i,K9L=(C I)*Z(L)-X(I)) 'E (I))/H(I) +F2'O (T)/G(1) 4CFNTS2 (I)

V2(L) =ABS(B2(L))300 V(L3=ABS(B(L))

F3=V(i)F4 = V2(1)

F5(I) =02(1300 32G L1i,KF(I)'V (L)

3Z3 F5(1)=V2(L)F5MI = 000

340 Pi'1)=-X(I)*E(I)/H(I)-(C(I3*S(1)-Y(1) )D(I)/G(I)+CENTS2 MI -

02(I3=(C.(1)-X(I))#E2(I)/H(I)-(-Y(l))'02(T)/G(I)4CENTST(I)350 0(I):(C(I)-X(I))*E(I)/H(1)-(-Y (I))'0(I)/(,(I)4CENTS2 (1)

133

-~*1 7.

Page 147: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

4w.

E?4X)0 ( I I =0(11

STPMAY, (I I=AZZ( I,1

103 Emoq(I)=O(I)IF(IL-2) 351,352,352

351 CONTINUECALL PPNST'R (Fgpgo,STM,STLT,AZ?) U

C~0 .... P RTNT 0 U TIPU .4***'

~2. GO To 363352 ummYZDUMMY

NN =NN41

360 NN=N4N+iqETt.QN( END

* (. 134

........... ..........

Page 148: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

SUBROUTINE PQNSTR (~Yq~~q~4~DIMENSION AZZ(il ,38)

DIMENSION XX(1 C),YY(IO)qZZ(IO),Sj(£O),S'(£CtCC CAL CULATION OF PRINCIPLE STRFSSFSC DUE TO TORSION ANO SENDING*C

DIMENSION xI2(iO),X13(1O)00 333 Kzis7

333 CONTINUE

nlo 444 L=197XXX=XXX+O *00 555 M=193IF(M-2172922, 33

72 X(I1XX(L)

XO=0O-4*. XI2(L)CC=(AFBS0(D) )p' 5GO TO 44

GO TO 66

66 D)D=(AR~fXIi))*'2.0

CC=(AgS(XO))*fo54'4 SIGMAI=(XIICC)/2.0

SIGMA2= (XII-^ZC)/290AZZ (1,4)=XXXAZZ(L,M+ IC) =SIGMAI

555 AZZfLI1G20)=SIGMA2444 CONTINUE7 0J FOQMATQ(H,2OXF12.2,6Xp2E20#6)~5 FOPMAT (1HC,33X,IH4X~l2X,6HSIGMAi,£OX,6HSTGMA,,136 FORMAT IH0,2X,9q14STPESSES AT EACH X STATION 10c GIVC'N INi TUE FOLLO

xwING OPDEP# mIOCHORD, LEAn)ING rOGE, TPATLtNG EIGE.RETURNEND

47 ~ ~~~~~136 ___________

Page 149: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

FUNCTION SIMPUNIEYNiC FORTRAN IV FUNCTION FOR SrNPSONS RULE INTEGRATIONC ARBITRARY NO. AND LENGTH INTERVALS KoMEALS NSRDC CODE 842 10-5-67

DIMENSION X(21,Y(2)IF(N-2) 7, 5,1.

5 S=(Y(1)4Y(2)) '(X(2)-XfI))/2*GO TO 6

4. M=N-18 IF(M-2) 9,10,11

11 M=M-2GO TO 8

9 S=(X((2)-X())16.*(Y(1)6(3-(X(2-X(1) P/(X(3)-X(1))).Y(2)'(3.4(X(2I

2))))L=3GO TO 12

to S=00~L=2

12 M=N-100 1 K!L9M92IF(ABS(X(K-i)-X(1)).GE.ARS(X(KJ-X()) GO TO 3IF(APS(X(K41)-X(i)).GT.ABS(X(K)-X(1))) GO TO 1

3 WRIrE(692) K(X(K-1bqY(K-l),X(K),Y(K)qN2 FORMAT(* NON MONOTONE X(SIMPUJN)4,I4,2X,1P2Ei2.4,5X,2E12.4,5XI4)

7 S=00GO TO 6

i S=S. (X(K41)-K (K-i))/6.'(YIK-1)*(3.-(X(K~i)-XtK-1))/(X((K)-X(K-1))) 4

6 sIMPUN=SRETU,?NENO

137

Page 150: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

suRRoUTIN WE-IGHT(JC,-IGMA7,HUA,PMHC,WETGCH-q,WcilHTH,RAK)

C W&ICHT COMPUTES THE WEIGHT AND CENTEO IF GRAVTTY. THfE VALULS FC CHOP(), TH[CKNS, CAMBER, PITCH AND SKFW0 'SIME FPOM GMAIN. OA ,c DEN, RAKE AND PI ARE SET IN STRESS. OTHX-P VALUES' AC COMP,,TEr)c MAKING CEPTAIN ASSUMPTIONS.c THE ARRAY RAK USED FOR RAKF COME FOOM 'vM4TN

DIMrNSION P(13),BT(11I,RAK(11)COMMON /UNITSI SIUIIJO

COMMON/CWEIGHT/X,CHORDTHICKNS,CAMBEQ,PTTCH, ,K-WDO)TAM,Z7,rOENDlgAKEI ,PlICTSCPSE-PPCWAKEVS,RPSSIGMA,EAP l,P,Pf)02 ,FWOOIAM,A TorAM,HUBLEN*FOBOOEADOREOTSRFLDIMENSION CHORD(lI),THICKNS(1IhtCAMBEP(il),PTCrH(Il) ,SKEWP(1I)

OIMENSION DISTHF138),A(38)DIMENSION R(g),jPMT(9)DATA CNSTNT1,CNSTNT2,CNSTNT3/.365,.*PC7,.':?I/DATA THRI,TI462qTHB3,TH94 /614 CYLINE.I*TlCL96w IFST96HGNAT'l/DATA UFEUFS / 5H(LBF) ,5H(N) /DATA tlrIUE,USL /4H(IN) 94H(FT) , f.H(m)/

C ***VALUES COMPUTED AND DATA OUTPUT**C THE HUB DIAMETER IS ASSU4ED TO BE THE eI4METEO TO THF FIDIT RAOC RATIO TO BE CONSIDERED AND THE HUB A"ZSUMZEO TO 8=- CYLINDOICAL9C THE HUB LENGTH IS ASSUMEO TO EQUAL THE HIfl lITMETrR ANr) THEf DISc TH~E PEFERENCE LINE FROM THE HUI FACF T' TAKN AS HALF THE HUB~ L( C IN~PUT DATA AND ASSUMED DATA WPITT:N ntJT.

CGR(XY,H)=H(X'X+2'XY+3Y'Y)/(XY'X4K'V4Y /c.VOL(XtY,H)=H*(X*X4X*YY'YI/3oPMF--(Y,Y)=XXX'XXGX''KY4X'X'V'Y4X'yYYYYY'YYATH=TH~liOTH=THR2IF (HUE6,.NEa..) AT H=THB3IF(FUP.NEGO*) BTH=T4

HU8DIAt=X (1 )DIAMIF(HUrlNE.0.) GO TO 50

0ISRE FL=HUROIA4/?.HUSL E N=HUBO IA MCE N GRVHH ~U 3LEN/2.GO TO ?7C

5; FWDRAD=PWDOIAM/2.0AFTPAO=AFTOIAM/2. 0HURRAD=HUBOIA M/2. 0FRRORE=FOBORE'/2*ARAOkE=ADBORE /2.

C "'"WEIGHT CALCULATION"**273 0O IC I=I,JC10 A(I) :CHORO(I)*THTCKNS(I)

C W-.IGHT OF THE BLADES;3SAI=SIMPUN(X, A,PJC)WEIGHTe=CNSThTl'CIAM'DEN'Z7'nSAI

C WFIGHT OF THE HUBC IF(HUlB.EO09) GO TO 20C20 1 HPOORE:ARBORE +0ISREFL ( FPOD0E-AP;3t)RE) /wUlL TN

138

Page 151: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

WSIaPI'OEN*PVOL( AFTRAOI4USRAOOISREFL)WilaI* OEN'PVOL t AftRO REHRBORE 9 DISREFL I

IF(HRBORE.EQ.ARBORE) HR8OREzAR8ORE.o0Q0!1901AFMxWSi'CGR(AFTRAOHUBRAODISQEFL)-W81'CGR(AR8OPE,HQBCREOISPEFL)OS:IURLEN-OISREFLWS2:-PI'OEN'VOL (HU'JRADFWORAOOS)WE82PI*DEN#VOL (HRBORE,FRBORE .OS)WFR2zWS2-WB2FWMOITSREFLWFR2WS2'CGR(HUBRA0,FWRAO,lS)IF(FRBORE.E39HRBORE) FRBOREzHRBORE~.OOOO3O10FWM=FWM'-WB2'CGR (HRBORE, FRBOREOS)WE IGHTHzWFRI GWFR2CENGRVH= (AFM+FWM)/WEIGHTH

GO TO 202203 WEI GHTI=P I *HUB 0 1AM*2t4ULENIN/4202 CONTINUE

C W: IGHT OF THE PROPELLERWE IGHTP= WEIGHT BtW EIGHTH

C *9CENTER OF GRAVITY CALCULATION****00 2 I=19JC

23 0ISTHF(I)=CN3TNT2*CAMOER(I)#COS(PITCH(I))4CNSTNT3*CHOR0(IJL'S IN(PITCH(I)) *OISREFL

C THE EFFECT OF RAKE AND SKEW APE AOOE3 TO THF r1ISTANCE OF THE CEC GQAVITY FROM THE HUB FACE FOR EACH SFrTION.

00 3C I=t,JC

3S A(I) =CHOR0(I)'THICKNS(1)'0!STHF(I)

CE NGPV3=BSA2/BSAICENGVP=OISREFL-CENGPV3

C CE NTER OF GRAVITY CONSIDERING RAKE AN!' SKCWCFNGPV1I (WEIGHTB'CENGRV34WEIGHTHCENGPVH) /WE-IG'4TPCE NGPVFOrISRE--FL-CENGRVL

IF(HUB.EQ*Uol Go TO 250

PMA=OISREFL'PMFR (HUBRAO,AFTPA))PHF=OS*PMFR( FWDPAD,HUBRAO)PM9=HU8LEN*PMFR (FRBOREvARSORE)PNH^Z= CP#(PMA4PHF-PMB)

GO TO 251250 PmHC=WEIGHTH*HURRAO"f2*72251 CONTINUE

C ***RESULTS OUTPUT**SIF=.*301.8UB=WE IGHTBUP:WE IGHTPCFL:CENGRVF/DIAMC8L=CFNGRVB/O lAMBA=HUUBLEN/OI AMBB=FWDDIAM/DIAMBCzAFT0IAM/) lAMBOz:OISREFL/ I AMBESHUBOIAM/ I AM

t 39

Page 152: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

OF= FDRORE/OI AMBG=AOSORE/0IA MSW=UFEIF(UO.NE.SI) GO TO 531SW=UFSU5J =U9*4.448222!iF1-UP*4. 482?2

531 P-TNT 1u49SW.UB,ATHBTHSWU09 CFL, -,LIF(HJP.EO.O.) GO TO 55PRINT 108, 8A9B8tBCBO'QE,9F,B;GO TO 53

5i CONTINUEPPIt"T jiC9 BE,BAsBD

53 CONTINUE

C MINIMUIM EXPANDED ARFA PATIO CALCULATTONStAJS-'V3/ ( RPS*OIA1)AJA=WAKE*AJSSAKT=PI #CTS*AJS**2/geAKO:PS*AJS**3/eEAPMIN=(2.6G6ZZ)AKT/(SGA7(AJA*2(7DI"))4.15PRINT i5sEARMIN,AJSAJAAKT9AKO, oC

134 FQPM4T( //23X9*WEIGHT OF SLAOES* ,A5,'=4j,*15.4//2CX,'WEIGHT OF PIROP (BLADES +*2A6,' HUB)* tAS,':' ,Ft3.4//20X,'CrNTER OF GRA2VITY OF PROP REFERENCED FROM 41DCHORO) 01 2111T SECTION (- FWD, + AF

IT) /D= ' ,P9e6//2oXv#CENTE0 OF GRAVITY IF 'LA9-FS crc~NCE9 FROM4 MID:HO9I) OF ROOT SECTION (- FW0, + AFT)/I* ,F9.15)

1j-3 FOPMC.T(/2CK,'KELLERS MINIMUM zEAP=*9E1C941//2-'XvwSPEEO COEFF V/(NO) JS~f',Eic.41//2:X,'ftDVANCE CO--FF V(21-wTT)/(NO) JA=,qE1O.4//2CX9*OESIGN THQ'JST COF K=*;31C .'./20X,'T3ROJE COEFF I(Q:= EiO.L,//4 2CX,'PPOPULSIVE EFFICIENCY rTAfJ=*,E1).4)

111 FOPMAT(/2CX*'HUS DIMENSIONS/9D, 8( ,' 141)9 ')!All =r9s4/47ytwUB L1LNGT" =',F9.'./47X,'MIOCHOR) OF POOT SECTT')N TO A'rT -NO O' HUt3 *,F29o 'L0

IC 1 FOPMAT (FF8o 4)107 FOFrI( //20X,*WEIGH' OF 9LAnO-S* ,A5,'=, F15.Ij//20X,*WCTGHT OF P

1POF (gLAflES + TAPERED HUB)* ,A-)t=*,F15@4 //20X,*CENTER OF GRA

2VITY OF PROP RUFRENCEO FROM MTDCHOQO OF 01OT SF-CTION t- FWfl, 4 AF,9$.4//20XCENTER OF GPAVITY O'F "LAP 0DEFEro-NCF FROM

I. MIDCHORO OF POCT SECTION (- FWQ, + AFT)/I* ,F9.L)109 FOOMAT(/20X,*HUR OIMENSIOf4S/n* 11,L-GH*Fq44)9F DIA

1M',j'fF9s4/47X,#AFT DIAM=*,F9,4/.7XtmiDCmnlRo OF POOT SECTION TO tFT2 ENO OF HUR=r#,F9.4/47X,*Huq OTAM AT MIO'WHe)PI OP L'OOT S*--CTION=*,Fg.3'./47Xt'FWD oIAKI OF 9lOR=*,Fq.4/47X,*AFT n1IA4 OP 3O'=*,F9s4)k FT UR~NENn

140

Page 153: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

REFERENCES

1. Lerbs, H.W., "Moderately Loaded Propellers with a FiniteNumber of Blades and an Arbitrary Distribution of Circula-tion," Transactions of the Society of Naval Architectsand Marine Engineers, Vol. 60, p 73-117, 1952

2. Morgan, W. B. and Wrench, J.W., Jr., "Some ComputationalAspects of Propeller Design," Methods in ConiptationalPhysics, Vol. 4, Academic Press Inc., New York, p 301-331,1965

3. Morgan, W. B., Silovic, V., and Denny S. B.,"Propeller Lifting-Surface Corrections," Transactions of theSociety of Naval Architects and Marine Engineers, Vol. 76,p 309-347, 1968

4. Boswell, R.J., "Design, Cavitation Performance and Open-WaterPerformance of a Series of Research Skewed Propellers," NavalShip Research and Development Center Report 3339, March 1971

5. Haskins, E.W., "Calculations of Design Data for Moderately LoadedMarine Propellers by Means of Induction Factors," Naval Ship -_

Research and Development Center Report 2380, September 1967

6. Eckhart, 1l. K. and M1organ, W.B., "A Propeller Design Method,"Transactions of the Society of Naval Architects and MarineEngineers, Vol. 63, p 305-370, 1955

7. Burrill, L.C., and Eme-son, A., "Propeller Cavitation: FurtherTests on 16-Inch Pror ir Models in the Kings College CavitationTunnel," Transaction'. the North Eact Coast Institution ofEngineers and Ship Builers, Vol. 78, p 295-320, 1963-64

8. Brockett, T., "Minimum Pressure Envelopes for ModifiedNACA-66 Sections with NACA a=0.8 Camber and BUSHIPS Type Iand Type II, Sections," David Taylor Model Basin Report1780, 1966

9. Keller, J. Auf'm, "Enige aspectem bij het ontwerpen vanScheepsschroeven," Schip en Werk, No. 24, p 658-662, 1966

10. Cox, G.G. and Morgan, W.B., "The Use of Theory in PropellerDesign," Marine Technology, Vol. 9, No. 4, p 419-429, October1972

141

Page 154: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

11. Cumming, R.A., Dictionary of Ship Hydrodynamics - Propeller

Section, 14th International Towing Tank Conference 1975,Report of Presentation Committee, Appendix VII

12. Tsakonas, S., Breslin, J., and !liller, M., "Correlation andApplication of an Unsteady Flow Theory for Propeller Forces,"Transactions of the Society of Naval Architects and MarineEngineers, Vol. 75, p 158-193, 1967

13. Breslin, J.P., "Exciting-Force Operators for Ship Propellers,"Journal of Hydronautics, Vol. 5, No. 3, p 85-90, July 1971

14. Jacobs, W.K., Mercier, J., and Tsakonas, S., "Theory andIeasurements of the Propeller-Induced Vibratory Field,"Davidson Laboratory Report SIT-DL-1485, December 1970

15. Tasakonas, S., Jacobs, W.R., and All, M.P., "An Exact LinearLifting Surface Theory for Marine Propeller in a NonuniformFlow Field," Journal of Ship Research, Vol. 17, No. 4,December 1974

16. Abbot, Ira H. and Von Doenhoff, Albert E., "Theory of WingSections Including a Summary of Airfoil Data," Dover Publica-tion Inc., New York, Library of Congress Catalog No.: 60-1601,1949

17. Hoerner, S.F., "Fluid-Dynamic Drag," Published by the author,Midland Park, New Jersey, 1965

18. Lerbs, H.W. and Rader, H.P., "Uber der Auftriebsgradienten vonProfilen im Propeller Verband," Schiffstechnik, Vol. 9, No. 48,p 178-180, 1962

19. Kerwin, J.E., "The Solution of Propeller Lifting-Surface Problemsby Vortex Lattice Methods," Department of the Naval Architectureand Marine Engineering, Massachusetts Institute of Technology,Cambridge, Massachusetts, 1961

20. Kerwin, J.E. and Leopold, R., "Propeller Incidence CorrectionDue to Blade Thickness," Journal of Ship Research, Vol. 7,No. 2, 1963

21. Cheng, H.MI., "Hydrodynamic Aspects of Propeller Design Based onLifting-Surface Theory: Part I - Uniform Chordwise LoadDistribution," David Taylor Model Basin Report 1802, 1964

142

-Its

Page 155: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

22. Cheng, H.M., "Hydrodynamic Aspects of Propeller Design Based onLifting Surface Theory: Part II - Arbitrary Chordwise LoadDistribution," David Taylor Model Basin Report 1803, 1965

23. Kerwin, J.E., "Computer Techniques for Propeller Blade SectionDesign," Transactions of the Second Lips Propeller Symposium,Drunen, Holland, p 1-31, May 1973

24. Hill, J.G., "The Design of Propellers," Transactions of theSociety of Naval Architects and Marine Engineers, Vol. 57,p 143-170, 1949

25. American Bureau of Shipping, "Rules for Building and ClassinqSteel Vessels," p 621, 1972.

143

Page 156: OF~~n DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT ... · JV Ship speed advance coefficient, V/ ... from thrust identity from self propulsion ... David W. Taylor Naval Ship

DTNSRDC ISSUES THREE TYPES OF REPORTS

(1) DTNSRDC REPORTS, A FORMAL SERIES PUBLISHING INFORMATION OF

PERMANEN' TECHNICAL VALUE, DESIGNATED BY A SERIAL REPORT NUMBER.

(21 DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, RECORDING INFORMA.

TION OF A PRELIMINARY OR TEMPORARY NATURE, OR OF LIMITED INTEREST OR

SIGNIFICANCE, CARRYING A DEPARTMENTAL ALPHANUMERIC IDENTIFICATION.

(3) TECHNICAL MEMORANDA, AN INFORMAL SERIES, USUALLY INTERNAL

WORKING PAPERS OR DIRECT REPORTS TO SPONSORS. NUMBERED AS TM SERIES

REPORTS; NOT FOR GENERAL DISTRIBUTION.

I ,i