of creep-fatigue in boiler

223
waaia-375 ii-.uJriiO K€PR1 Technical Report TR.95YS01.97.36 Creep A Study on the Interactive Effect of Creep-Fatigue in Boiler 1997. 3. DS'fRIB'iiiutl OF THIS rQGUSBST IS WUUHED SALES PR0:ms) nJLs

Upload: others

Post on 11-Mar-2022

11 views

Category:

Documents


0 download

TRANSCRIPT

waaia-375 ii-.uJriiO

K€PR1 Technical ReportTR.95YS01.97.36

Creep

A Study on the Interactive Effect of Creep-Fatigue in Boiler

1997. 3.

D’S'fRIB'iiiutl OF THIS rQGUS’BST IS WUUHEDSALES PR0:ms)

nJLs

DISCLAIMER

Portions of this document may be illegible electronic image products. Images areproduced from the best available original document.

’973^ti-E!75

K€PRI Technical ReportTR.95YS01.97.36

Creep 3)3.<y.'TL

A Study on the Interactive Effect of Creep-Fatigue in Boiler

1997. 3.

A # T3

444

£ JiJM* 3.^4 Creep ^-JL^-g-

9-" 4##C|4.

1997. 3. 24

3 3 3 7- €

^94^4 : 4 $= ^ 7l 4

°4ti4<S7-€ : % e ^

_S_ 4 ^

JL-grf Creep 45.

2. #?7l#

1995. 02. 17 ~ 1997. 02. 16 (247#)

3. 3.3

• 5^4 ^44 ^A] H5]=-5]^ ^T-SL^o)] S]^

SIT #4• as]=2]- 43.4 tf&zq-g-ir Ji^tt ^$7} #34

; • 35]=, 3)5. 4 EL 5] =-45. #4 44444^=4

' * 3.^4 #ti]4 ir^A] EL5]=-4S. ^M-§-°l] 44 444 9#

4. a?7]|#4 4 #=-5.ij,. • 5-134 ^44 -gr^H 4-B-^^ H5]=-4s4 -^-S^-B-0)] 44-4 a 4

4 44fe 444 4# 9#

• els] =-45. ^4-0-4 4tb <MM44#4 9F#

• 35] =-3)5.1- 544 ^-1-2] 4^3|7> 447]# #4

- 3-

Iif1i

SF

W

n-vuj

3rMlnTm

w■k0

■g'Knrnrfc)JUw

'pin

nu4JnrTt

7Hon)m|

JUrhTPmU

w

INTI

o|n)

frm|mlp|o~52TsJlJ

$IjoUm|m"Nr7^11vwwn$nulr“oTmlw

T MTtx <10

“p nSP*> 4k4|J o|niP'K W

WtrTO■go

W ;_K Op

TFIN ijoSJU1R"

li|°

p Tn°

W

^ni iio°

Po|m4|m

nr 7\w Vojo W7<r■H r\

W75°

ml <1-Wi MMl nonT goin rt=T o]mTjo Kin

■A

$0

K

WwPK4>?n-v#i

?j%u

tiSL

l y^-

e- ^

^34r

4SII

&4

°F

#nrt-

■g-J

^5°T w wmlw

go4|- 41-

W1 75D 1550 W1 cv WK4 T Ml" p ^l) D«\mj ?» nr W W -Ik" w 41-Tt Djn) rrt 7k 7k o|o m|

ojoww<4TP#TP

ojo

n-

n % ^

ml W ml

Ww Ml M| nT nT tTl"» 'oT

75" 75" otn on) ml ml

^rWK4 wn-?v<0 Ml T<U nT ml

•5T 'oT ■oT =r W Wml ^ ^W cjo ojoHi 7C 'HT jOl o« olDw ^ a

75°4k

liF 'p’K*< ail T°-k’m|r n4

, v ml wT WMl ^K 75" <|- (Tl W of ®°W VJn? m| -r*c°T^nr Ml T9U nT -nm| nl 'go

WWr#<4

oTIF$inrwmlwi

nP>4|-W

Ml 9= nr 3" m "R=

7k"TMm|

tUn-

Ulyj

?Ji ~rHO' co JJ 1

to ri

a-as3 7TJ

5(O

O) O)

1>I

!

I-i."

4. 443941-0-

o 5344 545 4 sja *4-4# sa>

o 4 534-0- 7H4 a.s]3, 45. #4 #44#35 S5aaj ;lj#

- lCr0.5Mo, 2.25CrlMo # 534-0- as)5 4 4& #4

# °14 it #4, Visual Basics- ## rCreep-Fatigue Doctor

Verl.Oj = 5a# 71)4

o 4#^(4&4^4)& #% as]5, 45.i 4tb £344 *4-45:

- 3344 257) 5451 #4(180,00044 4-§-)44 44* #4,-34

444 ## #4 #4 4 9W 4 as) 54 4 4# as] 54 4

& *#4a, INSTR0N4-4 45444# 4~0-4-3 444^ 4-F

4 a*45444 *44354 544444, 4"

4 471-4 ir M 4# *34 47>

o a5]i-3)s 4-53#444 #* as) 5-4 5 4-54-0- #4 ■

- 453H *44 4a# 4# a45 54# as)4-71 441 4444

(hold time)4 3 #4 4 4 444# 444 4-0-44 as)5-4&

4-54# 444 444a 444 47}

0 7) 71)33 BOLPAS(54s) 444 444# 55a#H] 44 as) 5-

4& 4-54-# *4

- as) =4 45# 44 4^455 #4, 444# 4# B0LPAS4

#s) *4544 Factor* 444 44471455 *44554 a

#3-45 4-54-## #4

o 534-0- 47114 aels-sls 4-54-0-4 *334 4 444# *3

-5~

Summary

1. TitleA Study on the interactive effect of creep-fatigue in boiler

2. Period1995. 02. 17 ~ 1997. 02. 16 (24 months)

3. Objectives and Necessity• To build the database about creep and/or fatigue interaction.

• The requirement increase of damage assessment techniques by creep

fatigue interaction in operating boiler.• The necessity of accurate life prediction method considering real

operating state in boiler equipment.

• Establish of damage prevention to improve the life prediction techniques in boiler equipment using creep-fatigue interaction

4. Scope and contents• The investigation of creep and fatigue damage in boiler.

• The development of creep-fatigue database program, r CREEP

FATIGUE DOCTOR Verl.Oj by VISUAL BASIC and MS-ACCESS.

• Boiler damage mechanism analysis using high temperature

creep-fatigue experimental device, INSTRON 8500 series. The boiler header specimens, which used in Youngyeol power plant, was used and analysed. Also life was calculated by life assessment equation

such as plastic energy method, strain range partitioning method.

- 6~

• The creep-fatigue interactive effects were considered by trapezoidal waves varing hold time in boiler equipment.

• The effect of the creep-fatigue interaction was analysed and synthetic

technology for life expansion under creep-fatigue interaction.

5. Results and Requests.

5.1. Results• Creep test was performed to header material lCrO.SMo steel which has

been used 180,000hr and remaining life was estimated by Larson-Miller parameter.

• In low cycle fatigue test, high temperature fatigue life of !Cr0.5Mo steel was smaller than room temperature fatigue life. It was caused that crack propagation was accelerated by oxidation effect in high

temperature. Also, It was explained that hysteresis loop of fatigue life

was analysed by plastic energy.

• In order to identify the creep-fatigue interactive effects, various life

assessment equations such as Coffin-Manson method, plastic energy

method and strain range partitioning method were applied. The results were good agreement with each other and experiment results.

• The creep-fatigue life of 515 °C, lCr0.5Mo steel was estimated. When

tension hold time was applied, the global hold time effects was smaller

than triangular waveCwithout hold time) in fatigue life. It was decreased to GOOsec holdtime but over GOOsec the fatigue life was

interestingly less decrease than those of triangular waveCwithout hold time). It was may be caused that fatigue life was dominated by creep

cavitation damage over GOOsec hoi time. These effects was considered

-7-

by SEM of creep-fatigue fractured surface.

• Finally, creep-fatigue interactive fracture was suddenly occured by the

interactively unstable crack propagation of crack in fatigue effect and

cavity in creep effect

5.2 Requests• The results of this study was analysed by considering crack formation

at 75% of maximum stress range. But after this life assessment technology must be advanced through analysed by detailed crack

propagation properties.

-8-

4 1 # 4 #............................................................................... 13

*11 1 4 7fl A..............................................................................15

*11 2 # 3L51M .................................................................... 19

*11 2 *$r S-Qtf 3.^^ ......................................................23

*11 1 ll *flM IS}- ^ .................................................... 25

1. ^ *MM4^ ..................................................... 25

2. ...................................................................................... 26

3. Mel £W4I MM.......................................28

*j| 2 ^ ^ xr'S.'n-H ................................... 32

.............................................................................................. 42

*11 3 # a.5l^-5ils. ^MMN#...................................... 43

*11 1 # *1M 34&4 ............................................45

1. *}^*M& *1^..................................................................... 45

2. Jl'Er *}^*M& 71^ ..................................................................... 48

-s-

854 2 4 a.5]^4 <5]4 ^5|7>

1. 4 ^.................... :.............................................................................85

2. Creep Parameter.......................................................................... 86

3. Creep 4"H ................................................ -.................................88

4 3 4 4^7] 43. 4 35] ^-45. 434-§- 44..............90

1. 4444........................................................................................ 90

2. 4444............................................................................................... 90

3. 4434............................................................................................... 92

4. 4 4 34 4 444 4#............................................................ 93

#3^4 ............................................................................................. 110

4 5 4" ^-@#4 ^ 3#.........................................................ill

4 l 4 4444 4t7]45. 4^44# ^ 4#.................... 113

1. Coffin-Manson44 44 4^44#.......................................... 113

2. 3444444 44 4^4#................................................. 114

3. 44###44 44 4^44#................................................. 115

4. 4 3444 41M1 44 4444..........................................116

5. 4-444 44^7] 4&44 4444 44............................... 116

-10-

*11 2 4 32)34 <2)4 £444.................................................. 50

1. Cavity 444:£ ^ 444f.................................................... 50

2. Cavity 4 4?) 51

*1] 3 4 32)3-3)3.4 3)4 £47)4........................................ 53

1. 32)3-313 5444................................................................. 53

2. 44 4 #4 ^s.^4 4*)£ 53

3. 34 7) ^7) 3] 3 444 4444.............................................55

*11 4 4 32)3-31)3 £4 4#D ...................................................56

1. 4444^............................................................................... ^..........56

2. .57

3. 44#4#^ ................................................................................ 58

4. 34444^41].........................................................................60

#3M...............................................................................................77

4l 4 4" a.5)^-3l5. ^44-4 79

4 1 4 71)33) 2:4 ^ 4444 .................................................81

1. 5)-44 &4.................................................................................. 81

2. 44 g 34 4444................................................................81

-n-

129Ail 2 4

1. Coffin-Manson^l ^l ^Itl 4#....................................129

2. rMMi-MlMl 5]tb 131

3. 4^^ 132

4 6 ^ BOLPAS^] ^ ....................................167

4 1 ^ 7il A........................................................................................ 169

A)] 2 1 B0LPAS3 ^ ..............................................170

4 3 4 Creep 3z)s. #4# ## BOLPAS^

=M3@7H) 184

All 7 # 35]^-iq5. 197

All 1 ^ Creep-Fatigue Doctor Ver 1.0 7H#....... 119

1. Creep-Fatigue Doctor Ver 1.0 7fliL.................... 199

2. Creep-Fatigue Doctor Ver 1.0 5.5-ZL^s] %-§-..................... 200

4 344%-........................................................ 207

4 #........................................................................................ 209

a)1 2 ^ 211

-12-

4| 1 *J- >1 #Ii

i

*11 1 #• # 1

#1 1 4 7fl

#5 47}#41 4# 14# #4 #4 3.711 ###4 44 #-4 ##96

14 #44 #7}# 4 444: 96l?}4 444-71 44 ##6#4 f!4

444 64431 &64, 4# #44 4444 #4# 4-8-4 64### 4

44 471744 ##4#, MW M#& 7}#5i 44. nelas.

44# 44-5-4- 4 ##6#- #,#42)33. 44-##6 #1464 #e 64

##64 /I#### 1# ###44 #4 # 69# #41 9#### #6

6# ##H #4 #44 96#?}4 4# 17}H 11# 4 9 4M4: =4#

#31 44. #*1) 1960#4#4 ##44 4r#43i 4# 44##^#44 15

# 4# 4-4# ##69 257i 517144 #44-## 5000MW#64 46jl

$A4 #71/1-4- ##^7} 91431 49 ##44 #1#66 ###44 ##

#5} #417} ##-# 1416 4#437 49 ##44. 44-4 44 #4194#

&44#4 4## ##64 ##### 1# 15# 4# #-4 4-4-# ##=&

4 #### 444 #9-7} ##4 6946 4# ##44. £1# #41 4-4

947} 6-B-431 4# #944##61- 44# # ##64 M#6, 1#

4#, 7ll#9#l 64=# #44, zi#i# 94 44##64 -§-# # 1#

#91 7)1 ##66 4-4-# #44-. 3145.6 44## ####- 44# ##

## # 9##7}l 141 4M# #1#66 9^471 44149 q#66711

6# ##64 # 9#6#1 6## #3}# 9444#4 #67} #64-4.

#4964 #194# #149 ####4 9711## 4 #144 444

-15-

49, 44 # #5#4# 4"9 434 4943] 4# 9#9 #4# #7>4

44, 35]# 9995# f9 5>7l 7> 39 94# 949949

9## 5# 49435 44# #3#o] 4945 44. #4 3# 4 3##

4 ^9 #4-5 #44 ### 1999 ##44 ## 9#9 #34, 44

#94 ###^9 49 #49 414, 9# 4 444 4444 33

45.5. #9-4 44# 9# 4 #^#4 €4. 5si 55 599494 #4 9

#344 54# #94 ##944 44# 4 #4# 44# 4## 44#

9 S19-.

49 #44 5#4 #4 444- #497], nuclear reactor94 53##9

44, 94 49 4#44 #9# #4 4445 #54 4#4# #94 9

49 49 954 4445 #4. 44 5444 457} 44, 94 #99 #

5#4 49# 4 43-9 55] 5(creep)99 # 4 3(fatigue)99 -#9 ###

elb] 5-# 5 999 #4 5# (crack) 4 99(cavity)°1'9445 49#4

44€4. 44# 999 as]5-43. ##999 94 4* 94344 4#

49 49#5 a 994 45# 99#7]7> 49 449 9444.

444944 1985494 1987444 44494944 9935 44 #

9944 (#4,5,654)4 4434# 4935 94944 44 54 4 94

95, 94 # 943499 #4 #9 49 35a g 9 ;1]###34, 19884

94 1991444 “3# 4 949 4 59444 9444 49"# 9# #4

3#4 314, 54 4 99444 49949 47}#9 ##53a^

(BoLPAS)9 7fl9#4 44#3, 4W2, 4##3344 4 9#44. 5#, 1991-

1992449 “4934- 994#35a^(RoLPAS)4 4949"# 9sS#4

RoLPAS55a^9 9 44#433] 49#4 #4944 99493] 44#

4-9.4 1990494 1993444# “4# 395##44 549# W49#

-16-

f<044 4# 3#b1 4=4^14# #^4#4.

ZZ.5M, 3# si #4^H4# 4# “3#### 4T§2|7>”<g^7> #3-44 3

3}3.611 4# 7lS-7l#e>l 7lfS|ol ##43 $134, ##

44 4 4M44 444 4il4 ^H4#4# ##4f: 7M444 4- ##

#4# 44# #4 44# 447> 4# 44-fas. 35^4 44a# #444

4 444# # #4&4 4 4# 4 44 3e}54- 434 #344# 444

#4, 3 4## 471-44 34 44# a#4 #4 #4 4## #44# 4

#7} $14.

444, # aa44 44# 3#b) #44 #44 4-S-4# 345.-45.4

4-3.444 4#4 #tiMl 44# 7144 4## #44-3 #4 4Til4##

#4#4 343-43# ## 3#4 #44 #4471- 41471## #4, 4#

4^1# #H##4 $14. 444 1443(19954)4# 3e15#4, 4a#4

4 343-43 ###4- 44# 3444 3# 44- 44 4^114 343-4

3 #4# #44434 34 444711 #444 3E{3-4341 ### 44

4till»13# ### 4 $13# “CREEP-FATIGUE DOCTOR Ver 1.0" 444

till 43 333## 441, ?H#44 44 3##44, 2443(19964)4# 4

4##3$1 41 #4 234 a#a^l4 4#4 lCr0.5Mo4# 4-§-#4 4#

4 3#444 a el 5 4 4#7l 434## #44434 3 El 5 34-# 3

444 44 #444(hold time)# 34# 3515-43 #34# ^Ml###

#4#^4". 3# #4444# 4######(linear damage summation

method), 34444# (energy method), ###### (strain range

partitioning method)4 #44### 4 #44 444 #44### #4, 4

H#^34, 4 #444# 34# 7# 4-444 444 4## 4#4 SEM

# 4#44 444 4-#4# 4#4^4. 3#, 1991# BOLPAS5

-27-

5-n^-i- Factor# 2ttS5S7H J5L

4 .MsysMHo) as]&-3|g. ^-2:3)-##

9| 2 4 Jd-alAld]

£ 9#<2] ^ ^ *£

*44 ##**; *#** ^ * ^53 ##*9, 9*9*** 9**35

9 #394. 92*# 5#Bl 31*34 9*4 ## 7149*3,

*#*# S 22.94 3#34 £*^-9 ig^6]] ^95>9al, 4* *

*dk9 **2:# ^ *#9 44 *r394. 93** 345-45. **444

fAS * 3B1S, 3)s, a4=-4&4 ^7]5*9493, §1t^t

3# #99*39 44 7H*#55 *394. 94*94* 4# **5* 9

#44 a.#444 9** lCrO,5Mo*9 44 **/3* ** #4# #4

#44 4# ^ 444 #4# 7l#3^54, iCr0.5Mo*9 4# 345 #3

# #4 h4 = 4 4# 4937M: 4^3493 xl#7M5*3* #4 *9*

97>394. 44 9*44 22.4444- ***:£* 515°c94 4443 4^

714s. #3# #44-43, #554# 345. 3:4-* 4-4-471 44 #44

#(hold time)* 344-94-. 3455 #44*9 9* #*43-2-5*4 1,

10, 30*4 #94## 4* 43# 44394 *43-2.54 #45. 5*22.4

#94## 7>9* #4-4# 4-34 3459 4# *334* #335. *3

494.

95*94* 345*4, *#43 4-#7143.4* 345 3:4* 7>9*

*44*43 3# 9#945#3 94 44# 44* 4499-2-4, #3*

*3*3, ^*9443, 43**33*4 4*4 #39*3# *9 **,

95, #**9-2-4 345-95.9 43 #5### 9*494. 53, * 2

*944 4*44 44# ### 49 SEM #9# *9 * 33* 944

-19-

4 3L5]5. %4# 5*##44 Mi 4# 444# #4*554 *##

4M-44-.

46*44* 7] 7Ht€ M4 f#f #44# *53 *(BOLPAS)# t#

44 444 BOLPASi 4 #4444 44# #4M* Factor* 44, 3

**554 Creep 45. *5*## 444^4.

474444 3s]£, 45, 3.45-45 44444 44 4s24t 5*

#4# 4444 44 4#* 444445 ss.3^4 7^ ^ a>-§-^) 4=4

4 444445# ##44 4 *4445 4 #44 44 #^4 4444

45# #** # 45# 4-44. 4 #4 55 484-* # 4## #4 4-4-4

4* ^ *44*# 4#4-44-.

-20-

51 ym^±

f 4M-9-#(MW) e^ys 71*21^ »iM y s H] 37

y 34+ #i 60 ‘64. 8.20 201,847 532 1990 1998 *93^

#2 60 ‘64. 8.20 187,880 489 1990 1998 ‘94^71-^^* t #1 50 ‘65. 4. 6 160,558 369 1991 2001 "93 W0

#2 50 ‘65. 8 .2 191,981 487 1991 2001 •93^7^1*375 ‘68. 4.26 71,755 447 1994 1998 ‘93^7MM

* # #3 105 ‘68.10.31 112,966 219 1994 1997#4 105 ’69. 3.20 108,050 254 1995 1997

*1 -s- #5 250 ‘69. 4.25 174.594 254 1995 2004€ #1 250 ‘70. 3.31 170,729 295 1996 2006y- #2 200 ‘70.12.31 94,889 1,020 1997 2007

£• tl #2 200 71. 3. 9" 99,666 321 1997 2004-H 5 #4 137.5 71. 4.10 157,680 231 1997 20045 4+ #1 200 71. 6.17 102,141 336 1996 20023L y #1 280 73. 4. 7 125,059 330 1999 1998

#2 280 73. 5. 3 117,835 330 1999 1998<3 ■§■ #1 125 72.12.20 146,914 311 1998 1998<8 y #i 200 73. 2.28 93,747 399 1999 20075 ^ #3 200 73. 8. 1 78,374 252 1999 2006tl € #2 250 74. 6.30 139,844 240 2000 20104 t #1 200 75. 3.31 97,674 343 2001 2006

#2 300 ‘77. 6.30 51,726 226 2003 2010tl € #3 325 78. 6. 1 85,939 392 , 2004 2004

#4 325 78.12.20 72,161 375 2004 2004<8 ■§• #2 200 79. 7.17 105,302 165 2005 2005i: tl #4 400 79.12.31 83,535 480 2005 2005

«i #1 350 ‘80. 4. 1 91,918 796 2006 2006#2 350 ‘80. 6.30 89,015 986 2006 2006

•£■ # #5 400 ‘80.10. 1 85,065 376 2006 2006#6 400 ‘81. 1. 1 • ■ 81,915 341 2007 2007 '

3 #1 200 ‘83. 3.31 68,938 250 2009 20094 #3 350 ‘83. 5. 4 68,312 1,015 2009 2009

#4 350 ‘83. 8. 1 65.284 953 2009 2009^-€2. #1 560 ‘83. 8.16 75,813 103 2009 2009

^ #2 200 ‘83.11.30 63,420 262 2009 2009a. 3 #1 500 ‘83.12.28 72,396 124 2009 2009

#2 560 ‘84. 2.28 73,715 96 2010 2010a. 3 #2 500 ‘84. 9.28 68,276 87 2010 2010

-21-

MW4000-,

(9 71 3920

(871)3320

3000-

(34%) 3287.5 MW

2000-

1000-

60

(271)220

(671)997.5

(4 71) 535

70

(77])1535

(671)1560

(67])1520

80 90

7U\

H--------------- 1------------- 1--------------1--------------1------------- 1------------- 130 25 20 ti 15 y 10«d 5 *d o y

# 7>l-g-7lti

nil ^L|] ^x\±2.\ ## gj #3^4=

-22-

xfl 2 ^ 37^-^-S) 4^

-23-

4 2 # 244 3##4

2.44 3##44 M4# 7M4 4# 4 ### ^HS-l-o] 3#4Al #

4# 2## 4##4 ##, #2#4 ##4^, #e#(impurity)#4 «g

tIHI $444 413.71- 1444. 4 #4^ 2.44 3#^4 ^7M # 2

44 4145.#) #5. A>-g-E)^ 7)13.# 2.25CrlMo#, !Cr0.5Mo^,

X20CrMoV121^o] a>-§-s]i^i o]e\-Z}- 2# #2## 7] #22 Cr,

Mo, V#& ^7>S><4 7i5.Sl 70VS ti LflAt-Sl-A^ JL^s-^lri: ##4^1 ^

# #44. 3^144 3.#44*f3 44# 144 43.4 ^^8] -§-^o] a]^>

4 44 7H&41 7M4# aSl s. #4# 4 4 7I-44# 42 ##& #

#441 #4.1}

1. ysi- W 7|4M#^

2. #4 ### # 3#4#444 A]~g-S]# 4-71 ### TflS.## 7%3.^1

4 &4# #2.4- 44 ^#44, 2.44 #2.# Anneled(A)#43 A}-g-s>#

#4, #4 # 3#4#44Al# Normalized and Tempered(NT)445. a}-§-

44. ^4#27> 4# NT#444# 44443(Bainite) # 44-43

(Ferrite)4 ##&44 ^443 A#44Al# ##4 #42444# 444

4—(Bainite)4 4&4 44. # #2# Cr 4 Mo44 Cr# 4444# 44

444 Mo# 44 44# 4444 #42 2# 3##s 4 342 #2*

-25-

**4431 44. Cr-Mo4# #40] 5-3340] E

(pearlite)4 #*3#44* NT# 4 314* |^ll-»l]^^ #*2#*

4 #4. 44* #4* TlH* 3*314 4A]4 A}-§-% nfl 444^ !SBr

*7>4 **0.3. 4444, 44* #4#4 *44 4 &44 44. 4444

54 140]e ^efls. #444 44#4 ##443 a]40] 44-31 44 s

44 4# 4444. 444 44# 4)5.4 444^, ##*3, #£* 431

4 44# %1447la3. 43144 ±$l *35.4 #3a5 #44 4#&*3]

45- 7ltfl#4s.4 44 ^#444 44 54, 4**4 #44 t^Jl 44

44 44. * 43)# 3i#444 444 4#^-& 4# 44#4 4#, stfl

4 4 #e#4 431 #4#4 #444 43144* **4431 €4. 44*

43144# 7])s4 44# 4444a 431544 3?1* 4^44 444 t

4# #^4431 #4.

2. *###

7}. a4—##(Creep damage)

31* *#** 31*414 #71#, €44, 4*31 4# 444 *4# *#3

5.4 *44*31 4* 3.45. *40] ->£4 5] 4. a* #*4* *^7>>h4 4

*44 *3H5 44* t]4 #444 #*4 **4, *d>*3| 441 *4

44* #31 €4. 3*4444 S.*4 ^14* 45* 44 44 NT44 *

& 4*44 *444 34 s* 4* AS* 5.4 *** *4# 4444, 4

444 34s* 4# 3*b) *44 44443 #44 a4. 344, 5*4

4 4*4 444# *s#4 3* #444a st|]444 t]4' #A}# 3.4

3 *4# 44*42>(3€2) 35)331 44 4**4* #44 #S31 44

-26-

4-4 4 #7} 4-34. 3#14 4#^ 1114 1144 1144 114-1

(Transgranular Fracture)0! 4444 4#14 4## 144 14|7l#4 #

^44 W-Type4 5'14 4#443L #3 1144 144-l(Intergranular

Fracture) 4 #A<!>14.

4- 7} #7] 4 5. (Low-cycle fatigue damage)

434 44#3 444 444 7M1 4 4314 dhlitgo] 144 4

37} 4444. 35] 4 434 1443 444 141 444 7M41 14

133 41114 1144, 444 444 41441 144 3.43 441

4. 3s] 4 4443 444 4441 444 44133 7}44! 4441

4;4114 #443 514 #444 437} 444 434 44. 444 4

4# 434 44, 14 -§-44 44- 14 43 14447} 41 514 #4

44 ##4 441 14-5-1# 4 3434 14.3) 444&A] 414 3##

£~ ff 41 3#4 4# 1#34# #3 H344 4 4 43#14 4#34

4 #444 44. 444 3# 434 14# ## 143^ #7]

(frequency), #4A1 Khold time), H(oxidation), #S(Temperature)#°l 1

34 444 4(3# 7] #4 4 3 4#)44 411 444.

3# #### 414 441 #71171- #41 a] 7]#, 14#4 111 4-3#

444# $14- 4#4 #37}44 41 !#44 #141, 441 1#1

4 #4133 1114 #1# 1# 1437} ##44 43##4 #11

4.

-27-

t}-. 3LE)5L-43. ####"(Creep-fatigue interaction damage)

141 #1^4 ##2l# #1# 2Z]3.7> #4 7l#-7j###-7j

14 44## #44-55 4 si 4 #4# #1 4 Khold time)# ## 454]

44# #4# l##!!6!]# 3-4= ###, 7l# 5# 4444

# 45### ## 4#1# #4# #7i] 44. 44# ##4 4####

#44#4 &# 1#1# 4&4 4# &#44 514 #444 4#5. #

14 4443, #4444 lie 4#443 #44 €■ 4## #4444 1

# 4#4 #1-4-4- #44 4# 4## 144 444#4 #4#4 144

4(Intergranular fracture)°] #44# 435. #44 #4.4) 44# ### 3

45-45. 4-54#4 4- #4 4 #44 #44 444 4 #4 #444# 4

# 454 4## ##4# 3457> ## ## 454 44 4S.#14 ##

4 14-4# 435 #44 #4-. 54# #4444 #4 43#44 44#

1#=, #5, #444 4# 4s.#l4 44# 1# ## #7]]#43 444

4#35 #e# ##43 #4-. 4-4-1 5 #^4.^]6]]X]^ o]4# 3.454-

4&4 #54## ##4-3l 4-##.

3. Ml4 3^#4 ###4 # #^Seh

5#4 3#^M4 #14# ##-#4# 3711 3#4 -S1144 3#4#16H

44 ##35 #444(343) #4 #44# ##4 37]] #4 #54o] 5. y

4 #1244 44-tII 44 #51# 24 4 #4 ##& #4 37^34 1

37> ## #5 e#4 4Ajs]4(zL45) 3#44444# t3 Pipe System

Load6)] 4an #!#4 ^-e##6!] 345 5# 43 ##4 71-414-.

-28-

7\. n C|(ZL^4)

1) 444 #€5

^4 *-4 444 15 5^54 a] fg. Cavatation 1 Microcracking4 1

45 4444, €^3€15 4# • €44 sy. ^]p]44 ^4^=0.

5 1154 4# 51514 e €444. 554 111144 4

4€1, 5111-4 44 55 554 €1€4.5)

2) ^45- 5544 Ligament0!] 4 4 Cracking

Ligament0!]44 515 7]# € 44#4 51 4-51444 €44 51

54- ^ 5154-4 554-4 44] €445 €44 15153. f€4a. 4

4. 444 # 44 7M44544 514 €444 14# 514 514-

14414 554 4144 4153 514 1145 153 €44 14-.

3) Longitudinal Seam Welds

€4 €53 4144 441 3]44 4€4 €444 455 545554

5115 44- 4445, 445154 515L3 a.s]3 514 4444 5

A €15 54544 55554 454 53H334 5554 1444 4

444 4544 5&14.

4) Girth welds

415 51, €5114 514 5454 £1 111=5(HAZ)44 €14

5 14s. #€1=4 515 #7]4] 4# 41, 445 Swelling^] 441 €1

45 114, €5€5 515 414 Pipe System Load#0] 4f^ 544

44] 55 1114. 44 Cr-Mo€4 15 Intercritical HAZ 554 554

1 544 7>sfll 15 he] 3 114 4# Type IV514 €1€45 €4

4 14. Type IV 515 ^1641 55 ti.14 55414 41514 1

154 44 4€1 545 €5 4, HAZ54 411445 57]]f ^.4 €5

-29-

7} 12 245 4HE7} ^7] ### 1##2 44-

5) 2.7H

#4, 24H1## 7H&4 4# £# #4 ##4 Swelling

4 21# 35} 3 ##4 1#14. 444 Swelling €#° 1 1### 5# 4

#4 #4 ##44, #4455 #4#^# Swelling0! M44 &$Hr#

3 4#7l#4 /g^5|7lS. #4.

4- 2###

2## 4# #4J5ff-54 Branch 7> &### Y-Piece7> #444, #44

14 #44## 4# Bends7> #71144. 2## 4# 5 44 -§-447} #7#}

4,4 444 #4-°! #44 -§-444 444 44, Y-Piecef##4# Pipe

System Load# 44 444#°1 4#44 #14 7}#14. 5# Bends##

-§-44 4^4 4-4-tII 4#44 a.45. #14 4#4# 4#4 44.®

4. #4-1#

. s.44 2.44#4 444# #!M# 2# 7il7}#5 44444. 44#

2#2l #44 #4# 4# 444 M44 ### 441154 4444

# 4# 444 4# -7g#4 #445^45 44444 444014 #54

#7} #144 #-§-44 M44 #45. #4, 24s #44 1^14. ##

# 444 1^1 44# 4# #44 444 1#44. 44# <§#4 -§-4

# 414#4# 54M.(stub)44 #44 W-03.4 i#4# 4# 44*#

4 ^4-§-44 M44 24= #11 #1-444 ei 545 #ti_4

ligament#### 145. #H, 2##4#### Y-piece## 245. #1

4 4144711 14.

-30-

&2i=r iL#4 3grf €44 ^33 # ^7^# 44 #4- 3E|

E t is] 5. 4 fA 4«H4 «^)61] 4s} 4 5)5.# ^44

SL3. £## #44 32]s-5]s #s4-§-i 431 e## #711 #4. 44 £.

#4 f4f4 #4 4 4 4414^ 44# 3-4=4 4&4 #3:4--H

441 t-S- #7il 44. 345.S -g #^441414^ 34=4 4a.4

#3L#4& 3#47l 444 4€44 23:71 ^.44414# 4#».s. 4#^

4144-$ 3 34 =-4s #3:4--g-i- 3#4-$4.

-31-

# tfl# H54 414^ 2SL7] 54 b] 447MM# n^74 4

4. #441# $34 #4 1965444 4 185,0004444 #4#5# 515°C

44. 5444 #44 444 44# 5#u7 4- #44 4# 4#4 4 4

# • 44#4 #4 45#4# a.42 4 145. ### #4444. 444

545#5 444 41#44# 1144 41#554 4^44 M44 5

45 #54 M#14 4444. #, 5b)5 #57> 444 114# ##4

#4#, 444 4455. 414 5##4 41#4# #44#4 M44

3-45 ### #1444 &4, 545 #54 Ligament##44 114 4#

4 #54 545 #544 #544 41 4#4# #14431 44-. 4#-

#4-44#444 #444## ^-484- 14 4#44# 4##4# 154

4##444# 444 #4# 444 345 544 44 414#4 #55

44 44 #4444 1444 444 #7im 44 44455 #?H 4

54# 4## 4444. 4444# 44 #44 #71444 41 45431

44.

^12 4 ## ^

-32-

microcrack

fatigje damags

carbide.coarsening carbide. coarsening carbide.coarsening

softening

-crack growth f^ack ^?n§°undar*

creep damage

erbrittlermt--

ZL11

-33-

, PIS» P15:0T: UTS. 034 MPoA PSOb:OT;UTS. G55 MPa□ NSI:NT;UTS. SOfi MPaO T109: A: UTS. 50G MPa

-12 -11

log I, - 19.000/T (temperature In K)

O PIS: OT; UTS. 03-1 MPa• PSOb: OT; UTS. 65S MPaA N5I: NT; UTS. 500 MPaD T109: A; UTS. S0G MPa

PSOb

(T » 400) (20 * lo" 1) » 10 > (lompcralure In *nj

QT o quenched ond lompered. NT = normalized and leinpered. A = annealed. U1S = ultima I e lensile strength.

ZLl2. nieoll ^H5.2| ^s|-(2.25Cr1Mo&)

-34-

52 ^Mode §i

4-8-444 4##3l4-§-

(4#)°C

4-§-44#. 454

4#3.:E.m)

4#7lj^(44")

#44

4 * 7# 7] 4

600STBA 24

SUS321HTBCreep4 5.4 4

erosion

4 4 4

444#: 450STB42

STBA20 " Ct4#)

# 7] Drum 360 ##:SB4944:SF50A

4 3.

#4#44

7)4=#-^ 7] ^Tank 400

##:SBV24 4 piece#:

Cr-Mo#E##44

a#4#-§-71

4 - 44 71&9-4 560

#7l#:STPA24

4 4 piece#: Cr-Mo#

Creep-4 5.

454##444

4-S-4#T piece,Y piece

-3I-&447] -r"Stub 580 47]:STPA24STBA24 Stub #44

4 • 7fll7l2l44444

600 STBA24SUS321HTB

Creep-4 3.4 4

Cr-Mo44#4#4

444=4#4#4###

(2^4)650 4: STBA24

##: SCH11Creep, 43. #4, erosion ###44

JI#4444#44##(^4)

56044:STPA24##=Cr-Mo#

4Creep, 43. ###44

Spray-## #7] 560 Nozzle 4 200

INCONEL 600 4## Nozzle# 44 454

(4) 1. 4:a4--8-Sr£(44")# rq-ef ^ is] 44. 7}#447} $142. Erosion# 444£ 3.444# 4# 44.

-35-

■bte

USB

* 'USf

e

41ofn&

LONG SEAM WELDSPIPING GIRTH WELD IF PRESENTPIPE TO HEADER

WELD IF PRESENT

HEADER GIRTH WELDS

ELEMENT NIPPLE SOCKET WELDS AND LIGAMENT

nH4 MSM 3fg7|Sl|CiSl

-37-

Peak lemPerature.Tp Temperature.'c

Zone I: solidilied weld____ ___________ _____ ____ ____

Zone 2: unmixed zone * remelled tone [fusion tone) \

1400

Zone 3: coaise-grain HAZ

Zone 4: line-grain HAZ

1600 -

1200

1000 -

Zone 5: intercrilical HAZ 800

Zone 6: tempered HAZ____________ 000 -_|Zone 7: unalleclcd

base melal400

200

WIV. C

-38

zlH6 Type IV Crack

39

nU8 7|§-§g-gx|A|o| #bu^o|#

-40-

S3 gUsHM 2S7| 2|-g7|5j|ci°|

e^-grs 4-§-^ ti] 31

lCr0.5Mo 185,000 hr 515 °C 92 Kg/Cm2 487

4 2 ^ % 3L & ^

1. R. Viswanathan, Damage Mechanism and Life Assesment of High

Temperature Components, 1989, ASM International

2. R. Viswanathan, Damage Mechanism and Life Assesment of High

Temperature Components, 1989, ASM International, p205

3. B.David, Elementary engineering fracture mechanics, 1986, Martinus

Nijhoff PUB

4. K.W.Andrews, H.Hughes and D.J.Dayson, ISIJ, May 1972, Vol 210, p350

5. Canadian Electrical Association(CEA) Report No. 116, G264

6. EPRI CS-5588, Remaining Life Estimation of Boiler Pressure Parts, Vol

1, Nov, 1988

Vol 1: Identification of Relevant Damage Mechanism

-42-

4 3 MN#

-43-

4 3 1 .a.e]3.-s|5 <£14 M]4#

4 1# *)^f7lD|3.«0 4% *-8-7|^

1. 497[45 4S

^is.7> 1#44 #4 441 414 441# 44^4 17H41 5144

3)5514 44431 4 114 4= 104 cycle 4144 41:4 144# 41

# 4 #7] s]5.5^31 14. 444 4944544 444-fe 45l# ^ 45.

14, 5144, 5111 ## # 9 154 4#4 14 57] 5 14.

7>. 4514- 1 4514-

45114 4-4-4-# 4514 4 451## 31194 4 1 t 1^4 (a)

44 #4# 1144 4ai 45#14-# 7>l 4 451## (c)4 14

cycle4 #71-14 44 4114 1544, 4514# (e)4 14 145 1

114 #7>14. 145 (b)44 111# 114-4 4-3L 45114# 7>1

4 4514# (d)4 14 cycle0] #7>14 44 #14 #7>44, 4 514

# (f)4 14 #44 1514. 444 4514 4 4514 41# 441s.

14] 45914 20% 4444 514 14447]- 5#4# 14# 7>14.

51 14#&4 1144 51 4514 41# 11441 144# 411

4 144 414 14#4 44 M4# 41, 1441# 44 14#4

14 4]t]44 144 4#4 441# 14=55 154 114 444.

-45-

4. ##414 454 45514 11 4 1#

l) 4551 11

4 5# 44 14-41 #4 11#33 ##41# 4134 S141 4551

°1 1144 s 41041# 1 #44 441 5.1 °ll intrusion^ extrusion0!

1451. 4^## 1#4 44 intrusion# 444 4351°! 44. 4444

4444 514 1444 4#°1 14 444 4&444 44 444 44

557} 444 #53 #444 514 persistent #^44# 441 3#5

* 4114 514 1144. 4#H 4447} ^5 131 14 s*}#!

4 -8-417! 4-5-4 persistent #14 7} #4 1114 51115. #4 #4

44, 414 4#114447} 4# 44 #14 444 Si41 5111

4 4114. 45414 41 5111 4445 45##°1 #ir 4 144

11 51#54 114 44 514 1144s. 44 !##4 13°111#

145-54 1##4 #7}44 g# 114 1144 4 144 444 5-4

4 44 457} #4 4^.4 4#114 144 45514 #144 #4.

44# 4 5## 4 44 4-11 43.4 5111 #5# #4- 141 ##44

replica #153. 54 14141 Hi: #4 1# 14.

2) 4551 1#

514 1144 414 514# 511## rz#ii4 441 #41 11

#55. 3145. #5-l4.n

0 114 511 #(stageI crack growth) • 45514 44 Hi-4#

#(1##4 45° #4)53 4# 1 #44 111 2;!!#5 3.444 ##14.

4 14# 5111 144s 44 454-14 ##! striation# 44 1#

~46~

14 #*4.

© 243] 5l44(stageII crack growth) : 13.51* #1#3] r^|A

5. 4442. 13441 4441 *41 striation^l *14 4#14.

© 343] 514 4(stagein crack growth) : void7> 7] 3] 4 AS 44, 4

4 ^ 143] 13] 51441 7}4411 #1#3] 4 45° ti<n\$-3 444

4444. 4 13]* 44444 44444 44431 4444, 413]*

dimple 417} 4444. 44 343] #44 1&#11 ^* 44 143]7}

431 45.44* 4444, #44 ** 4# 243]7} 43*4* 4444. 3

4314 4** 44*27} 4f3ES 43] 13*13] e 44=# #4 #4

4.

£4, 45.51 444* 514 444* 4444 7] *11 45.4 4

5. #! 44# 444 #-8-44. zz.4] 4% 44*4444 4 514

dh4! 13144 #* 514 4423 4* * 14. 4 513] 4314*

Paris-Erdogenl K da/dN = cdKn)%: 45-4 n4* 2—44 2# 7>44. 1

44 a* 5141, N* 41# *, dK* #14431*14. #* 513] tfi

44* 4*7] 4sal! 4*11 da/dN = Ba 3 &%44. 144 B*

4*11 4% 11*2, 144=3] 44 144.

-47-

T

2. 5# 71#

*4444 *5#*4 511 4445 4**1 411 1

1444, 5**544* *4*54* ^11-44- 5l 4 4*71 4*4

47] 43-4 *5411 444 441 444 15** 44. 54*^.514

1*# 444 444 444 *4.

7>. 54*S51 4144 444 1#

1) #1*4 444 44 14

45.7} 4444 14 *44 444 444 *#(climb) 4 54#44 4

44 *444 planar#44 114* *5* *445 314444 wavy#4

4 111 4 14.2-3) 14* #4444 44 5445511 544 44

1 4 14. 5^124 4 454 4* 457} 4M-44 life 14=4 1*1

44-414. 457} &44# *5411 *544 *4*4 14.

. 2) 14*5 *44 4* 14=

54444 147} matrix54 4=4*55 1*4*1 5144 *45 *-

4* 4 14. 3

3) *44 4*1*

54444 4*51 1 144 **4 44 511 5*4 44*4. 5*

134 **£*7} *5*44 1*4 1*4 14 4*114. (a)4 lCrMoV

*554 823K4 41* *544 5*(air)44*7} Ar*4*i4 *541

1 4 *5*4 4# 1 4 14. (b)4 X20CrMoV121*554 3044 4*

~48~

414 #41 4 *441 #1444 54 *4 7] 44 4^*14 is) 5^5

* 1* 1 * $14.

4. 3*4^51 444 44* 1#1) 1M4

414* 45.51 54444 4*4! 444 *1444 44 51444

s# #1414.

2) 3.1 cavitation 5l4

3*44* 14* 44 cavity! 44 4 444 145 * 1-^-4 44*

*3. Hi*54 114 44. 144 #45* cavity* 43.4 441 444

* 514 3.14 44 514 144 44 5144*s# htII *7>41 *

14.

-49-

12 1 3-51=0)] ^

3# 4^7] 4 3-4 #4 y# 44#^44 -n-44#(hold time)4 ^4#

#4 91444 cavity7} D45]jl 449MM 91447) 914443.

#4# 4# 4 4f M5)al ^£SH) 44## 444 44# #44 0)

S#M 44 a5)^ cavity-2) $<% ^ 4##

1. Cavity 4D4#d± ^ 4M^7|?

cavity -*<!)7j#;h^ 3^)144 #4 9a 4 °ll 7) triple point, ledge, 4)## ^

470# #4 #44# ■¥■■$) ^ 3^154 #4 91 Til-2) 424:4 9l4(second

phase particle;3.5)5. i&^§4- 43.>£^§ 4 ##44 4#4# #4)4 44 ^

5. #444. 4 #44 93-3)71 cavity^^7)7}44 91 ##4444

vacancy##, 914#^, 44444 4# 7]##o) 91-^-4, 34144 91447)

cavity 4444# 704435. 444914.^""^

- 914## (grain boundary sliding)4 44°) 4 ##44 triple point #4

4t ## 4##44 M44 cavity7> 4444.

- 9144 447> #444 4##4 9144 #4### #*-4 cavity7> ^

444.

- 9144 ledge4 9144 ##4# #4 914 ##44 #S##, ##4

(slip band)44 %4#4 4«ll f4^#4 9144 cavity;} ^#44.

- matrix4 ##44 4# 9144## JE# 4^1)#4 matrix44

decohesion4 44 cavity7} 4444.

SO-

2. Cavity #2?!?

- vacancy 4-#°i) #fb 4 l?! t2-® : ^3# 7]4H #44# 4 #4#

vacancy7> #44 ### #7K4##)#4 3#?i cavity# 4414# 7]f

3-4 Hull2!" Rimmer# cavity 44# 7}#1 §1 cavity S.'S

# 4# SKH #444# 44:5-4 4#44( Aȣ>g) cavity# 444"##

#444, 14 4# rigid43 #4# vacancy# #11 ^#443 7!41^

4. 3 #16# # #1 cavity 4 44 ## 444 $14.

- 3# 14 4 44 44-4410) : #44 €- 4# 7H&# 14 #5

7> #4 cavity-44# 4 4 (matrix)# 5411M1 444 r^€4r 7l#3?1

314174 44 3# 44 4 44 #44 #44 4435. cavity?! #444

3 Jf47> 44-43, #3## cavity 5144# ##447! #44 1?!#

4#4 4713i 444 cavity7> 4444# 4#44, 4 ?lf# 54444

3.45444 4# 434 cavity# 44 4444# #444.

- vacancy# 444 3#14# 43444 #4 447l4u) : cavity# 4

4# vacancy44 BE# 3#1W #3 444 #44 #5#4 #3 ##

# 43444 #4 cavity44# #44# 719-g.#, 444 #4 4444#

14 #4 44444# 43 vacancy 4441 #44 cavity7> 4444# ##

#4 4 Til a. l#3#5(discolation creep)# #4# 3444# 4535. #

4##4 5#4Til vacancy7} 44#7l 34# cavity ### ## 4#

vacancy?! 44#53 444 44# 44433 4#14# 4 #4. 3^18

4 7fl4#33 444Si4. # 1## 44-313# #4 cavity ### 4#

I, 113 #444, 4# I # vacancy 7> # 4 4 4 #14711 44## cavity#

44#7>#, ##H44# vacancy# 44#4 13# I##### 4#7>

-5i-

243^4. 171114. 11, 4 2** cavityll 447} 1 ## #14

1#4 441 1442 7}#-* #* #14 44 1444-

- **2:14 #H 1*4 R-type cavity # l7l *12) : cavity7} *514

711 #2514 1# 2^1 4141 e^m 1# cavity#!# #44 #*!

44 44 414# 4-71144-# 4€-25., ##44&# 4444 24,

vacancy source, 4## *4 44-. 24194# 2# H # cavity7} 4# 4

TIM4 #544-711 #244 #44# 4# cavity #4# cavity#44 4!

3.42 1 4434S4 44 1444-# 4€44.

- W-type cavity #l7l* : W-type cavity 414## 4 4 ###25 1

#4 #44 414 4412* *7>* 4 ##44 #4114 441# #

4 441 1114. 11427} e 1*4# 14114 #2 1443 1#*

27} 21 1* triple point4#4 #4114 21425 *11# #244

W-type cavity7} ## 1 #11 * 14. 2120* W-type, R-type cavity

4 #4* 24425 444$4.

-52-

41 3 4 a,e)=-5)5.

1. HE|=-=lS 53

Wareing1®# 3### 3.#5-43 #5#-g-# ## 435# #4#

/life 4£-4 #4 3443 5###4.

(D 1#4 5#^ ^(phase I crack growth) : 3.# 4 4 A34 # 435##

##3. #44^ #43# 434#4 4## striation# ##44, 3# 5-4

3- #5#-0-# ## stagen 5# #47} # 4##c}.

(2) 2#4 5#4 # (phasen crack growth) • 45.5#°! #s34# -§■#: 4

3. #^# ### 345. ^#4 45.5#4 #54-0-44 5##4 437} #

7}44, 43444 4# 4 striation4 ##44 #3 #43 5#4 #4#

4.

© 3#4 5## #(phasem crack growth) : 7fl5 4-f-°ll 44 #44

cavitation# #A<§# 4-#"& #4 4 35#4 5435 #44-fe shear

fracture #444.

3#4# ## 4#4## # #4 #4 cavitation# 444# phaseII#4

7} 434## ##4# ir-S-# #4 #4.

2. Tf44#(hold time)o| 45^#4 n\*\± ##

3#214 ## 3#44 444## ## ##, #4, ##-#44 4##

e #-T- 43^#4 #4fe ##=& #43# 4-5-4 #4,

-53-

7}. 99 hold time 24

99925 99- hold time* e 9* hold time4 *7}#4 44 4*45.

54 45*94 92*4* #4:147} 94 4442 $14.14~17) 44# 4

4 hold-^l 45*9 92*9* 44 hold*] *444(stress relaxation)

4 4444 44 944* cavity7> 9444 4444 994* 45.54

4- 45. 424*44 5444427} 47}5)31 4349 4 9244 444

4* 4444 44* 47)144. 24, *4444 4# 29999= #7}4

*47] 242 *992 4425. 4*442 44. 2422* *4444 4

54 44* 444 254 lCrMoV94 X20CrMoV12l94 4# 4449

4.

4. 9"* hold time 24

4* hold# 45*94 9*454 44 424* 9*4 944 4*

4*7} 94. Cr-Mo-V99 4* 9* hold47} 9* hold4 54 45*94

4 4-24* 425 44424 444 94 hold4 45*94 9299*

944 4# cavity4 *4 9 9*25* 99# * 7} 924 hold time#

24999= *7}* *97] 24 4 94 hold# 4714* 9995 *94 9

9= 4*442 44.

-54-

4. $14-hold time 5.4

#4133 # 4W4 4 holdl# 41 hold^l^1 44

!3#14 ti) a?i1 4H4. a 1433# 41 hold^l #1# 4

4 holdAli 341?! 144 !3#14 #4# #1# l#4a 414 $1

4. #, 41 hold a] 4 70 4] a-) aJ^> a^44 cavity 7} 4# holdA] 4H#4

14 34171 4 #4 4.

# 4#4a1# 1 #4344 44 44 hold time# #7]#47] 4a] 4

144 44 444 24 £.4 43#14 #4 4 13# 133 71444.

3. ag 4¥7| !3A|ijA| 444-y-

%# 71^7] l5.Aif a] 444 # $1# 4444# a. 1234 7fl44 5.3.

444$14. (a)# 3441 43^-44 414a 1444 4#!# 1#&

4# 4f7l 434 a# 71^7] 434 1#4# 441&4 #4440] fg-

# 4 #4 ^3 444# !3#14 44144 (b)# 4 3## 4

#1, 1144 14# 44 cavity! 11 4 1 l(cavitation)4 13 #41

33 14447} 4^ 4414 31# 4 43 514 cavity7> 44A] $4

41# 44444 4#41# 14444 114# !#&! infold

time)4 7>44 a! 3-4 3 131#4 14 4411 44. (c)# 13##

# Til 44# ^4^a cavity! 11 4 114 141 444 1# 1#5-A-l 44 #71444 4 ^#4 a!3 1#4 444# a!3 #14

4414 4411 44.

-55-

*114 4 3.^-3] S ^444

&€4#44 4&441 7]^, 44 # ^>^6)1 €44 #€

sl-31 44% €-8-4 4 4 aH 4^.4 32]£ £4 ^-4:444 35)5-45. 4

54-8-4 4# ^41 4444 4&4 4€1 444715.5. 454-8-4 44

4^4 444 4^44 44.

€444 hbIs-45 4444 € 14s. 4^444-44 % €^-7} 4

€44 #44 °14€ 4444€4 4&4 44 434 43€44 447}

4444 #3 <94447} f/#}4 #24 44444 4444 4# 441

4 4444^4 24€4444 44443 44. 35)4 3)5444 447}

€443 €4447} #4% ^44fe 10444-4 €4* #44443 4

4. 444 44444 #€«}fe 4&4 44441- 34 4 444 4^4

1 €1 =r #4.

1. £4th49 (Damage summation method)

44 71)57} 3)54 3.5)5 ^41 144 #1 4 7}4 €4443 544

€ #go.& 3454 4&^44 44 4€42& 4-8-42 3 ^44 t°l

€7)1441 s#4€! 4 44 €41 4144.18~19)

$,(#) + $& * 6 (1)

#, : i 4-44 414 7}#4 44# *r

ATy; : i 444 44°) 7M4 4 4441 4°1# 4

~56~

tj : j

tf) : j 7M# 4 4444 a]#

Q : 4434 43443 43) 5A) AM#44 a)4<2) #4

43 4 A) 44-4 3&44-&, 4 34 35)5 434 3-3-44. ns] 4

4Alls. 35)53 3 54 =-5)353.4 4-S-44 #3 A]5. 3-5344 7>x)3L

334353 35434 443 44. 443 35)54 3)5.7> ^A)4 0.5.

34344 444 44444 3^1) 35)5-35.3 35344 34444 4

4.

£4 4443 ^r 444 44#44 443 3 53- 35)5. 444 4

4 4 44 ^D&4 44€ 4 35)5 3 4s. 444°) M € 3) 4

4°) 4^444 7H}46IH 4444 3) A) 4^,4.

M ^ M , , A -%+%+% + ■ ■ • + AT* - A%

f-+f+f+'"+f-=±4 =*fl *fl tfi tfy J—1 %

444 4334tKHI4 3 M?)- 4443 a}-§m

= 1 (2)

1 (3)

4 s) 44 471) 33

4A) 444 7>444 4W7)1 4s) a}-§-^ ^ 44.

2. 43-45.3 S(Frequency modified strain range method)

Coffin-Manson4 4444 44444 444 4444 444=4 7M4

4 44444=4 3] 3.44 AM 4 4 444 3^ 471144 344.

AT/ • zfs^, = constant (4)

4 7) A) AT, 4 3544, Aet 4 ^444444, a 4 Constant4 7)) 53

-57-

# 44. 444 44 4#444 M4# 44# Ms. 2#42¥## 4

1444 €M# 4 #424 #4# 42# Ms 44^24 4444#

4#4 44 M444 4444. 44# 245. e44 444 ¥44 #4

4 4242 #4# 2####44 4#45.^44 10%7> 2#4s#44

414442- 4$ 4. 2 a] 2s 4s#27> #7>44 24= 2414444 ¥

4444 7fls4 44# 44# 2444 4# 4444 7114# 4 7}# 24

4 4# 7fl44^4.20~21)

(NfVk~l)aAep = Constant (5)

4714 k # #244 4444, i/ # 4# 4 #4# 44.

444, 4s.7> 4:# # 4# 4# 44 ##44 244W4 fAS &44

4 2444# Coffin-Manson42S 4444# Basquin42S &4# 4 4 422)

^£t = Ase + Asp = Ci(Nfu 1 ) ^‘ + C2{Nfv 2 1) (6)

444 Je, : 44 441:44, Je. : 4444144, Cx,C2,Kh,$i,fo :

7l]S#¥44.

44# 7>4 4444 #4# 2442s #444(hold time)4 7}414 4#

#s^r## 41471 441 444 444.

3. 4 ####4(Strain range partitioning method)

^f7li 444# 2# 4#4 4# 4 44# #41 244 4S1M14

44. 4442S 4# 4 44# 44444 41442s 4¥444 244

## 44444 27]7} 44# 2a]2 414 444 #4# 4M12S

-58-

*#4*4 °1 144 #^* 7ll^AS #4i

* $14. ^124* 4 111= 4** 444# hysteresis loop* 44xfl$14.

(a) Ae» : 44d=4#l*. *#d:4114 4# ^814 111=

(b) Je^ : 443.4=113: #4^1414 144 #11=

(c) Je^ : 41-dh411* ##34 $11^1 44| 1## #11=

(d) Je« : 4434=41^ ##34$114 4*11 1## #11=

44* Jeg * 4*4 *4 $*# * $1$423~24)

^£,y (Ns)ai> = constant(7)

i,J = P,c

44 #u * *** 4*4* 4s.*l# IV, * 4*4 44 444 * $1

4.

W/= ^ (8)■lvv

4 444 /<, * 4 M> 4 **4 41444. !!#*#!* hysteresis

loop$*4 e#4 **#4 414 *4°l3i 444 *44 loop#* *44

7] 414* 44* 7>43. $144 *$4 *4* 4$$ $44* 44* 7}

431 $14 11 #14 (strain range)4 #44 44 *14 4*44.

444 4## 47>4 41# 4*4 4 $#14 4# 444# 4*4 4

4 Coffin-Manson44 4# $44 * $1$4 *5. 4*4 441 4444.

AsyiNij)a> = Constant (9)

4714 z'J * p(plastic)4 c(creep)* 44 4444, or* * 4 $4** 4

414. 444 441 444 41# 4*4 45.41 444 447> *414

1 45.414* 41 #*#14 4aH $444. 41***14 7>4 44#

-59-

14# 4 #4144 4£4## 3414 Qjl z|l 441# Mol4.

1N, 1 + 1 + 1 + 1 (10)

144 431## # 4 3114 1#4 4# 44 1# 41.

Nf Fpp | Fpc | Fct> - F«- + JV* + iV^ + Ncc (11)

4711 . Fpp=Asppl Aep, Fpc— AspJAsPr F^= Ae^j Ap, Fcc=AeJA£p

Asp = Aspp + Je*. + Zfe^ + Asa^4# #7>4 m 44 #, HBl= #41 43#44 4M 1411

4 43. 41=# 441# 4# 1141.

4. ±^91011449

s]S^44 1413& 31 4444 # (plastic cycle strain)4 H 444

4 3144## 4^444# 34133 3141444# 43#4144

4 #34 44# 4444. 4#7] 43#4 Us)# 3141444# 4

1# 13 3444 14# 434 ##44. 44#4 344# 34444

44# hysteresis loop4 44°14 344# #444# 4# loop4 flS

4 43# 444# ### # 1# #1### 7>4ji ^4 o] ^444 3

11 4 43# 4#41. 444 3144444# 43#14 41444#

4## Morrow7l- 34414444# 444434 Eylin# 3141444

#444# 7lM 434# 4e# 44143 Giglol Vergani## 314

1444 4e# 34# 7>4 444 43#14# 4#4 4#144.

342544 3#4 437} 43.1- 4444 414#4 #44# 3141

-60-

(12)

444^ 4#4 #4

AWp = jay d£yp

44, 45.S] ^7] #^-#%# #4d°] Massing's hypothesis4 4—4 4

^B5. 4(12)£ 4(14)4 #4 44.

g = 2(Ta , £ = 2e# (13)

= 4<ra eap ~ 2 Jj^Vdo (14)

Morrow^ power-law #4-4^# #44 4-^-4 a = K (£p)n 4-3-

(7 =2<ra

(2 &/)"(^)"'

4(15)# (14)4 4444

444

= 4<7a V -{+<

n"# #4-4^# 3

(15)

(16)

444^ n' 4 #431 7H43L

g/ = (-gr)lln'°]E.s. 4&4 ## ^444444# 44# 4 $14.

= 4AT-^' aa1+»* l-ri

1 + ri (17)

-61-

w +

(a) (b)

HH9 Cycle dependent material response under stress and strain control

(a) stress control (b) strain control(c), (d) cyclic hardening (e), (f) cyclic softening

-62-

(a) (b) (c)

nU10 Process of fatigue crack initiation(a) slip step under static stress (b) intrusion fatigue stress (c) extrusion under fatigue stress

stage stage II stage

new crock surface

crock crockflow -- bonds

crockcrock

HU11 Fatigue crack propagation

-63-

Io>I

uDEF3riohnVJ

11HuJimok&□M'r|ros.o°l

ii1: i . "'j

i

(&om

-*09

zz)

Cycles to failure

Strain amplitude, %

05 050

Plas

tic Str

ain R

ange

•Continuous Cycle

Mumoer of Cycles to Failure

a) ^W#(iCrMoV7j-)[9]

10

10 -2

10

© ©

12%Cr-Mo-V Steel 873K, Aet=±1.5% © : th= Omin. Ar

th= Omin. Air th=30min. Ar th=30min.- Air

OD

© ©

* ' ' * '10Z 103

Number of Cycles to Failure b) X20CrMoV121#[10]

104

aUl3 5|s^o|| □|*|£ Sff

-65-

6

^ ^ ^ ^ ^

SECONDPHASEPARTICLES

GRAINBOUNDARIES

1111

6

^114 Intergrannular cavity nucleation sites

-66-

crt

GBSGrain Boundary Particle

(c)GrainBoundary

GBSii. XX.

\TTT T T

GBS : Grain Boundary Sliding

(f)

nH 15 Cavity nucleation site at phase II particle on the grain boundary

~67~

Quasi Equilibrium Cavity Growth

(D„S»Dg8) (Hull-Rimmer)

tCT

Vacancy Flux

l

ZLiJ 16 Illustration of quasi-equilbrium growth wherein atomic transport

occurs along the grain boundary and through the lattice

-68-

Cavity Growth Controlled by Creep Flow

rCavity after Creep Row Initial Cavity

Shape

X\-._ -?*'\__ Cavity after

Surface Diffusion

U

nHl7 Illustration of the effect of creep flow and diffusion

on the cavity growth

-69-

Region IIRegion I

(b) Distance from Cavity Center(R)

COUPLING OF DIFFUSIONAL AND CREEP PROCESSES

Creep Diffusional Creep

Zone Zone Zone■ r.

A

, A , -Vib c ,

al18 Model for the coupling of diffusions! and creep processes

in the cavity growth

-70-

Constrained Cavity Growth

<7

Isolated Cavitated Grain Boundary

ZLg119 Illustration of an isolated cavitated grain boundary for which cavity

growth may be canstrained creep flow of surrounding matrix

-71-

6

III

ZZ.H20 Schematics of two types of cavities

-72-

A) CONTINUOUS STRAIN CYCLE 6

T

B) TENSION STRAIN HOLDWv 0

VTc M—W

E

E-(5n

- - / — (5nE

D) TENSION & COMPRESSION STRAIN HOLD

/

To

A

nU21 Typical strain controlled low cycle fatigue cycles

-73-

Plas

tic Str

ain R

ange

- ■ pimiic

«itoi

» rang

. (%>

10,

TENSION HOLD TIME

ICr-.IMo_0.23V sleol

Cycles to failure

a) 1 CrMoV #[7]

125?Cr—Mo—V Steel 873K, T—type Tensile Hold Time o : th= Omin. a : th=1 Omin. a : th=30min.0 : th=60min.

Number of Cycles to Failureb) X20CrMoV121#[8]

aU22 -fr^WTHhold time)o| s|So|| a|%|^

-74-

ni!23 Schematic diagram of failure mode in creep-fatigue test(a) fatigue-dominated (b) creep-fatigue interaction

(c) creep-dominated

stress stress

(b)

-strain strain

(c)

(a) PP-type cycle (b) CP-type cycle

<c) PC-type cycle (d) CC-type cycle

HU 24 Idealized hysteresis loops used in defining individual

partitioned strain range

-75-

Awt = AwP +AWea

HH25 Total, plastic and elastic strain density definition

-76-

4 3^- # 3L

1. B.Tomkins and J.Wareing, Met., Sci., Vol 11, pp.414-424, 1977

2. A.Pineau, Fatigue at High Temperature, edited by RP.Skelton, Applied

Science Publisher LTD, pp.312, 1983

3. DJ.Kim and S.W.Nam, J. Mat Sci., Vol 23, pp.1024-1029, 1988

4. C.Y.Cheng and D.RMaiya, Canad. Met. Q., Vol 18, pp.57-64, 1979

5. S.W.Nam, J.W.Hong and K.-T.Rie, Met. Trans.A, Vol 19A, pp.121-127,

1988

6. M.Klesnil and P.Lukas, Fatigue of Metallic Materials, Elsevier Scientific

Publishing Co., pp.61-70, 1980

7. SPearson, Eng. Frac. Mech., Vol 7, pp.235, 1975

8. W.H.Kim and C.Laird, Acta Met, Vol 26, pp.777, 1978

9. D.Hull and D.E.Rimmer, Phil. Mag., Vol 4. pp.673, 1959

10. J.W.Hancock, Met. Sci., Vol 10, pp.319, 1976

11. W.Beere and M.V.Speight, Met. Sci., Vol 12, pp.1505, 1979

12. D.F.Dyson, Met. Sci., Vol 10, pp.349, 1976

13. J.Wareing, Met. Trans.A, Vol 8A, pp.711-721, 1977

14. S.Majumdar and P.S.Maiya, Canad. Met. Q, Vol 18, pp.57-64, 1979

15. C.Y.Cheng and D.RDierks, Met. Trans.A, Vol 4A, pp.615-617, 1973

16. S.W.Nam, J.W.Hong and K.-T.Rie, Met. Trans.A, Vol 19A, pp.121-127

17. M.F.Day and G.B.Thomas, Met. Sci., Vol 13, pp.25-33, 1979

18. APalmgren, Bertschrift des Vereines Ingenieure, Vol 58, pp.339, 1924

-77-

19. M.A.Miner, J.Appl. Mech., Vol 12, pp.159, 1954

20. L.F.Coffin, Jr. Report 69-C-401, General Electric Co., 1969

21. L.F.Coffin, Jr. Proceedings of the Second International Conference on

Fracture, pp.634-654, 1969

22. L.F.Coffin, ASME-MPC Symposium on Creep-Fatigue Interaction,

ASME, pp349-364, 1976

23. S.S.Manson, Fatigue at elevated Temperature, ASTM STP 520, ASTM,

pp.744, 1973

24. S.S.Manson, G.R.Halford and M.H.Hirschberg, Design for Elevated

Temperature Environment, ASME, pp.21-28, 1971

25. W.J.Ostergren, J.of Test, Eval., Vol 4, 1976

-78-

-79-

I

Is

*11 4 4 ael5.-s)s. 43:4#4l sltt

l % *|ssl s>9 #

# 4414# ^474 #4 23:71 S.<a51^4611 A>-§-^ 100.5MO

44 444^4, 4#., 37^6)1 XI si oi4#4# 444) $14.

1. ##4 2E-y

X4# !CrMo44 <94471 4442:4# 4444, &5# 185,000hr4#4

!Cr0.5Mo44 %44 444 2/9# 4444. C4 S# 4^#44#7l^ #

44^2, Si# 4###A^4 44## 1000°C44 414 f-

#441^.4, 444 4^# ^ l-tirAs. f ICP-AESS. #44

4. 44*171 444 s, P, Mo4## 44431 444 4 #4 Z44 444

444 4# 1 # $14.

2. -y# ss 3ig°i^ #4

#6# 4-0-4 (185,000hr)4 4444 4444# 4444. 4444#

INSTRONM 444 4^4 "<8# 4# 4 51# 444&4^4* 4^ 4«S

4$1—4 31^264 27# 4# 4 37# ^144^41 4#€ 4^4 44# 44

44 444 44# ASTM 444 4#4. ^-426# 4# 4445^5. 44

-87-

168mm4 7]] 4 X] ^ o) (gauge length)^- 60mm4 #4 4 3| ^.5. 2) 7§ •£ 12.5mm

44. 44-4^4^ 44*4 444& 44# 4f #4# f 4^ 4W&4

^7l(INSTR0N 8500series)* 4 #44^-4 #4# 4" 5

444 25mm4 4441 (Extensometer)# 4"§-44 #4444. 44 Sample

rate# 10pts/s4 2: Ramp rate# 20%/min4 4. zt^27# 31# 4444—5.

44 160mm6]] 44444 80mm4 #44 4 4 3. 44# 6mm44. 5.644

4 # 45-4 3.#44 444£7> 4^4-31 44 4 #7} 4^#^a, 44& 4 4# 4 441 4%#7}3ta4.

-82-

£4 1Cr0.5Mo^s| si-sj-aj

(#44: wt%)

Comp. C S Si P Mn Cr Mo

wt0.10-0.18

> 0.0350.10-

0.35 > 0.0350.4 ~

0.70.70-

1.100.45—

0.65

£5 a^tH lCr0.5Mo^s|

(#4]: wt%)

Comp. C S Si P Mn Cr Mo

wt 0.178 0.017 0.334 - 0.586 0.735 0.699

£6 A|-#7}|(iCr0.5Mo; 185,000hr)£|

Temp.(t)

Young'sModulus(E;GPa)

TensileStrength

(MPa)

0.2%Yield

Strength(MPa)

Elogation(%)

24 205.1 484.1 280.7 33.8

515 190.2 315.9 198.6 35.1

-83-

iyS |oR|yO|A19’OJQI HxSIy ||oji|Y§i3 SET ZZfir:

iyS IoBIyOIAIS'OJQL Hy^y B^y MIy-SB S-iy 92Hit

Z 21

4)

4| 2 4 ^*§7}

1. 7H a

5#e] 44- # ^54- 2194 i-g-## 9945.9 24#! ##4 #

#44 145 A>-g-5]31 &##, -g-^4 29244 4~§-5]9 2## TflS.#

44 44# 41 3le]5 #14 #2# 44 4## 4-. 444 3.4 9244

94# 4444 444 #444 44 4# 444 4444 44 #4 4-0-

9s. g 4#44 4S7> creep^44 44 4949 44# 7>9# 144

4949 44 #-£-44. 444 4-^4 4# 4444 creep 4949 #1

2444 11# 14-5.44 1 4995 # 44444 creep 49419 #

4471 44 1144 44 creep 49419 4 44 parameters. #444

°1 parameter4 11944-4 44# r^-S. 9419 #3.

3.4 444# parameter# #44#, #44 #5.44 creep 44444-

creep parameter# #44 creep 4#4 4# 99# 9 #4 44. 44#

creep parameter# 1950#5 2.7] 4 Larson-MiUer7]- # # 7]]## #^-1} S|5-

44 2 #97} #15)2 #4. 2#, creep 41494 4# #97} ##44

4#44 #4, 44 o] 4#7]9# 2## creep parameter#"!# 4##2S

4 54 ### f# 4 7>#4E4 ## 444, 1 2# 2#4 4 creep 4

#41# #44-71 4# 444 creep lls##-4 44434 4# #41

45 #5.5]#43). 4#4# creep 4#7]#4 44 creep cavity# 44 #

4#7]## 44# 9 #9 #9-14-7]- #5#25# #» #-§-44 creep#

9419 94 437} 4fe #95 #14 2 #44). 9 #9 Creep-#S 45

-85-

#1# 1-71 441 Creep# 3# 4^484. #3# 1# Larason-Miller

parameter# 4## 4444 ^ Creep strain# #4 #5-5.4 €335.3.

Creep# 4&# ###7l 4# # #€#!£. 4 #4 444 Creep data# 4

31 ###3# 44# 1 $144.

2. Creep Parameter

33 = # €41-4 44414 33333 ?M€ #44 s## #4 €4 1# 47)144 €414 44 £1 414 44 €4(dislocation)4 41 41

4 444 344 44 4141 €1# €44. he)5# 342843 33 1 €4 (€4 #4)351= -* 244 (3 ##4)34= -> 344351= -> 4443

4^44 ##3 4#4 3144 33 = €34 #34 4431 H

#44 3#4 i#4 3# 33##(self diffusion)#!44434 #34

Creep rate! 4#4 #4 &## 1 $14.

e = A(T,G)exv(-Q(T,o)/RT) (18)

s ■ Creep Rate

T : Temperature(K)

R • gas constant

31# 3-144 3# 43^ 4£7> 341# 333 #3E7> #db44 44

4 34# #£71- !### 14€4.

Creep 4€4 44- 4# €3#£5. 4^ #W 43 Creep# M 4 €

4#4-€, Creep##! ## 414- #4-.

£' tr = £„ (19)

-86-

tr : Creep 44*4

£„: Creep 444*4

4(18)4 (19)* 444

tr*A( t, a) * exp ( — Q(T,o)/RT) = £„ = P(a, T) (20)

4 44, 4# 44 4444

TXlogfr + logA(T,a) - logP((7,70) = Q(7»/2.303tfT (21)

44 4444 4444

TXlogfr + A'(r,d)) = (ZCr, a) (22)

3. 5)4 Creep parameter-4 71**4 44. 4 444 A'(T,o)?} **

(-20)4 3. Q'(£,0)7} -B-444 4444 44 444 Creep parameter4

Larson-Miller parameter?)- 44. 44 Creep parameter# 44 44 4*4

* 44— ■§. Larson-Miller15, Manson-Harford65, Ohr-Sherby-Dom7),

Manson-Succop85, Manson-Brown parameter95* 4 4.4. 444 creep

parameter** 7) ##53 ***» *3 4# 444433 *444 44

*44 ?]* ?}* 4 4 44* #4 creep parameter* *4 *33, 7)* 7}

443 ***44 *3 4 4*4 4# 44=33## 444 44* ?M4

4(#3 14 444)4# 444. 444, 444 creep parameter?} 3* *

34 #44 4 4*4?1 34*, 434 44 4?) 4 4* parameter?} 4

333, 71)5.4 **44344 444 parameter* *44* 44 #344

3*4 4.4. Larson-Miller parameter* *?D #4 #44* 4*43 4

* 4*433 * *#4*3 creep 44*4* #*4?1 4# Larson-Miller

parameter* 4*444. Larson-Miller parameter* 19514 Larson* Miller11

7} *44 33* *7) 4 an *34 *44 *4* *44* *4 4444

-87-

44##4 4^#^#4 3 5] =41 35] = 444^4# 4 #44

Mt 433 4# 4 #4.

logtr = Q(o) • 1/r + C (C = -20)

GX<r) = Tilogtr + C)(23)

444, Q(d) # Larson-Miller Parameter# 4444.

3. Creep QQ

7>. Creep 4% ^ 4^ 44

3-5]= 41# 35]= H## 4443* #444 4^ 4## #4#

T a# 35]= 4143 #«S4^4 3429# 35]= 44# 4444 4-S

4# 237] 344 #43 4 185,000hr 4#4 lCiO.SMo# 44444. 4^

#44# 90mm4 3 Gauge length# 25.6mm4 4- 41## #44714#

gauge length #4# 0.5mm4 4# 4#4 31304 4# 35]=.a]4 #n]#

#4, 44# 4#334 44# 4# 4W# 44^4144# 4#44 #

443# 4514. 35] =44 #4# SKD-11433 grainding44# 44 #

44^4. 3^31# 35]= 444 4444 4444 44# 34#3 &4

4. 34# 4f

35] = #3# 515, 553, 588°C 3 4145&34, 44 7]-#4 #4# 12, 8,

-SS-

15Kg/mm2 °]4. a #2* *4* *41 444 as]2. 4444 444 o]

*4 4W 5** 4W3, a #3* 588°C, 8 Kg/mm2^ 4^&4444

*44 as]5. 4^** 4444. &4 £74 #4 4^444* 45 ^4

4t11 *44 44*4 as] 2 44* 4444.

444 T : Creep temperature (K)

<7 : Stress (Kg/mm2)

tr : Rupture time (/z )

CKo) : Larson-Miller parameter

£„ : Creep strain (mm)

a#44 444 4444 44, 4444 44* 544 4 44

444444 4**44 *454* 444a a4. a#4* 4*4- 4 a

4354 Larson-Miller parameter4 44 444 *4444* 4444 *4

44 44*4 44 lCr0.5Mo44 Larson-Miller parameter4 4 32.44

185,000hr 4*44 314 as] s 44*455*4 14454 4*4^4* 4

*4 <r $14. 5*4 444 44 D4 *4 t, 4*43 P* *4 444 4

44*4 as]5 = PD/2i 44 a^344 44 zl#544 4*f

4* 44* * $14. 444 44*531 44 *4*4* 4**32444 a

s]£ 44*54 44*4* 4444 4**544 105/?H 44 as]5 4

4*34 1/1.5* 4**355 44a $14.

-89-

4] 3 4 *Itt71 5E|5. ^ 5L 5)^-3) 3.

1. €94=1

31# x^7l 4 3.4# *11 A]~g-^ 44# n€364 #4. M4^7> 40mmdl

3L 444 13mm44 44°1 10mm4 ##4 #444(Hollow cylindrical

specimen) dl 4. -¥4171- l.Smmti #4494# 4-8-4534 4% * 444

#^44 4# 4#4# 444-31 594444 S## #5#57} 4 #4 4

£4 444. ^ • 4 54# #1,5004 4445. 444 f- 6^m 444-#H

44^11 4-8-44 5.44 444# #4317} 444. 4 €44 23:71 34 el

4444 44# 44-2-5. I85,000hr 4-0-4431 4-8-#5# 515°C, 44# 92

Kg!Cm2 4 lCr0.5Mo#€-4# 4#444. 49# #44: 44 99#4 #

444 '49-9=55. ¥44# 40mm4 5471444 12.5mm4 31##

(extensometer)# 4#44 49444

2. €9 #4

7>. 4^4471

4^71 4&444 4-8-4 #W9# 31 €374 4# #44 45.444

(INSTRON model 8521)5.4 #444^# 444 #57>4# 4# 6.75kw

-8-4=4 7>#-g- 31^4 #4#4 6~7i^/Cm24-44 44 44# 44##

#^4# #4497} 5#44 $14. s# 444 44#4# 4# 4#

n€ (Wood's metal grip)4 4-8-44 5#4 7} 4 4 3)# 4 €4 #5# #9

4# Optical Pyrometer# 4-0-4-# accufiberH4 3l##4 4 4 4—4 (High

-90-

temperature measurement and control system)# 4445 $14. 2# 38*

INSTRON #34#4# 7U4E# 44H4.

4- #44 (extensometer)

a}#4 n#* #43]* ^394 44 =3t1 4^*44 #44 4

* 2;M 444-^57} ##<*11 #3}-5M #^7] 3)^1 3] 4 ###4

flexural artnAS #4 #4 44* #4-444 #D** *445#

4. # 444 44# 44444 444 4*444 4*4 444 44**

*4# * $1* 444# 4*444 44 "0"settting4 4* 444 444

5. scale°1 4# 44-5.3. 4# *4444 44.

4- 2^*44444^13

(High temperature measurement and control system)

* #44 4*4 2L# 444 *5^4* 2.4404 #4 Optical

pyrometer* 4*44 #44 setting# fixed set point# #3=# #445 #

#* 5*4## 3.44 *444 44# *5* PID controKProcess

Integral Derivative control)* 4*4 feedback* #Sfl *5.* 3.44* 4 —

## 4*444. 2#41* Feedback control loop* 4444, 2#42* *5

feedback4 3.4# * $1* 7>4 4444 control#4* 44 #4. 444

feed back control* *£4*4 7>4 #* 4 #4 4 set point *£.# #*7}

4 453 4)* 4*444 44 PID 4* #44444 4444 control*

#44 44.

~91~

3.

3.932#]44 144^ lCr0.5Mo!114 4^4 424! 4 31^:444

=142-42 12144 a##?] 414 444 44 21144 111$

4. 414 3214341 4 4 $144 (a)4 14 112 444 144 444

4 ^ 411123 444 (b)4 #4 1444 14 444 (c)4 14 44

41(hold time)# 31444 114 2-4414. 444 1444 24# 4

114—3.4 42# 47]422 14444 142(thermal fatigue)! 1 °]

2444 11144 444 1114 3H44 444 444 4444 114

41142# 1444 44 44 4441 24444 he]^] 44 4441

4 144! 4 444 214 4^1 414 1144 242-42 12144 21414.

(1) 43 : lCr0.5Mol

(2) 42 : 515'C

(3) 4114(^/2) : 0.2 ~ 0.6 %

(4) 4 44 (frequency) '• 0.1 Hz(H 414)

(5) HlKstrain rate) : 0.004-1(H4 ^ 1444 414)

(4) 41 (waveform) : - 4141

- Push-pull type! 1141

- 44a] 14 24! 144! 41

(5) 444 l(holdtime) : 1, 10, 304

(at tensile peak strain)

(6) 444 : 14

-92-

#M44 %7l4^4^4 ##45. ^ ## %14## e #4 4-^,

°] 4 4-4 (hysteresis loop) ^ -B-44:4-(stress relaxation) ### n^44°l] 4-

44^4.

zi^4544 .%, 44- ## &##44 %7l 43.4## €444 0.57V,

4 44% #4-#W °14 #4(hyteresis loop)44 A4#WM^), 44

###4(<r,) #4 4^7] 4&4# €4# ^4 ###

5:#1M 44 #444# 4^44^4.

43-4^## 444 44# 4444 cycled 444 S4-###4A3.^-b)

444-44 25%## #A##& 41 (4 4 ###44 75%)4 cyclers.

#4, ### 4#4 44M ^ #4#A7> 25944f 4 44% cycled

41# 4445-44 20—25%4 #4#A-E 4^4 4s#4as. €4% 4

4 44-4-4-51 nslai #4-.10)

4. n|Al|s4 94 4## ##

4## 4#4 4^514 A34, Sis.# ^ 4-#### ###7) 4#4

SEM ### 4-44-. SEM### 44:4 44# 44#A(77K)#4l 55-# #

44## 4##4 4-4:44 #415-AS. 55-# &#4 44# 4&4###

##4#4.

-93-

Cre

ep str

ain

Increasing stress and temperature

Creep I (instan­taneous)

Creep II (steady state)

ZLi28 IS HE|H HE|H EMMI SU

M18P2.5

ZLH29 Creep^lS W H7|

Hi!30 HB|H A|y #D|

-95-

nl31 Creep Al M

96

ni!32 Creep °| a#

37 Creep test result of 1Cr0.5Mo steel

SpecimenNo. T(°C)

G(Kg/mm2)

tr(h) Q(f)

1 553 15 49.18 17917.4

2 588 8 1637.4 19987.4

3 515 12 4495.2 18638.5

-97-

■■-C-

Creep Strain(mm)

$I

UOK3

UJIHIMffi

so°00

6=

CD o

o

:H34 £!*Hfi|- A|-#%||o| ^g2|.o| 2M|

-99-

i ajxh

^='35 Creep rupture master curve of 1Cr0.5Mo

by Larson-Miller parameter

-100-

| I vvw

<h C5A—A' Section

0.^36 jlS Xi^7| ir|SA|10|| A|-#a A|^o|

-101-

102

Load cell

Load ^controller “ — Induction

1 coil

I/O terminal board

(AD/DA)Strain

controller Specimen

Temperaturecontroller

r---. Temperature ” controller Actuator

Oil pump

nH38 Schematic drawing of creep-fatigue test machine

-103-

SUOBBLOCK

mi

wmttt

:w*h. . ASMttsSfi- m

nrsre»>w,COO(*@:"mea

tttoOESfiy Assam:

I8.TSTOP

ExTEssomERi;:FRAME

nH39 3.-2# •£! (extensometer)

~104~

Sapphire Fiber Sensor .050* (1.27mm) Dia.Up to 20" (50.8cm) Long

3. #|40 Optical pyrometer for measurement of temperature

-105-

Tem

pera

ture

Typical Feedback Control Loop

Error i (e)

Process Voluo-(PV)

Process

CZ.H41 Feedback control loop

HU42 Ideal control of strain control

-706-

'St no

in +

Load

Tine<a) Start up shut down operation

Strain

Cb) Thermal stress and strain

Hold Tine

(c) Simulation of strain cycle

O.W43 Thermal stress and experimental approach

in boiler header

-107-

HOLD TIME WITH RELAXATION

tu = Hold TimeINPUT

Time

maxOUTPUT

Time

FIXED STRAIN LIMITS

Hystersis -Curve for

Hold Time

nU44 Hysteresis loop and Stress relaxation

nil45 *|^7|sis S! aa|=-2|s tiSi

-109-

*11 4 # 31

1) F.R. Larson and J. Miller, "A time-temperature relationship for rupture

and creep stresses", Transaction of the ASME, July, 1952, p. 765-775

2) M. Grounes, "A reaction-rate treatment of the extrapolation methods in

creep testing", Traction of the ASME, (Journal of Basic Engineering),

March, 1969, p. 59-62

3) M.K. Booker, "Regression analysis of creep-rupture data practical

approach", ibid

4) 3 &SL, Ph. D Thesis, KAIST, 1988

5) F.J. Clauss, "An examination of high-temperature stress-rupture

correlating parameters", Transaction of the ASM, Vol.60, 1960, p. 905-927

6) S.S. Manson and A.M. Haferd, "A linear time-temperature relation for

extrapolation of creep and stress rupture data", NASA TN 2890, 1953

7) R.L. Orr, O.D. Sherby and JE. Dorn, "Correlation of rupture data for

metals at elevated temperature", Transaction of the ASME, Vol. 46, 1954,

p. 113-128

8) S.S. Manson and G. Succop, "Stress rupture properties of Jnconel 700

and correlation on the basis of several time-temperature parameter",

ASTM STP 174, 1956

9) S.S. Manson and W.F. Brown Jr., "Time-temperature-stress relation for

extrapolation of creep and stress rupture data", NASA TN 2890, 1953

-110-

4 5 $ ^

-in-

*11 5 1 4144 ^ 31%

^11% *>949 494# S 9$

* 4* * 4 *4 4 41*4 *1444* Creep-45. 4\g;4-*4 41#

#444 544444# 4**71 4^ 4*41# °l-§-, #*4 3*47)

#1**4. #1#4# 44 Coffin-Manson4, 41###4, 544 4 ^14

# *# 43.^1* ***5l * 4444 444 41*1*44 5444

444 444* *#**4.

1. Coffin-Manson4°ll 4# **oll#

4*#1* 444 0.1Hz4 4445. #41# 4# 0.1, 0.2, 0.3, 0.4%44

#4**o.4 3l*% 1* 515°C44 *4* 0.1Hz4 *44# 4* 0.15, 0.2,

0.25, 0.3%44 *1**4. 45*4* hysteresis loop4 4444*44 *

4^44444 4444*44 75%* 44-* 4 444 44*5 44**

4. rz-146, 47* %%44 4-4* Half cycled 4 4 ** ^ 3*4

hysteresis loop* 4444, 3*48* ** ^ 5*44 *4* 4441 4

*7] 45% *%% #41*4 *4*4 44* 444*4(S-N*4,

58*5). 5844 * * $1*4 4 111-* 4*4 444 as]5 3:45

*44 5*44 45*1 o] 3.711 4*1# 1 * *54 # 41#* #7}#

** 45*101 3.7II 454*4. £4 41*01 #7}# 4 7H&4*4 54

41*4 57)1 #7>4* * * **4.

-113-

# 91## #i9i#4 9991## 4#4 44#

Coffin-Manson4 #S. &949 4#4 #4-.

# $1#,

2As„ + #?* = ^ AT/6 + £ A7/ (24)

444 Asa : #919, 6, c : 4 #9#

#r/, zte/ : 9991# 4 #991#44-

4(24)4 94 94144 #494# hysteresis loops, #4 ^S}^. 4-4*

4"#(20°C)44# (25)4& 3#(515°CH4# (26)4# <3# 9 $14.

Ae/2 = 0.057(27//)™0-1 + 1.295(2AZ/)™0-433 (25)

As/2 = 0.021(2AZ/)-004 + 0.08(2AZ/)"°-2 (26)

584 3^49, 50# 44 99 91#4 #444# #44 #44 4 444.

2. #49101147:19o]| 2|1 #lo||#

#494444# 449:##4 1/2 cycled4 #S#4 hysteresis loop44

444 4444 4(17)4 44 #4 4449# 59, 104 44 444$14.

59, 1044 4 # $1#4 444 44 4(17)44 #4 #49144444

4# #49# 9 9 $14. 3.151# 44#9 #4914444 4494#

444 94# #44 9 4## log-log 3^544 914## 4-449 4

4 4#4 #4 9#44# 4(27)##, ##44# 4(28)# 449 9 $14.

' 121.83 x (AO "°51 (27)

JPF = 2.98 x (AO™0'28 (28)

594 1044 9 9 $1#4 # 91 #4 #494 44 AW %4 #931#

-114-

4, # # 4*4 4*011 44 *dh4

^4.

3. SlS^l-yoil 21 ti *@o||#

4^**4^* 4444*4 1/2 cycle 44 *S—4 hysteresis loop6!!4

3.^52444 #4 asi^4 4&44**4 44** *#44 44**4

4^4**4 4 4444 #4* 41 #44. 4 4*44# .4#

NASA4] 4 7l]44 TS-SRP(Total Strain version of Strain Range

Partitioning)5.5.n^-i- 4* #4**#^A.g. 4144$14. ##44 444 hysteresis loop&*4 TS-SRP^5.n# 2] input data* 43. FORTRAN-£-5.

#44 Mn4* *#4#^-&4 output* 4* * 44. 4*4* 44*

**44 4# *44*4-0*4* *4 #*&* 44444.

Aee = B W (29)

Asp = C W (30)

444, 4 B, C, b, c * 4&4 4* 4-*&44, * 4 pp, pc, cp,

cc 44#* 44*4. Sll* 44**#44 4# 4 4*4* 4444, zz.

452* 515°C44 44* *#44 4# 44 44*4 44444* 444

444. ##* *4 444 4444*7} 44 4D* 4*4 4# *44*

* * $14.

-115-

4. 4 *891# 8491 44 ^4##

7>#4i 4*71 45*44** 411 ^#44444^, 4^*

*444 44 444 441- #£4$o_4 37>4 *44*44* 4^4-4

n.^534 #4 44# * $)5-4 4 147> 4* 14#* 1 * $14. * 4

iMM 71144 4#**#44 ^#4#44444 *#%4 45# 4 4*

>§44711 44#5-4, !Cr0.5Mo#4 44*4* 444 4## * $14.

5. A^oj4l 4*7| 4 3.49 44E4 ##

444—5. 3L#3.4 — 4 44*1 * 4 4 "51(intergrannular cracking)4 4

# 4444 ## 45.a]-a6|]a]^ 4454(transgrannular cracking)4 4#

4444 *5 41-44. * *471* 4 44* 44*#(0.2-0.4%)4 5*

(515°C)4714 7}oi4% ## *i*7l 3)£4^6]] 4= 44*4 #* #*7l

43##44 44* 3.#4 3.374 45. 444* 4*444. zz.454* *

a>47>44^££ #44 #* 4*7] 454 44 444 7>#ol4.

(a)4 7>## *£ 515°C, 44* 0.2%, 44741# 944 *44 4*4 44

4-5-5. 5.44 444 444 444 444* 4#* ** *44 7}# 4^

4 44 31* 3.45. &4£ 444 4* cavity7> #7114471 444 447>

*44 44* 5.431 *4. &4 (b)4 7}## #* *5471 447>4# 53

43l 44*4 0.4%47l 41*4 444 44* 4*5.3. 444 #4 444

4 444-31 44. 4# 4##4 44 45*4* 5.4** 444 7}£44.

-116-

58 Sine wave fatigue test data on 1Cr0.5Mo-steel at 20°C,

515°C in the air environment

Temperature(C)

Strain rate(%)

Elastic strain Plastic strainU£P)

Fatigue lifew

20

02 0.0014 0.0006 39,110

0.3 0.0016 0.0014 11,474

0.4 0.0021 . 0.0018 9,010-

0.5 0.0019 0.0031 586

0.6 0.0014 0.0046 69

515

0.15 0.0010 0.0005 16,400

0.20 0.0011 0.0008 964

0.25 0.0013 0.0012 191

0.30 0.0014 0.0016 141

-117-

300

200

100

jl.ioo

-200

-300

-400

400

20 °C----- 0.2%....... 0.6% /7

/

: / !/• /

t 1__ « l « t >

/ 7

—i--- 1 i i__ i__i__i__-0.0100 -0.0075 -0.0050 -0.0025 0.0000 0.0025 0.0050 0.0075 0.0100

Strain (mm)

nH46 Hysteresis loop in half cycle (20°C)

118

200 -

-0.0100 -0.0075 -0.0050 -0.0025 0.0000 0.0025 0.0050 0.0075 0.0100Strain (mm)

3#|47 Hysteresis loop in half cycle (515°C)

-119-

8ia'

narp

litu±

i

104K?

"t i l i 11 j i i l l i M 11 I i i i ( i i 11 i

1C? irf tf

Mrrtercf reversals, 2^

Hi!48 Total strain vs cycles to failure

104--

t?T--------1—I 1 I I I I J----------1-------1—1 I I I 111----------1-------1—PTTTTTp

t? irf tfNumber of reversals, 2Nf

nU49 Total strain vs cycles to failure (20°C)

-121-

ni!50 Total strain vs cycles to failure (515°C)

-122-

59 Comparison of experimental and calculated values of plastic

strain and energy per cycle at 20 °C

#33 JW(Mpa) 3(17)21 JW(Mpa)

0.2 0.455 0.4416

0.3 1.173 1.1449

0.4 1.502 1.4962

0.5 2.929 2.7988

0.6 4.524 4.3937

510 Comparison of experimental and calculated values of plastic

strain and energy per cycle at 515°C

# #<##(%) #33 JW(Mpa) 3(17)3 /TW(Mpa)

0.15 0.195 0.2037

0.2 0.433 0.4293

0.2 0.382 0.3762

0.25 0.621 0.6042

0.3 0.924 0.8872

-123-

• 2JC

i L

I^(Qdes)

ZLH51 Plastic strain energy per cycle vs. cycles to failure

511 o|# Zj-

TempCC) B b C c

515 0.094 -0.221 0.043 -0.0533

c 10-2-

T—n-rmif102 1Q3 10Number of Reversals, 2N

3iW52 Total strain vs cycles to failure by strain rangepartitioning method (515°CS

-125-

Red

ded

Life

, C^d

es

■ GaffinWkreontVfethod □ Energy rvtihod 0 Sban tongef%rtiticringlV8hod

IVfeasuedLifeQties

Rg 8 IVfeesued Life vs. Redded Life (515°Q

Zl #{53 Measured Life vs. Predicted Life

127

(b) 0.4% strain control fatigue (x 1,000)

zz.il 54 SEM image showing typical fracture surface in isothermal fatigue tests with various strain control

-128-

4 2 4 tM Al#(hold time)# 31^ # Creep-4 5.

9 #9 4^14^^ *# 9 #f44 44# #9*91:#, 34

44499 ## 19 W #39-354 994*1# 4499 9*4# 3,

Creep-4s. #3:49 499 9494 44 hold time# ?M# 444# 4

99 4944 999 9993. #9991:94 599441H 44 134

99 999^4.

1. Coffin-MansonloJI 49 =r#oll*

9 449 4949 4*445 99449 941 4 #114## 449 9

##f, Creep-45. 93499 9994 444 39554 44 4449 3

344 4944 944#:(hold time)9 1, 10, 30935. #44494 444

9 99 4*943# *99 9*4#39, 44# 4#4 SEM9 9^ 44

#9 3##35# 4*9 45499 39944. 9129 Creep-45 4*9

43494 49# 4 993#9 44#4. 444 9(trapezoidal)49 4 94

4 4(hold time)9 44 1, 10, 30935 4#3#, #9 94 4 (strain control)

.9 0.2~0.6%3 9^4. 4 strain rate# 4 9444 # #994 tiM #9

94(0.004-1) 944# 4. 9139 4 995#9 1944* 4444.

, . -34569.4 94444 4# 34#99=4 #4* 44#4. 9134 3

95644 l 9’ >194 #9*9 #99*, 9449(hold time)9 *7}9:**

59 #9 99 *7}49#4 #3999 #59* 99 * 9 #4. 3#579

-129-

2# 4^7145444 44 a] 4 0(4-44)4 602(444 #4)4 4444 4

# #^!!4 Ao 4 44^4. 4 3%#4 44 45^4(cyclic

hardening)# 45l4(cyclic softening) 4 4 4 44 4 !Cr0.5Mo44

isothermal 515144 314 4dl 4444 44 14433 44 4^44

7> 444 $44 4544# 444 #44#4 a4 4244. 444 44

4 454=i# 444 ^444 4444 Ao 7} 3)541 27] 44 Ao 4

4 3/4(75%) 4## 44# 4 45^rl(2V, )33 41414.

3158# 4 444441 4# Half cycle44 4 hysteresis loop# 441.

4. 44444 #7}#4=# 4# 44 41# 4# 44444 241444

441444 4# 34] #7>4# 4# # # Si4.

a 159# Coffin-Manson44 44 4 44444 S-N #4# 4444.

X1344 3#44 4-4 #4444 044 6023 4# 4 45#14 343

244 44 44 424434 60244 60023 W4# 42444 37)1

4-4i4l34, 600244 180023 444# 45#44 44 1-244 4#

433 4444. 44# 44433# 454=44 #4444 44 1-244

4 6003: 44-44# 3.45. 24-7} 45S.4-4 44 l 0.5. 44433.

444 6002: 44-44# 45.4 44 Sl4-7> 4# 4#433. a>s.44. #,

#4444 4# 2#45£] 4###(cavity 44 ^ 44)4 44 45.

#14 # 41=# #4, 24# s:4-7> 4444 #4444 4 1#(602 4

4)44# 424=14 # 44# #4 #4# 433 4444. 3160# 3

#454=14 44# hold time-4 &4# 3##7] 444 1## hold time,

### Nor / No (444 Ncr # #44 244444 1444 44# #4

4.)33 #4 #7]#171444s] 434=1# #44 444. 3144 34

-230-

bb 44 ^-o] total strain range{Aet )7\ 4bb# hold times] 3:47]- 34

hold time0] 4. 4b(30b)44b hold times] Aex s] 4 4"°]-4 31 $14.

°]b hold tinme°l #b 4b 454 s]4 crack4 cavity^>s] interaction0]

71447] 4b°14 AS 45]4 hold time0] 4 3-Mb 44 °1 creep

damage(G.B. cavitation)4] S]s>4 b5S)7l 4b°14 4444. °144b

hold time S] 3:4b 434 35] =-45. bb444#44 hold timebbs]

cavitation7]45. 444^4.

2. ££<>114 4 Boll s|ft 4goj|#

£4 ^1144 4 b 4444t(A^)S] 1/2 cycle44 4S—4 hysteresis

loop44 #44 444s]- 4(17)4 44 44 4444b 4144 44-4$14.

444 4:4 4(17)44 4# ^4€44444:°] 44 44Sb ^ 4 $1°.

4, 4 4444444 b ^1t°] #7}#4b £444 b7>435 £44

44447]- b7}4$14-. 3^ 61b 4°1#4- £4^44444 43;4bb a>

°]s] #4# 544- b 4—5. log-log 34=44 44455 4-4414 44

S15S. 444 4 $14. 3461b 3.^604 4°1 44444 44 6005:44

4^44(17,)°] 3.4 4^447]- 35)5. 3:4-5. °14 b444°l 4 4b 4

5b44 44 44=b 444 b4b 455 4444.

-132-

3. 42821 n|A|5jM

?>. #4428 2#(hold time=0) 4&484 5#

12455 4#?] 4^48# 2#84# 43.8 $844 514 442

4 #8(slip)4 44 5.84 intrasion4 extrusion0] 44 4#48 884 4

4 45.515 4#448, 5#84# 51 44 8 44*5 Creep 8 547]

54- 454 45.585 484 45444 84. 55 8855 82 #1#

4 88, 848-58 84, 444 82 8#§-55 5144 8 44# #8

54 84. 5.262# #4-24881(SEM)55 222 #4428 8# 22

48 5# 4#7] 8548# 4584. 58(a)# 484 422 51# 44

48 (b)# 145844 242 51# 5884. (c)# 4#48&44 48

4# 8448 45482 striation# 4884. 842 striation# 518 8

48# 4548 824 #455 4848 strip0] 2855 4 24#4 oje]

2 strip 24# 8&2#4 88 884 24.

4. #448 844 8# 4884 82

5.863# #4428 8#4 (224)4 #442# 60s3 82# 4 8&4

884 84# 85884. (a)# ## 4#445 48855 0.2%8 85

4 5424 84 45-4#8 2D1 4 484# Beach Mark?]- 4845

24. (b)# 60&4 hold time55 84 4&# 588 creep#4# 84 5£8

8 cavity7> 88 8448 8# 4# # # 28. (c)4 (d)# hold time 60#

4 #88#8 22 0.3%, 0.4%244 4^48# 5884. as]5 545

84 44 cavity?]- 28 4845 258, 88# 2 #8 1255 o.4%4

488 0.3%8 241 488 225 1418 28 2?H4 84.

-132-

4. -b-44# 4# 4444 ##

^44^*(0.6%)444 4444 Os, 60s, 600s, 1800S4] 4

# ^4^1 $14. -n-4^144 3.4s &44 €444

#7}?M 44 4444 iW ^ cavity4 3.7)7} f7}t}2 caqvity44

M444 #444 4&4^04 #4! 444: 4-^-3. 4^45&4.

-m-

it 12 Input data on creep-fatigue test

TempeartureCO

Strain (%) Strain rate (S"1) Wave shape & hold time(min.)

515 0.2 ~ 0.6 4xi0'dTrapezoidal wave

hold time •' 1, 10, 30 (min.)

513 Creep-fatigue test data on 1Cr0.5Mo steel

Temperature Hold time Total strainPlastic strain

range(4k,)

Fatigue life(t) (sec.) (%) (#*)

0.2 0.00082 10,4990.25 0.00125 4,398

0 0.3 0.00208 2,0420.4 0.00347 1,1250.6 0.00476 7760.2 0.00102 4,698

600.4 0.00307 9930.5 0.00462 459

515 0.6 0.00569 3890.2 0.00132 1,689

6000.3 0.00277 7620.4 0.00298 460

0.6 0.00508 3620.25 0.00165 778

18000.3 0.00206 4250.4 0.00298 3350.6 0.00513 266

-134-

zlH55 Schematic diagram of relationship between stress and strain for strain controlled cycling(a) continuous cycling(triangular wave)(b) creep-fatigue interaction(trapezoidal wave)

-135-

• HoidtirreOs

■ HoldtirrB=€Os

* Hddtirre=€00s♦ hbidtirre=1800s

Fatigue Life, Na

zl^56 Relationship between plastic strain range and fatigue life

-136-

(a)

-137-

(b)

-138-

600

Total 9ran=0.6P/o —UddtinrBOs

* HddfrrB=€0s —a— Hddfms=600s —Hddtirn3=180Qs

(c)

nH57 Variation of the stress range during fatigue for the given test condition (a) hold time=0(triangular) (b) hold time=60(c) Constant total strain(0.6%)

-139-

Strain (%)

(a)

-140-

Stre

ss (I

VFS

)

(b)

-141-

-142- o

Stress (IVRa)±v8 o 8

Stre

ss (M

Ffej)

0.25%

-0.8 -0.6 -0.4 -02 0.0 02 0.4 0.6 0.8Strain (%)

(d)

nD58 Hysteresis loop in half cycle (a) without hold time (b) 1 min. hold time (c) 10 min. hold time (d) 30 min. hold time

-143-

-144-

MrrtH

of revests; 2N

SbananrplitLdei ^ Ae/2

%

-145-

-146-

9<2

<a

p

2

9

<3

Mrrterofi

essl,

ara'narrplitucfei Ae/2(°/$ %

' ■ I ml ' ' '''''I ' ' ill'll

Njrba" of reversal, 2Nf

(d)

nH59 Total strain vs cycles to failure (515°C) (a) without hold time (b) 1 min. hold time (c) 10 min. hold time (d) 30 min. hold time

-147-

10 15 20 25Hddtim5(rrin.)

ZLH60 The ratio of Ncr / Nc vs. hold time

-148-

514 Comparison of experimental and calculated values of plastic strain and energy per cycle at 515°C

hold time(min.)

441 € JW(Mpa) 4(15)4 JW(Mpa)

0

0.2 0.465 0.427

0.25 0.737 0.643

0.3 1.485 1.139

0.4 2.356 2.010

1

0.2 0.560 0.480

0.4 2.041 1.977

0.5 3.384 3.171

0.6 4.113 3.867

10

0.2 0.757 0.715

0.3 1.840 1.795

0.4 1.971 1.831

30

0.25 1.020 1.010

0.3 1.290 1.170

0.4 2.154 2.041

-149-

it 14 basic equation of calculated data by plastic strain energy per cycle

Hold time (min.) Basic equation

0 AW = 237.54x0V/)-0-692

1 AW = 531.19x(Nfy°-m

10 AW — 37.77X

30 AW= 113.64x(JV»-°-719

-150-

AW

flVR

a)

i 10i

1&110P

i • »" i i 11 i i i i i i i i j i 1 i ““i r“i“'i

1CP 10*

N (cydes)

(a)

105

-151-

(b)

-152-

(c)

-153-

(d)

Hi!61 Plastic strain energy per cycle vs. cycles to failure (a) without hold time (b) 1 min. hold time(c) 10 min. hold time (d) 30 min. hold time

-154-

(a) cracked surface(0.25% X100)

155

(b) intergrannular surface(0.25% X500)

-156-

(c) striation surface(0.6% X500)

3.W62 SEM image showing typical fracture surface in fatigue tests without hold time

157

(a)

-158-

(b)

-159-

(c)

~160~

(d)

zlH63 SEM image showing typical fracture surface in

fatigue tests with various hold time (X500)

(a) without hold time(0.2%) (b) 1 min. hold time(0.2%) (c) 1 min. hold time(0.3%) (d) 1 min. hold time(0.4%)

-161-

(a)

162

(b)

-163-

(c)

164

(d)

0.^64 JLHit!- SEM ##

(a) hold time=0sec (b) hold time=60sec (c) hold time=600sec (d) hold time=1800sec

165

-191-

o

toSVcnoa & 9 Ik

II

4 6 * B0LPAS4 41 1 7\q 41

11S 1 A

BOLPAS* 1991* 7HM 2%1 24^H*^Ml*

*44°l 2711 4*44 44*4 444 4*22*4 4444 44 4*

4 4444 44 **553*25 **#3, 1W2, **#3344 444^

4.

4 ^.244 444 BOLPAS553*4 *14*-*** 25 444 41

*7}*4 2515.4 45.* *4425 4444 412144 4444 44

4 3.515-45 43:4*4 BOLPAS553*4 44 44-24 44

444 424 44. 444 414 4114-44 25154 457} *44

4*4 44 41l7}425 444254 3.515-42 4-3444 *4#

4 %4 424 4147}* * 4***4-.

B0LPAS4 *2 44 3*2* 3* 654 44-%4. B0LPAS4 *442

* 4423 2*4 4* **7}&* 444 444 441 ANSYS4 *44

2*4 71425 4* *44 253* PRE- ANSYS4 PRE-B0LPAS2

4*44 %24, BOLPAS4 4*2244*4 *144* 7}*425 21

*4- 34-* 24# 41 oil#4 *4* 441 253* BOLPOST5 4*

41 %4.

-269--

12 1 BOLPAS^) ga ^

1. ga|2| HSZLl

1 144* B0LPAS4 Input Data 114 #4 ?]## 144.

B0LPAS4 Input Data* 414* *** 27>^7> &4. 14!* 1**

software?! ANSYS4 pre-processor* 4 *43., *4* BOLPAS input

data format*!! %^4 11 input data* 414* 4*44. 3^ 66

ANSYS PREP7* 4*44 BOLPAS input data* 414 144, ( ( )*

44 Stub DSS4 4* 44^ ) 3^67* Pre-ANSYS 11 Flow Diagram

* 4444.

2. BOLPAS*

BOLPAS* *1471 44 4*47} *444* 444** **lz=l#

*, **4^4*4*, *3.4^444*, 4l^L£t4°4 47>4s. 4*44.

4 *44*4 *4 4 44* *44* 4*4 *4.

1) **&! 4*

44 *4*44* *4* *154 444*0-4 4 4*4 4

4* 4*4* *445. *444 4*4 *4.

7>. 7)1 4

. TITLE : 607> 444 4*

4. **71*3 4*4

. TEMPUP : 3*4 41444 4**7]4 44*^ 4*4* 144*

-170-

4554 °i 453] bolpas314# ###4 ^3144 ##4#5#

TEMUP "J-f *H* TSI64. tfl^g 25t o]iM4.CS-fl : Ec])

4. ^044445

. TMAX : 44 4444 (44 : [SEC])

. ITER : 4431 44 #44## #*34-7] 44 44444 44 #4

#54 444 4 t#44I44 %## 4444. ITER# 3.31 4t# 44

4 ## ### &# 44 31444°] #444. 3]45;#4# 31444

TMAX/ITER = 200°1 42# ITER# 4444 4°1 44444

. IFRE : 44444 #4451## 4444 4#. ITER #4# 444

44# 4# line printer# #44431 ##44 #4444°1 4# #314—

5 IFRE# 4444 #4444 42 #» #444.

4. #424 4s.

BOLPAS314 $#4# #4244 45.4 $154 NO. 4-94 6

447} 44. 44444 44# 2# #444. 444 #444# $1531

444 #445 44# 44^4 44# 4°14. 4 4#4 44# 4#4

44.

. IOP : #4244 ### ##4# 4#54 I0P431 44 #44#

454 31## $164 4°1 ##44.

. NG : IOP31 #44# #424 454 4#

. ED (n) : (1- NG)

-171-

. TIME (n) : n€*i) 4# 7]#f 44 (44 : [sec])

. VALU (n) : n44] 43-&

VALU(n)4 444 44 I0P4 s]Sfl $164- #4 4^44.

2) ^r4^tilir sf^

43.^4 dbti]ir4- $4 34=4 ^4 3144-7] 4# 4-§-4 4

4 444^ 444q-. B0LPAS44 W^Rr 434=43444 as] $4=

434i:4 4444 4444 444 4-B-4 44.

7}. 4 5-44 34 -&4

2.25CrlMo44

> 0.35%LogiNf) = 1.98523 - 0.5185951 (logger,) + 21.2973(log As}2

+ 84.4861 (log zfe/)3 + 116.402(log Js,)4

Ast < 0.35%

Log(Nf) = 3.48396 - 4.071951 (log As} +16.9435(log A?,)2

+20.2406 (log 3 +10.3622(log As}4

(31)

(32)

12044 ^4

LogiNf) = 2.5972 - 2.293891 C4e()+0.41169(log/fe,)2

- 0.805363(log Je,)3+ 0.683487(log ^4(33)

Asi = Equivalent total strain amplitude

4. 3.4 $44 34i:4

-172-

2.25CrlMo#s]

P= (T+ 273X20 + log tr) x 10 "3 '

ASTM(Mean Value Curve)

P= 23.9331 - 0.590437 c+ 0.0215798c2 - 0.000334999c3

ASTMCMin. Value Curve)

P= 23.87 - 0.717718C+ 0.0315817c2 - 0.000588638c3

NRDVKSCMV4, NT Plate)

P= 23.3444 -0.46001 <r+ 0.0150248c2 - 0.000283298c3 +106679 x 10 " 6c4

1.25Cr0.5MoSi Wrought Steel

P= (T+ 273) (20 + log tr) x 10 "3

NRIM Data

P= 23.0574 — 0.490612 c+ 0.0216079c2 — 0.000458324c3+3.4971 x 10 "V

ASTM(Mean Value Curve)

P= 22.65449331-0.370476c+ 0.010546o2 - 0.000119168c3

ASTM(Min. Value Curve)

P= 22.6183 - 0.475421 c+0.0178203c2 - 0.0002647c3

12Cr Steel

• P=(T+ 273)(20 + log tr) x 10 “3

P= 28.3833 - 0.52574 c+0.0205431c2 - 0.00036337c3

i! o : Creep stress (kg/mm2)

-173-

T : Creep Temperature(°C)

tr : Creep rupture time(Hr)

4. 4S-

4 (31)4 (33)4- 4344) ##3## ^)4444 444 £] 4^7} 3)3.

4 #444. 44 34 = 4 4(32)4 44 44" Cr4

4 #5.44.

4^4444- 44 TfllH 44 44-44 4^44 # 4fife 444

(3l)-(33)# %3i5. 44 5174 44 44 #443 44# 4" $14. 4 4

4"4 44# 444 44.

. J : 4444 # ^4"

. Nn : n 44 4444 4444" + 1

. SLn, Sun : nOT 4444 3-6-4# 33^)4 ^ -§-44 1 1 ’

44 4444 %■ 44" J7> l# 3# s€-444 35.3]

4 4 -6-44 4-6-44 45.5. SLn4 Sun4 ?}## 45.

4 614. i :

. Ani : n#4| 4444 (i-1) 44"4 4# (i = 1, ..... Nn)

. CR : 3.E\s. 4444" (43 4"4444 434# 45.S14.)

3) a434# 44

3^4 44## 44 344 #444 -6-4# 444 444 4

4 3B| 34:4(creep relaxation)?} #444 3. 37] 7} 44 4344.

-174-

BOL- PAS4I44 44433. 44 l#^#6!] 44] as] =##7} a# 4

4 -g-44 ^I4#a 44 4# 44 ^4-&4 t]]###. 444 s.4

44# 44444 #7] 4#4 444 3&a^# BOLPOST4 4444

44 #4 #4#& 44 a4M#7> a## 444 44^444 4##

4. BOLPOST# €-9.# as]=#sH# 444&# #44# 444

#4.

7>. as]=#5H

<rr= ffo* ( Time( sec))-0'161055 x 2.92321

12Cr44 44

dV= <t0x( Tmzg(sec))-0-062921 x 1.34282

or : Creep6!] #414 relax# 44

o0 : i7] 44

4. 43. #4

. TIMET RX RY (3E15.5)

4. x>3.4 #4

. timet : 444 #4444 41444 44444 4444(44 :

[sec]) a# =#-41- a#44 44 442:44 444# 4 £## 4 #4

44°1 i#^]£ 444461 4444 #5.3. 44# 4444 44444

e##4 #44. 7e)4 is] #53. #4# 44# 44f- as] =4 ##4

371] 444 53 44444 t]# ##4 ^44. ##4 444# 444#

-175-

5 4^13 ##44. TIMET# 7]^ ti}5 o) 4444# 44# #44

4. #44# TIMET = 57600 sec7> 4444. 4441# 141 €3

&# 4# 035 #7jfj}# #4.

. RX, RY : 11# 3.5]MSI- 4#

4) #4 3d: 3# ##

42444 444 444 =5.344 PRE-ANSYS#- PRE-BOLPAS#

4-§-4-4 7>^435. BOLPAS# 44^>S.4 #433 s#4 4^44. 3

44 PRE-ANSYS# PRE-BOLPAS# 4# =5.344 ANSYS# PRE­

PROCESSOR 3## 4435. #4 #44. 34 7}^# 35 44# 4= 4#

31# 44-3 44 14#1 44. 444 13# 44-4 3## ^444

4 4# PRE-PROCESSOR# 4#44 BOLPAS# #433 3## #44

44 44441 ##44 #4 #444# 44 ^ 41## 371144.

#433 31444 #4144 44# #181 4444#! #M3#

4 #4 #413 4-444 44. #1814 “ "## 4## 4#4 444

44# 4!(syntax)4.

7>. 1#

. TITLE : 607} lifl# #433 3l 1#

4- #344 7}5

#1441 144# #344 43# 41 571144 444# 4-554

144 41# 7}554 144 444 441 441 144#-# 441 4

-176-

-E- 444 W 4# ## # Sis 44# a4

1 t SI 4.

. MN : #-2-444 # 4# « 5)

. MD(1) - MD(MN) : #-2.44 4S

4. 444 444 #44 4S.

. E : Young's Modulus (44 : [mN/mm2])

. V : Poison's Ratio

. p : Density (44 : [kg/mm3])

. a : . 144 4# (44 : [/°C])

4. 444 4 #44 4s ,

. Kp : Thermal Conductivity (44 : [mN/s’C])

. Cp : Thermal Capacity (44 : [mN mm/kg °C])

4. Si ## 444S

. IELTY : Si Type4 4443:

■. ITYPE : IELTY4 4«fl 444# Si4 ### 4444. Si4

444s# 4#4# Si4 ### 4# 44444 44. "4"4 444#

Si4 44 4S44# 444 444 4443: (IELTY)# 44# 444

4 4# 444# “4”4 Si4s44 44-4# Si4 a.4 4# SM44

4 4444.

4. 444s

444s# £184 444 44-44 "NODE"4 "FNOD" 444 s# 4

-177-

4414 44.

. ND : 4445

. XND , YND, 2ND : 44 ND4 (X,Y,Z) 4X& (44:[mm])

4. ##4xt)] 45

##4X7)] 444 444 4# ^ 44 4 7)] 54# 444# 44 -g-o]

4 4#7> #4. 444 “4”4 44<>] 4447)1544 #4 A] x>-g.^

^11 47M 4# 4444. 44= ##4X7)11- 4#44 4# o]

#5# #%5#4.

. ICSYS : ##4X7)1 4445

. ictyp : ##4X44 44 44# 444# ± %4| 4

4 44 4-8-4 ## 4-3.7)- #444.

a. ICTYP = 044#

37H4 44 43:5. ##4xt)1# 4444

. NCl : ^41^ 44# 444# 4445 '

. NC2 : ##4X44 X4# 444# 44 4554 44 NC24 4

X^# 44 NC14 4X4:55 44 #4 444 ##4X4 X44# 44

7> 44.

. NC3 : ##4X444 x-Y 44# 444# 44 4554 3;D4

44 NCI, NC24- NC27> #54X414 X-Y 44# 4444. ' '

b. ICTYP = 14 4#

37H4 4-X45-5 ##4X4# 4444.

-178-

Oi 02 03 : 4*4*7]] 4 4144* 44] 4*^14 (X, Y,

Z) 4sa (ICTYP = 044 44 NC14 4*M 44)

Xi X2 X3 : ^-*4*44 x*# 444* 444M4 (X, Y, z)

4M (ICTYP = 044 44 NC24 4*^4 44)

Yi y2 Y3 : 4*4* t]] 4 x-Y 44# 4444 4 4 4*7]] 4 4

*4: (ICTYP = 044 44 NC34 4*&4 44)

c. ICTYP = 244#

4*4*^]# 444*7]] 5. 4444# 4M1# 44 4444.

4, 4 4* Tti 3. 444 4«1 [T] = [Tti]* 4*4 444* 4#

44.

{X} = [T] {x}

444 (X) : 4314*7]] 4 4*44

(x) : 4*4*3] 4 4*44

4. 4-#-8-^4 444s

“4”44 444 *^4 #4 7}*4 4 4* 4& 4*4 444* *

dbx>5.4 *^**# 444* 4-g.o] 4. 4r4~ 4# #44 4

4# 4* 4^4 4 45# #31 44 4*4* *^* 4444 44.

. NELTY : "4"44 444 IELTY%* 44# 4444. 4

*5i 44 7>57> 4444 &# 4 4* 444* *^* NELTY3] 44

444 *44 #*4 A47]- 44.

7>. 45

-179-

"#"44 44# 44 -2.#4^r ^x]-g.# ### 44.

. Nl N2 ... Nn : 1-n 44 Ai #X

W4 Lineal4 44# 4" #* 444 #7} 44 871]5. 44 SIAbs

44 844 #.2.dh ^ 844 44*11 -2.^4 44 n=4^# n = 8444 #7%

4 Lineal4 #4-4 -2-^-1- 444 44# 4" $14. bib]4- 20444

4#4 "MORE" #44 44# 27%# Line# #4 4-44 _s.db#

S:7> ^7>4 4 # #4-.

.IB : #4# 47%## 44#fe #-2-^# #### 4# #44 44

#± Nn ##4 #7>s]# x}5.54 “4”44 44s)# ### 4t%s# x>

s.47% 44# ICB# ### 44##. ##*11-2-^4 4# IB# 44# 4#

7} gl#.

#. 44#-s. #a&4

. "FIN" : -2Jt ^ 44#&& #4# 44-71-S4 #&* S44#

#. #4 47%s#

. NDSP : #447% M4 #44"

.ID : 4##Jl

. NDS : #47} ##4# 44#£.

. IX,IY,IZ : X, Y4- z 44444 4# 4# ?44s# 44#^

4-2.5. s ti ## ##4 44* 7>##.

0 • Free B.C

1 : Predescribed Disp.

-180-

-1 : Disp. = 0

. XD,YD,ZD : X, Y4 Z3# 44=4 4^4 444: IX, IY4 IZ44

14 3 #4 44# 7M4. zz.514 04# -14 3 #4 2 04#: 43314 %

4.

. IC : 44 331244 4-g.g 4&31* 34## 4-5. 0 4 3#

444&3I7)- a}#4 4451 ###&4# a}## 3# IC^I# "AK'^MI 3

4# ####31 4343# ### 4 4 #4.

4. IN 4 3.3124

. NPRS : 434 331244 M#

.ID : 4443

. N1,N2,N3,N4 : 434# 444# 524 4 4444 4443:44.

4443:# 4-8.31 44tiHl#-8-5. 44314 44

. IB : 4#4# 43M# 444# 43. 44A]# 434444

44444 4445.3 IB4# “4-” 4 444 331244 ##43 ICB# s>

4-7> 44

4. 444 3,3124 45 •

• .. NCVS : 444 331244 #4#

.. ICB : 444 3314 ##43

. DIA : 444 3314# #34# pipe4 413 (44 : [mm])

. PER : # #7]#3=4.44 # 444 33143-32 4#7Rr ##

44 4#

-181-

3. BOLPASSJ §! #4 #4

1) B0LPAS4

4 #44 BOLPAS $ BOLPOSTS) **§ 4* 4)4 147]-a4 44 ^

^*ir 114^4. 4* St0S 44 iL*4 141 $71] A>-g-x>7> 4*4

SM41* 444-143?. 7M44.

ptstb. dat : #45_db 5.1 #1 (BOLPAS)

ptdss. dat : #4s4 #1 (BOLPAS)

ptlcf. dat : tI^h]* #1

ptcpl dat : asl^4# #1 (BOLPOST)

°H BOLPAS $ B0LP0ST4 rsl^ 447KMA-) 4*4 #o] Key-in

4144.

> BOLPAS ptstb ptdss ptlcf ptcpl psdss V

444 psdss* 4*47]- 441S 444* $o„5. #414# 14- *44

1$ 7141* 4414. # #4#4s4 *#4* 414 7j}^* 2.4 n

7flSrL 4 144 4* psdss nm.datl 44S *5044.

1#44 44* 4* dirrectiry $ 41 directory*4 4444 #4 4

4470 4*4314 4* 4*4* BOLPAS# 444 *444 a>*41 4 •

4. BOLPAS* Unix-4 OS commands. *4 4 4 $5_5S 4# * 4*4

Unix OS manual* %SS>7] 444.

-182-

2) #^554 **

#4454 7]^* psdss^jl t 4 B0LPAS4 B0LP0ST4

5^4 *44* 554 #** 5194 54 4454. 44544 4*4

*4* 4 #4* psdss 29. dat5 *^4* 5*4 #454* 24s}r 54

45444.

3.194-4 psdss09.dat-psdssl3.dat* *5444 45:4 4# 44544

filel-5.4 n44i: 4*4 *44 55:n.^4 NISA* 4*4* 5t X-Y

Graph* :2.e]* -ntfls 4*# 4" $1* 13455 #4 4 $14. S#

psdssl8.dat4 psdssl9.dat 44 NISA* 4*44 2,5444 554 *5.2.

* n4*4 4*4* files.4 45 444*4 *5 5d= 45.5 4444

a4. ^44 4# *44 55:1 4*4* 5* 444 file* 4*42

4 4* 55:1^4 ^44 4-*4 *44 44.

-185-

4] 3 4 Creep-3] 5. #4# ## B0LPAS3)

1. 7H 2.

4444 plants #44 444# 7lX)$4 $4# S>3L 1144, 45

# #54#4 4# 4##4 #455 4#42 $14. 444 4##4 #

455 $144 4#-7j*M 5#4 #7}4527i 14144 242-45

4-0-4 -844711 2442 $14. o]^s] 4^44-4- 4-47}45 2#7l 44

444 1# ##4544# ^S££7} 4tiH4°l3i 444 Z4#ti<H4 4

444 $1815. 44-44 44444, 4#7l ## 44444 4## Creep

24-7} 44444 45514 creep cavity44 $4524 44 447> 4

*344-. 444 Creep-45 #14 44 44444 144 414 #544

Strain41, Strain’S4, 41 #54 44 444 # 14.

5 46)14^ 7l 71111 B0LPAS4 # 222^44 #ll7}4# #44

14. 4711 B0LPAS552^4 #ll7}4# 44-44 2454- 457} 4

4 #44444 44 #1455 44471 41 #4 245-45 444#4

444 4544# B0LPAS5 444711 51447} 414. 444 144

#ll7H-& #144 444 lCr0.5MoV4# 4544 Creep-45 424

-0- #445 4e4 41 #444^4 44 #ll7M4 7fl2# Factor %

& 41, #14554 BOLPAS5524# 4-0-4 Creep-45 424-0-#

44427} 414.

-184-

2. Creep =15. 4# #g^u|§4#S@7M4 #@

3^68, 69, 70# 34 £-4 & #3:4# 4 4| lCiti.SMoV# 4

!Cr0.5Mo#4 #4444 4^AH# ## 44# 444. $ €M# 44

1%4 2%44, #£# 500"C, 550°C, 565’C# 4 #£4 #4444 4# 4

&#4 #4# 44# 4°14. Creep ### ## 44444 1°14 4&#

#4 #4# #£, # #^#, 44-S-44 ##(##, 44) 4 271, 4&4#

444 #4###, iss] 4444 #€44 44 4#4 4# 444 #

f 4^44 #444 444 444 #4 t^s^It a# £"94^4. #,

31368, 69, 704 444# #4 Curve Fitting##-^*] 444 #4

lCrMoV# 4 lCr0.5Mo#4 4&##4 W #44# 44# # 44.KT KT KT

FatigueLife Nf = K{ + Al6 '' + A2e '2 + A3e <3 (34)

444, K, :

KT : Hold time

Ai, A2, A3, 4, ^2, h : #4#4££#4 444# 4##

#44 £5- Creep4 44# 3.444 BOLPAS4 4S ###### #4

44. 41244 4(1)4 43# 41 4#4#4 £44#a# £444

BOLPAS44 44 #4444# #444 Creep-4£ #3:4## 34 #

# 5A4.

-185-

N, : i 7}§M ^

W>, : i S}#4 7HM 4 4°1

tj : j -tMM W°1 7}§]]^lfe a]#

tf, : j §}^o] 4| A]^>

a : 2.^7-1]^

'.“Steam' Properties FEM . Material. Initial Metal

Temp. •OperatingData

Model t Data

Properties . Shape

Pre-Precessing

Heat Transfer Analysis Temp. Distribution

Thermal Stress Analysis - Magnitude, Location

and Time of Max. Stress

Fatigue Analysis

n^65 BOLPASS)

-187-

Geometry Data

Identificationdata

modelname.cpl (ptcpl.dat)

. Pre - ANSYS

Pre - BOLPAS.

StressFilel5.dat (mpsslS. dat)

StressFilel4.dat(mpssl4.dat)

StressFile23. dat (mpss23.dat)

modelname. dat (ptdss.dat)

medelname. lcf (ptlcf.dat)

modelname. geo (psgeo.dat)

Thermal File23.dat (mpst23. dat)

mcp modelname (mcp mps)

Thermal File34.dat (mpst34.dat)

Stress File34.dat (mpss34.dat)

User Modeling

Stress AnalysisThermal Analysis

User Modeling

ansys.e -j stress (ansys.e -j mpss)

ANSYS PREP7

ansys.e -j thermal (ansys.e -j mpst)

ANSYS PREP7

n^66 ANSYS PREP7& °l-§-4 BOLPAS input data flow

( ( He Stub DSS4 4# 44^ )

-188-

C[B Model 4#

9fi Y-piece Modeling X-pieceNozzle

leling■lodeling

preansys filenamePre-ANSYS till

3*% 67 Pre-ANSYS -SD Flow Diagram

msNO CONTENT DATA FORMAT

1 TITLE TITLE (AGO)

2 TEMP.VARIATION

TEMPUP (E14.5)

3 CONTROL DATA . TMAX ITER IFRE (3E15.5)

4 MAIN STEAM TEMP.

IOP NGID(1) TIME(l) VALU(l)

ID(NG) TIME(NG) VALU(NG)

(215)(15. 2E15.5)

(15, 2E15.5)

5 MAIN STEAM PRESS.

' '

6 STEAM FLOW RATE

7 S/H METAL TEMP.

8 ROTOR SPEED

9 LOAD

-iS9-

5.16

IOP £| D|1 ?#7| 5S. (#91 •• [1C])2 ##7| ## (#91 = [kg/cm2])

3 #715# (#91 = [ton/h])4 S/H SE (#91 : [1C])5 SEj S|S^ (#91 : [rpm])6 m^ (#91 : [MW])

517 tgx;

NO CONTENT DATA FORMAT1 HIS J , (I 5)

4s N1 SLl SU1 (15. 2E15.5)All A12 .. .. A1N2 (5 El5, 5)

Nj SLJ SUJAji Aj2 . . . Ajnj

2 an J CR (15, E15, 5) 'Ni SLi SU2 (15. 2E15. 5)An Al2 . . Aini (5E15, 5)

Nj SLj SUjAji Aj2 .. Ajnj

-2S0-

ms as

NO CONTENT DATA FORMAT1 TITLE TITLE (A60)

2 MAIN NODE VH MD(1) MD(2) ... MD(MN) (615) -3 MATERIAL (M) E v p a (4E15.5)4 MATERIAL (H) KP Cp (2E15.5)

5 ELEMENTTYPE DEE.

"ELTY" IELTY ITYPE (A4.1X.2I5)

6 NODE DATA "NODE"ND XND YND 2ND

"FNOD"

, (A4) 4(110,3E15.5)

(A4)7 LOCAL COORD. "CSYS" ICSYS ICTYP

if ICTYP = 0 thenNCI NC2 NC3

else if ICTYP = 1 then01 02 03XI X2 X3Y1 Y2 Y3

else if ICTYP = 2 thenTil Tl2 Tl3T21 T22 T23T31 T32 T33

(A4.1X.2I5)

(5X.3I5)|5X,3E15.5|

|5X,3E15.5|

8 ELEMENT TYPE SELECTION

"TYPE" NLTY (A4. IX,15)

9 ELEMENT DATA "ELEM" Ml N2 ... Nn IBFor 20 Node Element 'MORE' N9 N10 ... N16 "MORE" N17 N18 ... N20

(A4,IX.1015) JA4.1X.8I5J

10 TOPOLOGY END "FIN" " ' (A4)11 DISP. B.C NDSP

ID NDS IX IY IZ XD YD ZD IC(15)

(515, 3E15.5.I5)

12 PRESS. B.C NPRSID N1 N2 N3 N4 IB

(6ll|

13 CONVECT. B.C NCVSIDC DIA PER

, (15)(I5.2E15.5)

-191-

2.19 #

ssag E39 m S § s.

BOLPAS

psdss 02. datErroe Message

. EE. 91#§iES.LinePrinter#

psdss 08. dat 611^321011 CHETime history

B0LP0ST2| ' Input Bata

pssdss 18.dat Result data. Temp, Strain, LGFI EEE

NISA#(Contour)

pssdss 19.dat Geometry data NISAg x (Geometry)

pssdss 28.dat EE6H^132f°| fiSf LinePrinter#

BOLPOST

psdss 09.dat *23 §21 Strain history , NISAg x (x-y Graph)

psdss 10.dat Temp history

psdss 11.dat ' Stress history '

psdss 12. dat Creep damage rate history

psdss 13.dat ' Total creep damage history

psdss 29. dat EL^mm EBIE SHE321 asf LinePrinter#

-192-

ICHVbVToti8ra'nF^ge:1%

HddTime(l-bu)

zlW68 Relation between No.of cycles to failure and holdtime

for ICrMoV with 2% total strain range

-193-

1Q--M>VTotal Strain Range: 2%

1500-

5! 500-

HU69 Relation between No.of cycles to failure and holdtime for ICrMoV with 2% total strain range

~194~

1Cr0.5IVb steel

515PC o.4%

-•-0.6%

1000-

0.^70 Relation between No. of cycles to failure and hold time

-195-

BoLPAS

YongWeol CSS (1997. 2.11.)20.

0.9000000E+04 90 901 41 .000 20.0002 3540.000 350.0003 7200.000 510.0004 9000.000 510.0002 51 .000 35.0002 2100.000 40.0003 4800.000 52.0004 7200.000 91.0005 9000.000 91.0003 51 3540.000 1.0002 4620.000 10.0003 4980.000 32.0004 5520.000 70.0005 9000.000 92.0004 41 .000 20.0002 3540.000 320.0003 8400.000 460.0004 9000.000 460.0005 31 3540.000 .0002 4620.000 3600.0003 6600.000 3600.0006 41 4800.000 .0002 4800.000 5.0003 5520.000 20.0004 9000.000 35.000

#1 h§7l7|-§-(BoLPAS)

*1* Wl* w w

s***************************************CREEP RELAXASING RESULT SUMMARY «]# O/ Ji tb tl#

* MODEL :Yongweo1 S/H Stub Tube Analysis* OPER. :YongWeo1 CSS (1997. 2.11. )

***********************************************

NODE NO. = 283 : THERMAL LOAD•*»*•#» UU U# •*# eU AAAAAAAA

***** TRANSIENT ANALYSIS *****

*** MAX. THEMAL STRESS ***TIME [sec] TEMP.[C] STRESS [mN/mm2] CREEPD-RAT10 [%/hr] 0.28000E+05 0.31200E+03 0.80342E+05 0.72800E-05

*** MAX. THEMAL CREEPD-RATIO ****TIME [sec] TEMP. [C] STRESS [mN/mm2] CREEPD-RATIO [%/hr]0.74000E+05 0.49220E+03 0.68237E+05 0.33657E-04

*** MAX. THEMAL STRAIN ****TIME [sec] STRESS [mN/mm2] STRAIN LCFI [%]0.32000E+05 0. 52537E+05 0.75998E-03. 0.52030E-01

*** LAST CREEP-RATIO ****TIME [sec] TEMP.[C] STRESS [mN/mm2] CREEPD-RATIO [%/hr]0.90000E+05 0.50298E+03 0.43867E+05 0.38760E-05

*** LAST CREEP-DAMAGE ****TIME [sec] CREEP-DAMAGE [%]0.90000E+05 0.19142E-03

**** LAST STEADY STATE ANALYSIS *****

*** TOTAL CREEP-DAMAGE ****TIME [sec] CREEP-DAMAGE [*]

0.43200E+05 0.28750E+01

*** LAST STEADY CREEPD-RATIO ****TIME [sec] TEMP. [C] STRESS [mN/mm2] CREEPD-RATIO [%/hr]0.90000E+05 0.50298E+03 0.37454E+05 0.21030E-05

SMSM #1 uo ^17| ■§■( BoLPAS)

*!# J« Vp J/ Up J« Up Up Ji J# J« J/ Up Ji %fp J# Ji V# Up Up «t« Up «1# J. J. J. Ji 4/ «!/ ftl/ Up J# J/ up V# J/ up V# up »|» »!• *l» »»» *l» »l» *l» *!• #|*«|« »<• ^♦»l»*l**l»*|*»|»'|*»|»*|» »|» *|» »«• »J» »(» »(• »r»*l*»I* *«♦*••'>*'«*'•**•* '>*'!» 'p "p *p *p *p *p *V********* CREEP RELAXASING RESULT SUMMARY ********** MODEL :Yongweo1 S/H Stub Tube Analysis* OPER. :YongWeo1 CSS (1997. 2.11.) ****************************************************

NODE NO. = 283 : THERMAL LOAD

***** TRANSIENT ANALYSIS *****

*** MAX. THEMAL STRESS $**TIME [sec] TEMP.[C] STRESS [mN/mm2] CREEPD-RATIO [%/hr]0.28000E+05 0.31200E+03 0.80342E+05 0.72800E-05

*** MAX. THEMAL CREEPD-RATIO *** ****TIME [sec] TEMP.[C] STRESS [mN/mm2] CREEPD-RATIO [%/hr]0.74000E+05 0.49220E+03 0.68237E+05 0.33657E-04

*** MAX. THEMAL STRAIN' ****TIME [sec] STRESS [mN/mm2] STRAIN LCFI [%]0.32000E+05 0.52537E+05 . 0.75998E-03 0.56088E-01

*** LAST CREEP-RATIO ****TIME [sec] TEMP.[C] STRESS [mN/mm2] CREEPD-RATIO [%/hr] 0.90000E+05 0.50298E+03 0.43867E+05 0.38760E-05

*** LAST CREEP-DAMAGE ****TIME [sec] CREEP-DAMAGE [%]0.90000E+05 0.19142E-03

***** LAST STEADY STATE ANALYSIS *****

*** TOTAL CREEP-DAMAGE ****TIME [sec] CREEP-DAMAGE [%]

0.43200E+05 0.28750E+01

*** LAST STEADY CREEPD-RATIO ****TIME [sec] TEMP. [C] STRESS [mN/mm2] CREEPD-RATIO [%/hr]0.90000E+05 0.50298E+03 0.37454E+05 0.21030E-05

x(|7^ 3L^S.-^]S. 3] 6} ^ ml O] ^

-197-

4 7# 32l5.-S|5. 4 4 B) 4 4 ^

5.5-ZL^

^111 Creep-Fatigue Doctor Verl.O 7}]#

• 1. Creep-Fatigue Doctor Ver 1.0 “Szl^s} 7H£(zl|! 69)

rCreep-Fatigue Doctor Ver l.Oj CREEPS FATIGUE #4 ## ##, ##, #3# 4, S### 444445# lF#dh# zi -sq 7]

#44 t44 4-0-# 4 t}7) 4 #4

3^68# #4 4# T00I&4 444 #4# Visual basic# 4##4 ##4

4## 4-$57 ^databasesMS-Access# 4#4^4. 40#444#

4-0-4 #44 5534#25 44 4te(#*3)# 4## 44 4fe4 #

44 44 s.H7> #4#4.

Database#4# 444 4#4 MS-Access# 404 DB£Sz^ 314

#•£# 44 4 4444 data4 #7}, 44, 78#4 -0-444. Win 95 version

4 MS-Access# 444445 #4444 4#4 PC-0- #4% 44444

5 #44444. Access^ table## # 7># e ### 4# 44444 4

4# S##44. ASCII file# ## dBase4 —3L zz.431 44#^ #4

444# #41:444 3 445. 4## # $154, 4444 54^## 5

5454e ^e}]4 4^5. #4544 4## #5 $14. #4 SQL# 4#A

5 # 44444^44 444 3## #4 44#4.

CREEP-FATIGUE DOCTOR A534# 4# 4444 3.41 44 4#

4# ## #4 #4 # # 44 4 #44 44 #344# 2.# 4##4

-259-

7}# 4## # # $j7l] S>^4. d.5. ^S)

44 #^4 42.4 3.4 444 4317} n.4 444* t^1?1

44 SMI 4^A_4 444M# 44 44 4317} 4444 #44* 4# 4

44*# 444.

2. rCreep-Fatigue Doctor Ver 1.0j =sn^2| ^§(zlU 70)

“Creep-Fatigue Doctor Ver 1.0” 4 Creep*4 (a), Fatigue*# (b),

Creep-Fatigue, 4314^144(c), 111444(d) 444444444

&4.

7}. ^3.n44 7] 444

• Creep, Fatigue 4 444 44 41144 DB# 4444 4444 44.

• # 33.214* Visual Basic# 444 4444 &44 4444 4 44

*4 444 7}*#-.

• 4 44 45.# 444 DBS. 44, 3,5004 *## ^44 (scanner)# #

4 ^444 4#4 # SLi-4# #4.

• Creep-fatigue#44 441# #7)441 MS-Word# 4444 4# 44 7}

5.# 44 4.

4*. ^Creep-Fatigue Doctor Ver l.Oj S.S.21^ 7]*1H

1) Creep-Fatigue Doctor-4 4444## *#4.

2) 41#(Menu) 4 t) Creep BE# Fatigued DATA* ##4.

3) 4317} 4* 7}s.^# <3444.

4) VieW4*# ^*#4# #4.

-200-

5) 4s_4 Prints## ^4.

6) Exits. #SM.

§ -T^ix.

(Creep, Fatigued! ##

MS-WORD

' 1 ' V

Creep Fatigue Creep-Fatigue

. r Creep-Fatigue Doctorjt t t

Creep DB Fatigue DBCreep-Fatigue

DBji j L MS-ACCESS ji

SCANNER

nH68 Creep-Fatigue Doctor Ver1.0£|

-201-

-i •.'/%

HU69 ""Creep-Fatigue Doctor Ver 1.0j

-202-

-eoz

-

v<*x£^**

•sy.N |

<■.:>>>*.• >:-':::-' <<■>::•<V:• : > v> -6} * so ».v^s'v^-s )w^vwv.jw!^Uv yO,"'4' A<''- “ '&'< ' 4^

.•A v>‘ <0; up; to

V *■%•«■% s.% '* % -V-' ‘V y*% A* »" V-* iVV i’w.• <'■<%><-■. y> \y > w.v' v At■/,<-< .v . x: ,v'■'./• •!•'<» .v- v '«.\yy *

fxAx <f.5'*vt.s/:sAwv//*vy%1<'<^,>*,v.'»:v5 <sv<- A, svxv'-^v ^v# .vA?»/ < <••. •.<v > r,hv. < <«v<> }:a.. v». <•<•» ,</axa % v*>•><'# .vZ*-

/ -y< > W- Xv 4Z< //1 >: < %y >< •>><«»• «x f> <•-«. y

(b)

204

:\NV\.*S xV -V ’<5 .*-•> <v*v v

*/•••.»-Sx > v^vx -vxVz<.v> .«.y n.*.: ,<*<»* v> :«•::::

\ xv n %,,v

M

:<x

W#:' . . . . . . . . mwm

iiSSr

Sk;!.'HJ•».

:^x >i •.* • I' "•); <v >'■'

:gfi.'i'4^'i.s';|'telPt&S'&ii

########

WRM#;

-. . ...... .... . .».•:$<e>;x$.S'fr:<-:<•;;s.:x-.

:i;.sn4:vi:$,"i;;Svr;

o

-205

-

(d)

ZLH70 ""Creep-Fatigue Doctor Ver 1.0j z\\o\e\

(a) Creep^Hj database (b) Fatigue#^ database

(c) database (d) database

-206-

ii ? % ;■?. i.'"; Wi4l'3oi^fc^r^xrirs;---il-“--

•■f.'y*’"^-.: < <• *<■> 'Arsy-tr ‘•vw

•'/vys. -.&,-.f.^-v/. **/ i X%

emg-mg^e

;y}'”}^'^V'>v,^”i-?”ji«/ftf«5»:<ASi;Av;,,Ai«v4iv.^vfc«J«Jii,v’i:.w.:iv5s‘v^.,,>s,,^v':j>i^

. ❖i -S'^">S'l'i> C'^'S y..-i.*•* w^v-kv-s <.v Jvr^v^-yxS-s

WW#(*hAA$lip%•*■*-• sv <4*.■W-vvy*<i;.--y/ m#-^n•■-•'■ •-•*!• H>v. -. ><£p.%%W.> % *V_W..»W...-<

..y^-y^vj. »-*.% y^.y^y^a .VM / \ f > .Vj.1XYr->-ff •Vi' vVA*1,'/^-'^i+tit'S'C'' '' " I

(b) Fatigue^-^ database

............................................................................................... \v>f.V t-av-t*'■><:«#./tw< <". vv <sv <•<’■' \A, sv•szk?

: y*v>SM"'S'< <■>•/■• v.*. :#•• *.v vz 5 Xv/<v. •/ yz :w/. :< .*. >•i:'<fi~

(c) A>jiA>^|l database

•y j >./• » vz ■ z

^ #: .v> <»y'- K '.■•• •■•<■: • .'"V: ' • ' 'V''''''v:V^-[-;-*-;-'-:-|"-'l‘-‘''-;-'---'-;-' v'-'V'^v;.v -''-.v'-'v;;'■'■'v~‘^"-"v; '' V--\\''-‘';'‘';r,‘,-‘'‘-‘‘,-‘‘‘;

£•" ? y v £-f; - /-

................ '

«/■ '*/*'*■ :Zy *■ y , ,T / 'ir‘ " *:* ••*✓ ■*Z-4rsV.-Vr< 4v •'<•*'■ •**■■>

<-, <•-'/ vz. • *•>•£/: <vyx /</ •.■;/“ -.v^vz •y^/z v/z<V ■%•<•/■•<■/ Ayzj fz. Jv|‘ z '...................

;#1

%3@E

rt^'wvw'*’; ••ft-:w*vxv*^#‘v.:<

vV ..<• z ft«A.V /V<{ *V. s 4> zAz.-liV zVzz *V. j<z v w•» ?«•*«;,«w v <

■ • .... • • ' s‘K}'rz''f:iJCfeMffdf epfe^- >

_ -:v/w«z.vz/-n

, s'/, .sxzy %. .>Y. ..$>•,. < :<-.ViS/SV.'V.z V,'^»V<<?%r?n%nri

/ £2z : 4% <•> : <.. < Waw-UPBBK 4-)wWs6AfKpi!

■^ ■/■*>> <?/■■ f /.V' Z.^A-VZ <ft . fr-C<-Z -v • "V/J '

■ —r.. ' :y::.... ......~*z;.'Z.V'VL.^'I.^ v T%V< A £ ,'.<!< i A/, \./.v5y!$’i <&i' >v sS»z Sv.zs-V. ;.,,z;.z <-$■> «'zx>. /<■■> vz rt' .Ox.*. Zz -v- ,-vz zc^-:->, :*•♦-> -«vz <-*•; .*•• ^^vx v' -# ~ sv; <•> < y W-- -?/- <V : %z: z.> z>,-. iv- <z: j>f" <•> z%

(d) database

*11 8 ## ^

-207-

4 8 4 5# ^ 4441

4 1 3 4 €■

# 4 #4 4# 23171 554444 455 4#4# lCrO.SMo#

# ##4 515°C44 4 #4- 45#^ ^ 345-45 #55# #5#

4 4#4 4# 5## 554.

1. lCr0.5Mo#4 180,0004^- 4#44 Creep41# #14554,

Larson-Miller parameter# 4## 4##1# 4## # 554.

2. 5# ^ 31# 4 4 4 #4 45-414 lCr0.5Mo## #57} #7}##^. #

4-3L44 4# 55114 #444 3i#444 45#4# 5#444 45.

#4 54- 5dh454.

3. 45544 44# #54 44=# 4157} ## 45### 44- 44#4

4 £4 $4 4=53. 44$ # 1 ~ 41 ### (hysteresis loop)4 #4 4 4 4 5

455. #4# 54- 4-4-4 541 51454.

4. a45-45 4-54## 4444 #44-71 444 Coffin-Manson, 54

4441, $1##4$# #1441# 4#44 #44## 4 54, 455 544554, #144-5 #44 5# 5# #7} 554.

-209-

5. 515 °C bS.6)! 4 lCr0.5Mo7cl"4 creep-fatigue b4b tensilon hold time7-!

hold time0! £)b 444 434434 creepJL^Ml 44 cavity-2! 444 4

#4! 4*A til 454-^54, hold time 60034*1 b 343344 4*il ¥4 °1 4 b 454*14, 3 °14°)] 4 b 3 5] = 547} *M4°1°14 43547}

43444 4¥b 4*1*1 #b 435. 4444.

6. Creep-Fatigue 44b 3 4 5 4 -§- b 4"(creep cavitation damage)4 ^5.5

<lb4(fatigue crack damage)35 b#44 hold time0! #7}#b¥ 43

crack34b 9144 444 creep cavitation0!] 44 b44 434^44 7]

45b b7}44, 43 crack4 cavity44 434b4 44 #444 crack

propagation0! 43b4( AW4 75%°lb #44 444 4b 4444.

7. 7l 7HM 344 4bb 4444553^(BOLPAS)b 44 44444

4 441 3454 43* W3435 4144b 44^7}4-& #44°! %l&3

4, 345-43 434b 44 ^ 434b #4# ¥4-4 4°14* #44

354 4e4 44 #4443 4 BOLPAS 5534b, ¥434b 4

44 443* b$4.

-210-

4| 2 4

l. # #^-4 43Hr 75%44 €li: ## 4^

44444 sjs-^i- ^js}$o_q., ^34^4. 0]^ 3g7>

# #A&4 44 4444 #4444 44^4- 7]#o] oj=.o^o) ^

-2ii-

Worksheet^ fV#)

447} = # # 4•o-7ll: O 4571]:

057)1 54= :360103

0453#5 154 31 b] 44# 544 51 1 4 4=1] 4 4 sis.2) sy^i 1

4#4 7] #4 S3 3# 447j.fi. SJ=A<M?|7] 4| H21S-S1S. 43454 ## 444 445 7]?\}^1* 1 54444#5 51 51171- =1147155 44#4 #1-11 411 til 15 51 #317} 5*5#1#.

180,000711 A}^-5 1^#1 237] 3!b]811cH]a] Alsi-a. 5B4SH 3.1= Al^, 35sls.AH, ae)S-Sis 43157]!* 47l#lSl, E44441, !!#5445 7,1 S5 51171-15 45#4 515 41 #-#14. aels 3s}l 57]a17l}o] g-* 35 3e]=-43 43454 4=11 511 554 ##4-4 4S514 5#7H4| 44 54440] 4 452] s]s515 4444 34= 3#4 4417}4 115 45 #33 545114. E# 444445 #5#147l 4 s!b]5 442] 34s 1 sis## 41445 54#4 #4471 #7)1 7}54 5 l-E-sj- rCreep-Fatigue Doctor Verl.Oj 4444 4i “S^115 71H4-14. 5 1544* -f-sil 343-4s 43455 45 314 554 -£4534 4 5 5114 455 1=471# 5 %l%M-.

033711314 355 Creep 4s 4345 1515

07l7}(d=5 ^ 41) :5#414154 (PGRL) 14 7] 7] 35 #55, #715, ##4

0337] 4 &TR.95YS01.97.36

041445220

05413•141997 • ##, 15

OKeyword1. Creep-Fatigue Interaction 6. Hysteresis Loop

2. Plastic Energy Method 7. Low Cycle Fatigue

3. Strain Range Partitioning Method

4. I,arson-Miller Parameter

5. Boiler Life Assessment

015714: jOt-71114:1995. 2. 17 - 1997. 2. 16 148,680 44

011(44)714

-212-

Worksheet^ <cl?r)

= Jung-Seob Hyun■§•711: O til§-7ll:

o¥5flR360103

OMl-8-A^In .this Study, the syntlietic technology including life assessment, damage mechanism and mechanical

effects of boiler equipment under creep-fatigue interaction was established. Cracking and propagation analysis was summed by the creep and fatigue, but this phenomenon is mixed by creep-fatigueinteraction in real boiler condition.

The specimen of creep-fatigue interaction test was obtained in the boiler header which had been used 180,000hr youngyeol power plant The test results was analysed by life prediction equation such as plastic energy method, strain range partitioning method. The creep-fatigue life of 515C, lCrO.SMo steel was estimated. When tension hold time was applied, the global fatigue life with hold time was smaller than those without hold time. It was decresed to GOQsec hold time, but over 600sec the fatigue life was interestingly less decrese than those without hold time. It was caused that fatigue life was dominated by creep cavitation damage. Also we developed rcreep-fatigue doctor verl.Oj DB program using VISUAL BASIC and MS-ACCESS.

From the result it is possible to highly improve the damage structural analysis and life expansion technology in boiler equipment

OiULAltgA Study on the interactive effect of creep-fatigue in boiler

0*1 51 : Power Generation Research Lab.(PGRL)Soo-Gon Baekl Gee-Wook Song; Jung-Seob Hyun

TR.95YS01.97.36OslM^l-r

220• -yo|

1997 • Korean & EnglishOKcyword

1. Creep-Fatigue Interaction

2. Plastic Energy Method

3. Strain Range Partitioning Method

4. Larson-Miller Parameter

5. Boiler Life Assessment

6. Hysteresis Loop

7. Low Cycle Fatigue

0-9^7] 7j:1995. 2. 17 - 1997. 2. 16

0#7H^u|:148.680,000 won

oiM(4im7i#

-213-