oe4604 2014 offshore wind energy

99
8/10/2019 OE4604 2014 Offshore Wind Energy http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 1/99 Introduction to Offshore Engineering OE4606 Offshore Wind Energy Eliz-Mari Lourens

Upload: kuncheesh

Post on 02-Jun-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 1/99

Introduction to Offshore Engineering OE4606

Offshore Wind Energy

Eliz-Mari Lourens

Page 2: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 2/99

Introduction to Offshore Engineering OE4606

Offshore Wind:

 Two parent industries

• loading:

• + (dynamic) wind

• + rotor harmonics

• single structure vs serial

production

• optimization gains!

• loading:

• + hydrodynamic

• foundation considerations

• maintenance!

Page 3: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 3/99

Introduction to Offshore Engineering OE4606

Why Offshore Wind?

Onshore:

• Land is increasingly occupied

• Resistance against visual ‘pollution’ is growing 

• Wind turbines are getting larger-> requires more space

-> visible from greater distance

Offshore:

• No obstacles  more & steadier wind

• Space

But: remote & tougher conditions!

Page 4: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 4/99

Introduction to Offshore Engineering OE4606

Offshore wind farms

• Primary function: convert wind power offshore into electric

power onshore

• Main challenge: reducing the cost per kWh

• Main area of development: NW Europe(shallow seas & favorable wind conditions)

• Fast growing industry sector

• Lack of trained engineers!

Page 5: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 5/99

Page 6: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 6/99

Introduction to Offshore Engineering OE4606

Lecture content

1. Offshore Wind Energy: A Short History

2. Statistics and Trends

3. Offshore Wind Farm Components

4. Overview of courses

5. Support Structures and Installation

Page 7: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 7/99

Introduction to Offshore Engineering OE4606

(Offshore) Wind Energy

A Short History

Page 8: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 8/99

Introduction to Offshore Engineering OE4606

Persian deserts

Page 9: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 9/99

Introduction to Offshore Engineering OE4606

Windmills

Page 10: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 10/99

Introduction to Offshore Engineering OE4606

Power from wind 1888

• Brushmill

• 12 kW

• Auto control

Page 11: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 11/99

Introduction to Offshore Engineering OE4606

Poul la Cour (DK) 1891

• Step forward:

aerodynamics

• Tests in wind tunnel

• Produced hydrogen

Page 12: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 12/99

Introduction to Offshore Engineering OE4606

MW size, 1941, Vermont

• 1.25 MW

• Largest wind turbine ever built

until 1979

• Steel blades

• Fatigue of blade only 1100 hours operational

Page 13: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 13/99

Introduction to Offshore Engineering OE4606

Gedser: test turbine in Denmark

• 1957

• By J. Juul

• 200 kW

• 24m rotor diameter

• “The Danish Concept”: domination of the market well

into the 1980’s 

Page 14: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 14/99

Introduction to Offshore Engineering OE4606

70’s-80’s: NASA program 

• Boeing

• General

Electric

• Purpose:develop

technology

and support

emerging

market.• Largely

unsuccessful

Page 15: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 15/99

Introduction to Offshore Engineering OE4606

Offshore idea’s 1970-80

• Heerema

• RSV

• Boskalis

• Fugro

Studying offshore wind

Page 16: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 16/99

Introduction to Offshore Engineering OE4606

Offshore: detailed

plans

• Copy offshore structures

• Adapted to be produced in large

numbers

• Conclusion: bigger turbines needed

Page 17: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 17/99

Introduction to Offshore Engineering OE4606

• Installed 1990

• Decommissioned 1996• 1 Wind World 220 kW turbine

• Rotor diameter 25 m

• Water depth 6 m

• Distance to shore 350 m

Test facility to study influence of

offshore wind turbines on:

• Birds

• Fish and fishing

• Shipping

• Public opinion

• Operation & maintenance

Nogersund

Page 18: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 18/99

Introduction to Offshore Engineering OE4606

Vindeby

• Installed 1991

• 11 Bonus 450 kW turbines• Rotor diameter 35 m

• Max. water depth 5 m

• Distance to shore 2.5 km

• Total Power 5.0 MW

• Gravity-based foundations

Page 19: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 19/99

Introduction to Offshore Engineering OE4606

Lely

• Installed 1994

• 4 NedWind 500 kW turbines• Rotor diameter 37 m

• Max. water depth 10 m

• Distance to shore 750 m

• Total Power 2 MW

• 2-bladed turbines

• First driven monopiles

Page 20: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 20/99

Introduction to Offshore Engineering OE4606

 Tunø Knob

• Installed 1995

• 10 Vestas V39 500 kW turbines• Rotor diameter 39 m

• Max. water depth 4 m

• Distance to shore 6 km

• Total Power 5 MW

• Gravity-based foundation

Page 21: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 21/99

Introduction to Offshore Engineering OE4606

Bockstigen

• Installed 1998

• 5 WindWorld 500 kW turbines• Rotor diameter 37 m

• Max. water depth 8 m

• Distance to shore 3 km

• Total Power 2.5 MW

• Monopile foundations

Page 22: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 22/99

Introduction to Offshore Engineering OE4606

Blyth

• Installed 2000

• 2 Vestas V80 2.0 MW turbines• Rotor diameter 80 m

• Max. water depth 6 m

• Distance to shore 1 km

• Total Power 4 MW

• Drilled monopile foundations

Page 23: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 23/99

Introduction to Offshore Engineering OE4606

Middelgrunden

• Gravity-based foundations

• Public involvement/investment

• Installed 2001

• 20 Bonus 2.0 MW turbines• Rotor diameter 72 m

• Max. water depth 10 m

• Distance to shore 2 km

• Total Power 40 MW

Page 24: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 24/99

Introduction to Offshore Engineering OE4606

Yttre Stengrund

• Installed 2002

• 5 NEG-Micon 2 MW turbines• Rotor diameter 72 m

• Max. water depth 12 m

• Distance to shore 4 km

• Total Power 10 MW

• Monopile foundations

Page 25: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 25/99

Introduction to Offshore Engineering OE4606

Horns Rev

• Installed 2002

• 80 Vestas 2,0 MW turbines• Rotor diameter 80 m

• Max. water depth 14 m

• Distance to shore 14 km

• Total Power 160 MW

• First large offshore wind farm

• Driven monopile foundations

• Helicopter access

Page 26: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 26/99

Introduction to Offshore Engineering OE4606

Samsø

• Installed 2003

• 10 Bonus 2.3 MW turbines• Rotor diameter 82 m

• Water depth 18 m

• Distance to shore 3.5 km

• Total Power 23 MW

• Gravity-based foundations

Page 27: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 27/99

Introduction to Offshore Engineering OE4606

Nysted

• Installed 2003

• 72 Bonus 2.3 MW turbines• Rotor diameter 82 m

• Water depth 9 m

• Distance to shore 10 km

• Total Power 165.6 MW

• Gravity-based foundations

Page 28: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 28/99

Introduction to Offshore Engineering OE4606

Arklow Bank

• Installed 2004

• 7 GE 3.6 MW turbines• Rotor diameter 104 m

• Water depth 15 m

• Distance to shore 10 km

• Total Power 25.2 MW

• Monopiles

Page 29: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 29/99

Introduction to Offshore Engineering OE4606

North Hoyle

• Installed 2005

• 30 Vestas 3.0 MW turbine• Rotor diameter 90 m

• Water depth 5 m

• Distance to shore 8.5 km

• Total Power 90 MW

• Monopile foundations

Page 30: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 30/99

Introduction to Offshore Engineering OE4606

Scroby Sands

• Installed 2005

• 30 Vestas 2.0 MW turbines• Rotor diameter 80 m

• Water depth 10 m

• Distance to shore 3 km

• Total Power 60 MW

• Monopile foundations

Page 31: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 31/99

Introduction to Offshore Engineering OE4606

• Installed 2005

• 30 Vestas 3.0 MW turbines• Rotor diameter 90 m

• Water depth 5 m

• Distance to shore 8.5 km

• Total Power 90 MW

• Monopile foundations

Kentish Flats

Page 32: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 32/99

Introduction to Offshore Engineering OE4606

• Installed 2005

• 36 Vestas 3.0 MW turbines• Rotor diameter 90 m

• Water depth 23 m

• Distance to shore 10 km

• Total Power 108 MW

• First Dutch offshore wind farm• Monopile foundations

Egmond aan Zee

Page 33: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 33/99

Introduction to Offshore Engineering OE4606

Beatrice

• Installed 2007

• 2 REpower 5.0 MW turbines• Rotor diameter 126 m

• Water depth 45 m

• Distance to shore 25 km

• Total Power 10 MW

• Jacket structure 

• Most expensive so far

Page 34: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 34/99

Introduction to Offshore Engineering OE4606

Princess Amalia (Q7)

• Installed 2008

• 60 Vestas 2.0 MW turbines• Rotor diameter 80 m

• Water depth 25 m

• Distance to shore 23 km

• Total Power 120 MW

• Deepest monopile foundations

when constructed

Page 35: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 35/99

Introduction to Offshore Engineering OE4606

 Thornton Bank

• Installed 2008

• 6 REpower 5.0 MW turbines• Rotor diameter 126 m

• Water depth 30 m

• Distance to shore 30 km

• Total Power 30 MW

• Deepest gravity-based

foundations

• OWF to be built in 3 phases

Page 36: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 36/99

Introduction to Offshore Engineering OE4606

Alpha Ventus

• Installed 2009/2010

• 6 Repower 5M turbines• 6 Areva Multibrid M5000 turbines

• Rotor diameter 126 m

• Water depth 20 m

• Distance to shore 45 km

• Total Power 60 MW

• Demonstration project

• Tripod & jacket foundations

• Extensively used for research

(RAVE)

Page 37: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 37/99

Introduction to Offshore Engineering OE4606

Hywind

• Installed 2009

• Floating

• 2.3MW Siemens turbine

• Test project

• Water depth: 100m

• Distance to shore: 10km

Page 38: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 38/99

Introduction to Offshore Engineering OE4606

London Array

• Fully operational April 2013

• 175 3.6 MW Siemens turbines

•  Area: 100 km2

• Maximum water depth: 23 m

• Distance to shore: 20 km

• World’s largest offshore wind

farm

• First with about the same size as

a large coal or nuclear plant

Page 39: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 39/99

Page 40: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 40/99

Introduction to Offshore Engineering OE4606

Statistics and Trends

Page 41: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 41/99

Introduction to Offshore Engineering OE4606

Key Statistics by the end of 2013

• 2080 Offshore Wind Turbines installed and grid connected

• Totalling 6562 MW

• 69 Wind Farms

• 11 European countries

• Average offshore wind turbine size is 4 MW

• 2 Full-scale grid connected floating turbines

Page 42: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 42/99

Introduction to Offshore Engineering OE4606

 Trends in the Industry

• Installed in deeper water

Page 43: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 43/99

Introduction to Offshore Engineering OE4606

 Trends in the Industry

• Installed in deeper water

• Larger turbines

Page 44: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 44/99

Introduction to Offshore Engineering OE4606

 Trends in the Industry

• Installed in deeper water

• Larger turbines

• Larger wind farms

Page 45: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 45/99

Introduction to Offshore Engineering OE4606

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 20200

5

10

15

20

25

30

35

40

year

   i  n  s   t  a   l   l  e   d  c  a  p  a  c

   i   t  y   [   G   W   ]

 Total installed capacity

Will the target of 40 GW in 2020 be met?

Page 46: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 46/99

Introduction to Offshore Engineering OE4606

Offshore Wind CapEx

Page 47: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 47/99

Introduction to Offshore Engineering OE4606

Offshore Wind CapEx

Page 48: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 48/99

Introduction to Offshore Engineering OE4606

Offshore Wind Farm

Components

Page 49: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 49/99

Introduction to Offshore Engineering OE4606

Offshore Wind Farm Components

Wind Turbine

Page 50: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 50/99

Introduction to Offshore Engineering OE4606

Offshore Wind Farm Components

Support structure

• Monopile

• Gravity-based

• Jacket

Tripod

• Floating?

Page 51: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 51/99

Introduction to Offshore Engineering OE4606

Offshore Wind Farm Components

MET mast

• Placed 2-3 years before OWF

Map environmental conditions• Wind

• Waves

• Current

 use for detailed design

Page 52: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 52/99

Introduction to Offshore Engineering OE4606

Offshore Wind Farm Components

Electrical infrastructure

• Infield transmission cables

• Substation

• Shore connection cables

Onshore substation/tie-in

Page 53: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 53/99

Page 54: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 54/99

Introduction to Offshore Engineering OE4606

OE5662 Offshore Wind Farm Design

(Q3)

• Offshore Wind within Offshore Engineering• Design Considerations• Economics• Environmental Impact• Development Aspects

• Environmental Conditions• Wake effects / layout design• Electrical Infrastructure• Aero- & Hydrodynamic Loads• Support Structure Design• Installation

• Operation & Maintenance

?

air

sea

soil

wind

waves &

current

air

sea

soil

wind

waves &

current

air

sea

soil

wind

waves &

current

Page 55: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 55/99

Introduction to Offshore Engineering OE4606

OE5665 Offshore Wind Support

Structures (Q4)

Focus on design of bottom-

founded steel structures with

piled foundations 

• analysis of environmental data

• preliminary design of monopile andmulti-member structure

• concept selection

• detailed design of monopile/multi-

member structure

Page 56: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 56/99

Introduction to Offshore Engineering OE4606

Other courses

• Introduction to Wind Energy AE3W02TU (Q1)

• Wind Turbine Design AE4W09 (Q3)

• Site Conditions for Wind Turbine Design AE4W13 (Q3)

• Design and Manufacturing of Wind Turbine Blades

 AE4ASM509 (Q3)• Wind Turbine Aeroelasticity AE4W21 (Q4)

Interfaculty organization for research on wind energy(5 faculties, 13 groups)

Page 57: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 57/99

Introduction to Offshore Engineering OE4606

Support Structures and

Installation

Page 58: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 58/99

Introduction to Offshore Engineering OE4606

Support structure types

• Monopiles

• Gravity-based

• Jackets

• Tripods

• Tripiles

• Floating

Source:h ttp://bildarchiv.alpha-ventus.de/ Source: http://www.siemens.com/Source:http://bildarchiv.alpha-ventus.de/

Page 59: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 59/99

Introduction to Offshore Engineering OE4606

Share of substructure types

Source: The European offshore wind industry –  key trends and statistics 2013 , EWEA, January 2014. 

Page 60: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 60/99

Introduction to Offshore Engineering OE4606

Definitions

• Hub height:Elevation of hub above sea level

• Interface level:Elevation of bottom tower flange abovesea level

• Support structure

Entire structure holding RNA in place• Tower

Tubular structure spanning distancebetween interface and RNA

• SubstructurePart of the structure spanning distance

between interface level and seabed• Foundation

Part of structure in direct contact withsoil

Support

Structure

Foundation

Sub-

structure

Tower

Support

structure

Hub height

Interface level

Page 61: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 61/99

Introduction to Offshore Engineering OE4606

Design objectives –  support

structure

• Survival

• extreme loads

• cyclic loads

• Operation• deformations

• accelerations

• Optimization for cost reduction

• Secondary aspects

• export of energy

• access and repair

Page 62: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 62/99

Introduction to Offshore Engineering OE4606

Sources of excitation: wind

• 1P = rotational frequency of rotor

• 3P = blade passing frequency

Page 63: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 63/99

Introduction to Offshore Engineering OE4606

Sources of excitation:

wind

Siemens 3.6 MW

Minimum rotor speed: 5 rpm

Nominal rotor speed: 13 rpm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0.08 0.22 0.25 0.65

1P 3P

Frequency [Hz]

1P 3P

soft-soft soft-stiff stiff-stiff

Page 64: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 64/99

Introduction to Offshore Engineering OE4606

Sources of excitation: waves

• Generic wave spectra• Pierson-Moskowitz

 fully developed sea state

• JONSWAP (JOint North Sea WAve Project)

 fetch limited situations

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.2 0.4 0.6 0.8 1 1.2

PM

JONSWAP

Frequency [Hz]

Page 65: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 65/99

Introduction to Offshore Engineering OE4606

Other harmonic sources?

• Mass imbalance rotor

• Tower shadow

• Yaw misalignment

• Aerodynamic imbalances due to

wind shear• blade pitch errors

Page 66: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 66/99

Introduction to Offshore Engineering OE4606

 Transformation to loads

• Waves

• Currents

• Wind  BEM

 Morison

= +

 

Page 67: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 67/99

Introduction to Offshore Engineering OE4606

Dynamic interactions

• Aerodynamic damping induced by operating rotor

• Hydrodynamic forces and structural response

• Soil and structure

• Interactions between dynamics of different OWEC

components

il

Page 68: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 68/99

Introduction to Offshore Engineering OE4606

Monopile support structure:

components

• Foundation pile

• Transition piece

• Tower

Boatlanding J-tube

M il

Page 69: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 69/99

Introduction to Offshore Engineering OE4606

Monopile support structure:

Installation

• Seabed preparation / scour

protection installation

• Drilling or driving of pile

• Transition piece options...

• Tower sections bolted Source: http://www.dongenergy.com/anholt

M il

Page 70: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 70/99

Introduction to Offshore Engineering OE4606

Monopile support structure:

Foundation pile

• Dpile ~ 4.0 - 6.5 m

• t ~ 45 – 110 mm

• D/t ~ 80 - 90

M il t t t

Page 71: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 71/99

Introduction to Offshore Engineering OE4606

Monopile support structure:

 Transition piece

• Grouted joints – settlements...

• Conical grouted joints with

shear keys

• New concepts:

hammering on flange• slip joint

inclination correction?

secondary steel?

Page 72: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 72/99

G it b d F b i ti

Page 73: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 73/99

Introduction to Offshore Engineering OE4606

Gravity-based: Fabrication

• Constructed (hollow) on land- crane lifting capacity

G it b d T t ti d

Page 74: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 74/99

Introduction to Offshore Engineering OE4606

Gravity-based: Transportation and

installation

G it b d B ll t d

Page 75: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 75/99

Introduction to Offshore Engineering OE4606

Gravity-based: Ballast and scour

protection

M lti b t t

Page 76: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 76/99

Introduction to Offshore Engineering OE4606

Multi-member structures

Jacket Tripod Tripile

Wh lti b t ?

Page 77: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 77/99

Introduction to Offshore Engineering OE4606

Why multi-member systems?

• Deeper waters, larger turbines

  and  increase

 natural frequency decreases

• For same environmental loading, we require: increase in EI, without significantly increasing  (mass

of support structure per unit length)

 place material as far away from the neutral line as

possible

Large diameter piles

OR

Multi-member structuresf =

3,04

4( + 0,228) 

mtop

 L   EI  

Neutral line

E l il

Page 78: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 78/99

Introduction to Offshore Engineering OE4606

Example: monopiles

 Becomes more impractical and less economic 

 Solutions required with higher stiffness for equal mass

 Multi-member structures

 V90 in 20 m water depth

Diameter ~ 4.0 m

RE5M in 35 m water depth

Diameter ~ 7.0 m

1 Jackets

Page 79: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 79/99

Introduction to Offshore Engineering OE4606

1. Jackets

Jackets: definitions

Page 80: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 80/99

Introduction to Offshore Engineering OE4606

 Jackets: definitions

Leg angle (Batter)

Pile sleeve

Foundation pile Horizontal brace

Diagonal brace

Leg

Transition sub-structure to tower

Panel / bay height

Base width

Disadvantages

Page 81: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 81/99

Introduction to Offshore Engineering OE4606

Disadvantages

• fabrication and welding of many geometrically complex joints

 expensive

• weld details susceptible to higher stress concentrations/fatigue

 extra material requirements

• step down in width necessitates provision of substantialtransition section  heavy!

• piles needed to attach jacket to seabed

2 Tripods

Page 82: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 82/99

Introduction to Offshore Engineering OE4606

2. Tripods

Tripod: definitions

Page 83: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 83/99

Introduction to Offshore Engineering OE4606

 Tripod: definitions

 A  A’’ 

Leg angle

Foundation pile

Leg

Mud brace

Inner brace

Main Column

Pile sleeve

Fabrication & Installation

Page 84: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 84/99

Introduction to Offshore Engineering OE4606

Fabrication & Installation

Example: Alpha Ventus

Source: DOTI

Jackets

Tripods

Fabrication of tripod elements (NL)

Page 85: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 85/99

Introduction to Offshore Engineering OE4606

Fabrication of tripod elements (NL)

Source: DOTI

Fabrication of tripods in Norway

Page 86: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 86/99

Introduction to Offshore Engineering OE4606

Fabrication of tripods in Norway

Source: DOTI

Load oat

Page 87: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 87/99

Introduction to Offshore Engineering OE4606

Load oat

Source: DOTI

Transport of tripod foundations

Page 88: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 88/99

Introduction to Offshore Engineering OE4606

 Transport of tripod foundations

Source: DOTI

Transport of tripod foundations

Page 89: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 89/99

Introduction to Offshore Engineering OE4606

 Transport of tripod foundations

Source: DOTI

Lifting and landing

Page 90: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 90/99

Introduction to Offshore Engineering OE4606

Lifting and landing

Source: DOTI

Pile driving

Page 91: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 91/99

Introduction to Offshore Engineering OE4606

Pile driving

Source: DOTI

Turbine installation

Page 92: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 92/99

Introduction to Offshore Engineering OE4606

 Turbine installation

Source: DOTI

Jacket load out

Page 93: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 93/99

Introduction to Offshore Engineering OE4606

 Jacket load out

Source: DOTI

Pile driving

Page 94: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 94/99

Introduction to Offshore Engineering OE4606

Pile driving

Source: DOTI Source: DOTI

Transportation

Page 95: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 95/99

Introduction to Offshore Engineering OE4606

 Transportation

Source: DOTI

Installation

Page 96: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 96/99

Introduction to Offshore Engineering OE4606

Installation

Source: DOTI

3. Tripile

Page 97: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 97/99

Introduction to Offshore Engineering OE4606

3. Tripile

• Higher lever arms...

• Developed by BARD

(1st installation 2008)

• 3 grouted transition pieces

• Weight comparable to that of

 Alpha Ventus jacket (similar

water depths)

Source: http://creativecommons.org/licenses/by-sa/3.0

Concept selection?

Page 98: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 98/99

Introduction to Offshore Engineering OE4606

Concept selection?

• Consider:

• structural design (strength and fatigue)

• fabrication (onshore)

• transportation to offshore site

• installation in-situ

• Keep operation & maintenance firmly in mind

Support structure optimization?

Page 99: OE4604 2014 Offshore Wind Energy

8/10/2019 OE4604 2014 Offshore Wind Energy

http://slidepdf.com/reader/full/oe4604-2014-offshore-wind-energy 99/99

Support structure optimization?

Computer-aided (vs manual) optimization widely used in

automotive and aerospace industry, but not for the design of

offshore wind turbine structures

 Why?

• Large number of parameters

• Complexity of working with many engineering disciplines,

often using different assumptions

• Uncertainty about soil conditions

• Simplified models required (large number of load cases)

• etc.