ocean thermal vol 2

Upload: mohammad-mujtaba

Post on 07-Apr-2018

237 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/4/2019 Ocean Thermal Vol 2

    1/67

    3 4 4 5 h 0382489 h

    Ocean Thermal Energy ConversioGas Desorption StudiesVol. 2. Deaera t i on in a Packed Co lum na n d a Barom et r i c In take Sys tem

    A. Go lshan iF. C. Ch en

  • 8/4/2019 Ocean Thermal Vol 2

    2/67

    ORNL/R.I-7438/VZD i s t . Category UC - 6 4

    Cont rac t No. W-7405-eng-26

    OCEAN THERNAL ENERGY CONVERSION GAS DESORPTION STUDIES

    Vol. 2. Deaera t ion in a Packed Columnand a Barometric In ta ke System

    A. GolshaniEngineer ing Technology Divis ionF . C. ChenEnergy Division

    Date Publ is hed: September 1981

    NOTICE This doc ume n? c on t a m in f orma tt on o f a p re l imt nary nat ure .It is subject to revision or correction and therefore does not represent af ina l report .

    P r ep a re d f o r t h eDepartment of EnergyOcean Energy Systems Division

    Prepared by theOAK R I D G E NATIONAL LABORATORYOak Ridge, Te nne ssee 37830

    opera ted byU N I O N CA RBID E CORPORATIONf o r t he

    DEPARTMENT OF ENERGY

    3 4 4 5 b 0 3 8 2 4 8 9

  • 8/4/2019 Ocean Thermal Vol 2

    3/67

  • 8/4/2019 Ocean Thermal Vol 2

    4/67

    iii

    CONTENTS

    PageACKNOWLEDGMENTS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*~~~ VNOMENCLATURE ...................................................... V i iABSTRACT .......................................................... 11. INTRODUCTION .................................................. 12. BACKGROUND .................................................... 3

    3.1 Modificat ion of Dissolved Oxygen Measurement ............. 73.3 General Flow Des cri pti on ................................. 103.4 Test S e c t i on Packed Column ............................... 113.5 Flow Con tro l Water Pumps ................................. 133.6 Oxygen-Measuring S t a t i o n ................................. 133.7 Vacuum System ............................................ 133.8 Barometric-Leg Water Holding Tank ........................ 143.9 Baromet ric In ta ke System ................................. 143.10 Steady-State Operation .................................. 15

    4. RESULTS AND DISCUSSION ........................................ 164.1 Results of Vacuum Deae ra tio n i n a Packed Column .......... 16

    3. TEST LOOP DESIGN .............................................. 73.2 De sc ri pt io n of Equipment ................................. 7

    4.2 Correlat ion of Data ...................................... 294.3 Maximum Flow of Water Through Packed Column .............. 324.4 R e su l t s of Deaerat ion i n th e Barometric Leg of t h eIntake System ............................................ 324.5 Appli cat io n t o OTEC Open-Cycle P l a n t and EconomicEvaluat ion ................................................ 47

    5. CONCLUSIONS ................................................... 50REFERENCES ........................................................ 51APPENDIX. ESTIMATED VALUE OF HTU FOR 8.89-cm (3.5-in.)PLASTIC PALL RING ...................................... 53

  • 8/4/2019 Ocean Thermal Vol 2

    5/67

  • 8/4/2019 Ocean Thermal Vol 2

    6/67

    V

    ACKN OWL EDG?lENT S

    T hi s i n v e s t i g a t i o n was performed a t the Oak Ridge National Labora-t o r y (ORNL), ope rat ed by Union Ca rbide Corp orat ion f o r t he Department ofEnergy (DOE).p rogram being ca r r ie d ou t by ORNL f o r t h e DOE Ocean Energy SystemsDiv is ion .

    The s tu d y was a p a r t o f th e general Ocean Energy Conversion

    The auth ors wish t o express t h e i r a p p r e c ia t i o n f o r t h e a s s i s t a n c e ofmany ORNL s t a f f members, p a r t i c u l a r l y H. W. Hoffman, J. W. Michel , andR. W. Murphy fo r t h e i r hel pfu l su ggest ions throughout th e program andR. L. L in ko us (p r o j ec t t e ch n i c i an ) f o r o p e ra t i n g the t e s t equipment , col-l e c t i n g d a t a , and w r i t i n g S e c t . 3 (Tes t Loop Des ign) of t h i s rep or t .

  • 8/4/2019 Ocean Thermal Vol 2

    7/67

  • 8/4/2019 Ocean Thermal Vol 2

    8/67

    v i i

    NCFIENCLATURE

    Hh lhe ndHTU

    LLmax11NPDNT UPP a i rPDAQLR eSsc

    V

    whswX I

    e f f e c t i v e area of l i q u i d g a s i n t e r f a c e per unit volume, m 2 / m 3diameter of packed column, c mc o e f f i c i e n t o f d i f f u s i o n f o r s o l u t e g a s i n l i q u i d , m2/ht o t a l h e ig ht of d e a e r a t o r , cm

    (kg mole/m3)kPaenry's l a w c o n s t a n t ,

    he ig ht of packing [(l?TU)*(HTU)], cmh e ig h t o f p acking eq u iv a l en t t o end e f f ec t s , cmh e i g h t of t r a n s f e r u n i t ( u si ng l i q u i d ) , c m

    kg mole(h'm3 ) (kg mole/m3 )g as f i l m c o e f f i c i e n t ,

    o v e r a l l c o e f f i c i e n t ba se d on c o n c e n t r a t i o nkg mole

    (h*m3) (kg mole/m3)i q u i d f i l m c o e f f i c i e n t ,l i q u i d f l o w r a t e , kg/(h*m2)maximum li q u i d flo w r a t e f o r a give n packing, kg/(h*m )molecular weightnormal ized percen tage of dea era t io n , (X i - Xo) / (Xi - Xe)number of t ra ns fe r un i t sp re s s u re o f g as i n t h e g as p h as e, kPaab so lu te vacuum a i r pressure, kPap e rcen t ag e o f d eae r a t i o n , (X i - Xo) /Xil i q u i d f l o w r a t e , m3/hReynolds numbere m p i r i c a l c o n s t a n tSchmidt numberw a t e r v e l o c i t y , cm/sw a r m seawater f low, kg/h

    2

    kg gas 106,c o n c e n t r a t i o n of s o l u t e i n l i q u i d e n t e r i n g t ow er ,P Pm kg water

  • 8/4/2019 Ocean Thermal Vol 2

    9/67

    v i i i

    XO

    xeXY2

    crE

    TIuP

    co n ce n t r a t i o n o f s o lu t e i n l i q u id l eav in g t o wer , kg gas 1 0 6 ,P Pm kg waterc o n c e n t r a t i o n of s o l u t e i n l i q u i d i n e q u i l ib r i u m w i t h g a s ph as eco s t of pack ing suppor t p l a t e , $/m2c o s t of l i q u i d d i s t r i b u t o r s , $/m2c o s t of packing, $/m3e m p i r i c a l co n s t an ts t a g e e f f i c i e n c yo v e r a l l d e a e r a to r e f f i c i e n c yv i s c o s i t y , Pa'sdensi y , kg/m

  • 8/4/2019 Ocean Thermal Vol 2

    10/67

    OCEAN THERMAL ENERGY CONVERSION GAS DESORPTION STUDIES

    Vol. 2. Deaera t ion i n a Packed Columnand a Barometric Intake System

    A. Golshani F. C. Chen

    ABSTMCTSeawate r deae ra t ion i s a p r oc e ss a f f e c t i n g a l mo st a l l

    proposed Ocean Thermal Energy Conversion (OTEC) open-cyclepower systems. If th e noncondensable dis sol ved a i r i s n o tremoved from a power system, i t w i l l accumulate i n th e con-d e n s e r , r e d u ce t h e e f f e c t i v e n e s s o f c on d e n s at i o n , a nd r e s u l ti n d e t e r i o r a t i o n of s ys te m p er fo rm an ce . A g a s d e s o r p t i o ns tud y was i n i t i a t e d a t Oak Ridge Nat ion al Labo ratory (ORNL)t o m i t i g a t e t h es e e f f e c t s ; t h i s s tu dy i s d e s i g n e d t o i n v e s t i -ga te th e vacuum dea e ra t io n process f o r OTEC c o n d i t i o n s w he reconvent io na l s t eam-s t r ipp ing de ae r a t ion may no t be app l i ca b le .S tud ies were c a r r i e d o u t i n two areas : (1) vacuum deaerationi n a packed column and ( 2 ) d e a e r a t i o n i n a baromet r i c in t akesystem.t h i s r e p o rt (1) r e v i e w s p r e v i o u s r e l e v a n t s t u d i e s , ( 2 ) de-s c r i b e s t h e d e s i g n of a g a s d e s o r p t i o n t e s t loop and a baro-metric i n t a k e s ys t e m , ( 3 ) pres ents th e re s u l t s of vacuum de-ae ra t i o n i n a packed column and a baromet r i c in t ake sys tem,an d ( 4 ) di scu sse s the s av ings t ha t can be ach ieved when thepacked column i s combined wi th th e barometr ic in ta ke system.

    Vacuum dea e ra t io n l ab ora tor y exper iment s us ing t h r ee d i f -f e r e n t kinds of packings i n a packed column t e s t s e c t i o n a n d as e r i e s of ba romet r i c in t ake de ae r a t i on experiment s have beenperformed. A c o n c e p t u a l OTEC deae ra t ion subsys tem des ign ,based on t h e s e r e s u l t s , and i t s implications on an OTEC-openc y c l e power system a re presen ted .

    A s t h e s e co n d i n a s e r i e s d e s c r ib i n g t h e ORNL s t u d i e s ,

    1. INTRODUCTION

    Deaerat ion (noncondens ibles removal) i s a g a s d e s o r p t i o n p r o c e s s.Sin ce t h e major power comp onents of Ocean Thermal Energy Co nver sion (OTEC)open-cyc les ( in c lu d in g Claude- and va r iou s l i f t - c yc le concep t s ) w i l l beopera t ing under a suba tmospher i c p res sur e env ironment, dea e ra t io n and /ornoncondensibles removal from the power systems a r e e s s e n t i a l t o m a in ta inthe p roper power gene r a t io n e f f i c i en cy .

  • 8/4/2019 Ocean Thermal Vol 2

    11/67

    2

    A g a s d e s o r p t i o n s t u dy was i n i t i a t e d , and a t e s t loop was assembledt o in ve s t ig a t e var i ous concep ts o f vacuum deae ra t ion and noncondens iblesremoval . The previous ac t i v i t i e s of th e Oak Ridge Nat i onal Laborator y(ORNL) study included (1) t h e o r i e s of g a s d e s o r p t i o n , ( 2 ) des ign of ex-per iments , ( 3 ) p r e v i o u s r e l e v a n t s t u d i e s , ( 4 ) d es c r i p t i o n of t h e g as de-s o r p t i o n t e s t plan, and (5 ) p re l im in a ry t e s t r e s u l t s and d i s c u s s i o n s .

    I n t h e p r e s e n t r e p o r t , r e s u l t s of a d d i t i o n a l p acked c olumn t e s t s ond i f f e r e n t k i n d s o f packings are p res en t ed , and t h e d eae r a t i o n t e s t of abaromet r ic i n ta ke sys tem i s di sc us se d. I n t h e Claud e-cyc le OTEC powersystem, w a r m seawater a t am bien t p re s s u re i s fed t o a vacuum f l a s h evapo-r a t o r th rough a baromet r ic in ta ke system. The hyd ro s ta t i c p re ssu re ofwater g rad u a l l y d ec reas es i n t h e ba ro m et r i c i n t a k e p ip e a s w a r m seawaterflo ws upward. Dis solv ed a i r i n seawater w i l l be evolved under t he se con-d i t i on s . Claude had inc luded the baromet r ic in tak e dea era t io n concept i nh i s d e s i gn of a n OTEC open-cycle power system.2 Deae rat i o n i n a baromet-r i c i n t a k e p i p e i s af fec te d by phys ica l and geomet r ica l parameters sucha s sys tem pressure d rop , mass f l o w , f r i c t i o n , p i p e d iam e te r , an d ex i s t i n gn u c l e i i n seawater. A l i t e r a t u r e s e a r c h i n d i c a t e d no p re v io u s i n v e s t i g a -t i o n on t h i s sub j ec t . Barometr ic -leg dea era t io n should have the advantageof p a r t i a l predeaera t ion and thus avoid par t of t he cos t penal ty of add ingan ex t r a componen t; a sys temat ic s tudy of the concep t was i n i t i a t e d .

    This re po rt documents th e dea er at io n experiments on packed columnsand the baromet r ic in ta ke system. Resu l t s der ived from the se t e s t s a r eu sed t o up d at e t h e co n cep tua l b a s e l i n e d es ig n of t h e d eae ra t i o n s u b s y s t emof t h e 10031We open- cycle power system .

  • 8/4/2019 Ocean Thermal Vol 2

    12/67

    3

    2. BACKGROUND

    Gas desorp t ion f rom water i s a ma ss- tr ans fer phenomenon. Like anyt r a n s f e r p ro ces s , t h e movement o f d i s s o lv e d g as i n t h e l i q u id p hase i sd r i v e n by t h e o v e r a l l a v a i l a b l e c o n c e n t r a t i o n g r a d i e n t a c r o s s t h e i n t e r -phase and i s r e t a r d e d by d i f f u s i o n a l a nd i n t e r f a c i a l r e s i s t a n c e s i n andbetween th e phases. The r a t e of g as d es o rp t i o n i n a device can be in-c reas ed f o r g iv en co n cen t r a t i o n -g rad i en t d i f f e r en ces e i t h e r by r ed u c in gt h e d i f f u s i o n a l and i n t e r f a c i a l r e s i s t a n c e s o r by i n c r e a s i n g t he a v a i l a b l es u r f a c e area.t i o n d e v ic e i n w hich a h ig h m as s -t r an sf e r co e f f i c i e n t i s maintained by re-ducing the l i qu id f i lm th ick ness . Steam or fo re ign-gas s t r i pp ing i s usu-a l l y us ed i n g a s d e s o r p t i o n o p e r a t i o n s t o m ai n t ai n a h i g h o v e r a l l par t ia l -pres sure d if fe re nc e when th e column i s o p e ra t ed a t h i g he r t o t a l p r e s s ur e .In c reas in g t h e f l o w tu rb u l en ce l e v e l by dynamic a g i t a t i o n o r by s t a t i ct u r b u l e n t p ro mo te rs c a n r e du c e d i f f u s i o n a l and i n t e r f a c i a l r e s i s t a n c e s .The u s e o f p ack in g i n c reas e s t h e i n t e r f ac i a l area.

    F a l l i n g f i l m c o n fi g u r a t i o n i s an example of a gas desorp-

    The m as s - t r an s f e r co e f f i c i e n t k L i s p ro p o r t i o n a l t o t h e m o lecu l a rd i f f u s i o n c o e f f i c i e n t D i n t h e s t a g n a n t f i l m t h e o r y and i s p ro p o r t i o n a l t oth e s q u a re ro o t o f D i n t h e p en e t r a t i o n and s ur f ace - ren ewa l t h eo r i e s . 3-5Among the oth er th eo ri es , kL was c o r r e l a t e d w i t h D t o t h e n t h p ower f o rva lues o f n ly ing be tween 0.50 and 0.75, depending on the f lu id dynamicco n d i t i o n s o f t h e ex p e r im ent s .

    The performance of a gas d eso rpt ion d evi ce may involv e two o r moremeans of m ain t a in in g a h ig h co n cen t r a t i o n g rad i en t : (1 ) steam s t r i p p i n gand /o r ( 2 ) r ed u c in g d i f f u s i o n a l r e s i s t an ce and ex t en din g i n t e rp h as e areaby using packed columns and s p r a y towers. However, the combina tion oft h es e e f f ec t s and t h e co m pl i ca t ed geom et ry make t h eo re t i c a l an a ly s i s d i f -f i c u l t . In Sherwood and Holloway's s tudy 6 of gas des orp t io n i n a packedcolumn and i n many l a t e r s imi la r s t u d i e s , s i m p l e t h e o r e t i c a l m od el s wereunable to pr ed ic t th e gas deso rpt i on phenomenon. Concepts of l iq ui d andg as f i l m c o e f f i c i e n t s ( kL a, kg a ), h e i g ht of t r a n s f e r u n i t s ( H T U ) , and num-b e r of t r an s f e r u n i t s (NT U) were in t roduced and used t o co r re la te gas de-s o rp t i o n d a t a em p i r i ca l l y wi th v a r i o u s n o nd imen sio na l p a ram e te r s .

  • 8/4/2019 Ocean Thermal Vol 2

    13/67

    4

    Am o d i f i ed v e r s io n of t h e em p i r i ca l co r r e l a t i o n f o rmu la p rop os ed b ySherwood and Holloway2 i s commonly used i n gas deso rp t io n s t ud ie s:

    and

    These equat ions are der ive d from th e dimen sio nle ss form, but a n unknownfa c t o r hav ing the d imension of l en g th i s omi t ted from the le f t -hand s i deand from the f i r s t g roup on th e r igh t -hand s i de o f the equat ions . Becauseof t h i s om i ss ion t h e eq u a t i o n s are not d imens ion less , and the p ropor t ion-a l i t y c on st an t a i s ex pec ted t o v a ry wi th the n a tu re o f the packing mate-r i a l and t he u n i t s employed.

    D e g a s i f i c a t i o n i s a m aj or m as s - tr a n sf e r p r o ce s s i n i n d u s t r i a l u n i to p e ra t i o n . P r ac t i c a l ap p l i ca t i o n s v a ry from d egas sin g of p e t ro ch em ica l sand i n d u s t r i a l f l u i d s t o d e a e r a t i o n of b o i l e r f e e d water and po tab le l i q -u ids . Many app l i ca t io n-or i en ted degass ing s t ud ie s can be found in thel i t e r a tu re . Becau se of t h e u niqu e OTEC co n d i t i o n s , o n ly t ho s e s t u d i e s i n -volving vacuum deaerat ion and seawater a p p l i c a t i o n s a r e of r e l ev an ce t oth i s i n v e s t i g a t i o n ; t h e s t u d i e s i n c lu d e Kno ed le r and Bo ni ll a (19 54 ) onpacked-column de a er a ti on , Chambers (1959) on seawater s p r ay d e a e r a t i o n ,E issenberg s rev iew9 (1972) of the performance of dea erators i n de sal ina -t i o n p i lo t p la n t s , and the vacuum degass ing an a l ys i s by Rasgu in e t a l . l o(1977).

    Knoedler and Boni l la inve s t ig a te d vacuum de ga s i f ic a t io n o f water i n apacked column. A c lo s ed t e s t loop w a s constructed, and oxygen w a s used asth e so lu t e gas . Knoed ler and Boni l la observed tha t end e f f ec t s were ap-pre cia ble and depended pri mar i ly on temperature. Below th e load ing poin to f l i q u id fl ow ( i . e . , l i q u id fl ow r a t e i s l e ss than 39 X lo3 kg/h*m2),the i r vacuum deaera t ion resu l t s fo r S tedman t r iangu lar pack ing were ex-p res s ed by t h e f o l l o win g co r re l a t i o n :

    HTU = 1.478 (L)Oo3 (3 )

  • 8/4/2019 Ocean Thermal Vol 2

    14/67

    5A spray- type vacuum deae ra t ion i n connect ion wi th seawater d es a l i n a -

    t i o n w a s in ve st ig a te d by Chambers.8th e s o l u t e gas wi th on ly t he d i ss o lved oxygen con cen t ra t ion measured byWinkler t i t r a t i o n . Assumptions had to be made a s t o t h e r a t e of n i t rogenre le as e i n de termin ing t he perfo rmance o f th e vacuum dea era to r becauseoxygen and nitrogen a r e b o t h s p a r s e l y s o l u b l e i n water. The dissolved a i rc o nt e nt i n t h e water a t reduced p ressures was computed from th e dis so lv edoxygen measurements by using Henry's l a w o f g as d i s s o lu t i o n and Da l to n ' sl a w of p a r t i a l p re s s u r e f o r oxy gen and n i t ro g en .t h i s method w a s s a t i s f ac to ry f o r p r ed i c t i n g t h e vacuum d eae r a to r p e r f o r -mance and reported that the HTU f o r the sp ray- type vacuum deaer a to r t es te di n hi s experiment var ie d f rom 21.3 t o 45.7 cm (0.7 t o 1.5 f t ) . H i s d a t ashowed t ha t th e value of HTU approached 45.7 c m ( 1. 5 f t ) a s t h e p r e s s u r ei n t h e vacuum chamber w a s r edu ced. No co r r e l a t i o n b etween HTU and vacuump r e s s u r e w a s presen ted .

    In h i s exper iments , a i r w a s used a s

    Chambers' found t h a t

    Eissenbergg (1972) has rev iewed t he op era t in g exp er ie nce of vacuumd e a e r a t o r s f o r seawater d i s t i l l a t i o n p l a nt s ; t h e se d a t a came from t e s t s a tp l a n t f a c i l i t i e s i n San Diego, C a l i f o r n i a ; F r e e p o r t , T e xa s; W r i g h t s v i l l eBeach, North Ca ro li na ; and Oak Ridge, Tennessee. Because of t h e s t r i n g e n td eg as s in g r equ i rem en t f o r d es a l i n a t i o n p l an t s , steam s t r i p p i n g was used.To achie ve high r a t e s o f d es o rp t i o n , a combina t ion o f f l a sh ing f eed , sp ra ynoz zle s , and packed or t ra y columns w a s employed t o i n c reas e t h e i n t e r -phase area and mass - t rans fe r c oe f f ic ie n t . E issenberg concluded th a t sa t -i s f a c t o r y d eae r a to r s f o r d es a l i n a t i o n p l an t s co u ld be design ed u s in g o neo r more mechanisms bu t th a t fu r t he r exper imenta l work w a s r e q u i r e d t o op-t i m i z e c o s t s and t o d e s i g n f u l l - s c a l e u n i t s .

    Rasquim, Lynn, and HansonlO (1977) st ud ie d va ri ou s methods of d is -solved a i r removal from water i n packed columns thro ugh mat hem atic al mod-e l i n g . They s t u d i e d ca s es of b o th co u n t e rcu r ren t d e s o rp t i o n (wi th andwithout steam s t r i pp in g) and cocur ren t gas desor p t ion . They found th a tthe gas removal r a t e i n a two-stage co cu rr en t column was comparable tothe coun tercurren t co lumn wi th steam s t r i p p i n g and t h a t l e s s energy wasconsumed.

    Very f e w s t ud ie s have been performed on dea era t ion in a baromet r ici n t a k e sys tem. l l a r ch a n dl l i n d i c a t e d t h a t , f rom t h e o r e t i c a l c a l c u l a t i o n s ,

  • 8/4/2019 Ocean Thermal Vol 2

    15/67

    6

    only 3% d e a e r a t i o n w a s p o s s i b l e i n t h e b a ro m et r ic i n t a k e c o n f i g u r a t i on .However, he di d not e la bo ra te on th e method of ca l cu l a t i o n o r an y k in d o fp h y s i c a l and g e o m e tr i c a l e f f e c t s o n h i s c a l c u l a t i o n .

  • 8/4/2019 Ocean Thermal Vol 2

    16/67

    7

    3. TEST LOOP D E S I G N

    The t e s t l o o p d es ig n and d e s c r i p t i o n of t h e equ ip ment f o r OTEC GasDesorp t ion Test F a c i l i t y (OTEC-GDTF) was e xp la in ed i n d e t a i l i n Vol. 1of t h e ORNL s tudy . p la ce s i n c e t he n , p a r t i c u l a r l y w i t h t h e a d d i t i o n of a b a ro m e t r i c i n t ak eco n f ig u r a t i o n s ys tem to the g a s d e s o r p t i o n t e s t column.

    However, some mo di fi ca ti on s and expansion have take n

    3.1 l lodif ication of Dissolved Oxvnen MeasurementA s noted i n the p rev ious repo r t , th e on- l ine d i sso lved-oxygen ana-

    lyzer (Beckman Nodel 7002) was used fo r th e dire ct-d isso lved oxygen con-ce n t r a t i o n m easu rement i n water. However, t h e perform ance of th e oxygenanal yzer sens or i n th e vacuum environment of these exper iments i s s u b j e c tt o ques t ion . Because o f t h i s p roblem, water samples were co l l ec t ed u n d e rvacuum con di t i ons i n 1-L f lasks , and they were the n brought up t o atmo-s p h e r i c co n d i t i o n s ( s ee o xy gen-meas ur in g s t a t i o n i n t h e f o ll o wing s ub sec-t i o n ) . S a m p l e s t h e n were t r an sf er re d i n t o 300-cc bi ol og ic al oxygen demand(BOD) b ot t l e s , and an oxygen anal yzer (Yellow Springs Instrume nt ?lode1 57)measured t he dissolved-oxygen con ten t of water i n p a r t s p e r m il l i o n. A s as u pp l em enta l check f o r v e r i f i c a t i o n and ca l i b r a t i o n of t h e s am pl in g tech-nique, water samples i n BOD b o t t l e s were p e r i o d i c a l l y s e n t t o a chemicallab or a t o r y f o r d i sso lved-oxygen con ten t a na ly s i s by the Wink ler w e t ti-t r a t i o n m ethod .

    3.2 De sc ri Dt io n of EauiDmentThe OTEC-GDTF used i n t h i s i n v e s t i g a t i o n i s shown i n a flow diag ram

    (Fig . 1 ) and i n an o ve r al l v iew (Fig . 2) . These major loop componentsa r e e xp la in ed i n d e t a i l i n S e ct s. 3.3 through 3.10: ( 1 ) t e s t s e c t i o n ,( 2) vacuum system, ( 3 ) lower barome tric-le g water s t o r a g e t a nk , ( 4 ) upperwater storage tank and pumps, (5) oxygen-sampling s ta t i o ns , and ( 6 ) baro-met r ic - leg mater ia l s .

  • 8/4/2019 Ocean Thermal Vol 2

    17/67

    8ORNL- DWG 81 -8427 ETD

    T O P H E A D S E C T I O N

    R O T A M E T E RB A R O M E T R I C

    PUMP NO. 2

    WAT ER SUPPL Y-T A N K W A T E RSAMPL INGS T A T I O N

    A T E R S T O R A G ET A N K N O . 1

    T A N K D R A I N

    Fig . 1 . Generalized flow diagram of OTEC packed column-barometici n t a k e f a c i l i t y .

  • 8/4/2019 Ocean Thermal Vol 2

    18/67

    UWH0

  • 8/4/2019 Ocean Thermal Vol 2

    19/67

    103.3 General Flow Descript ion

    F l o w d i r e c t i o n s f o r t h e b ar o me t ri c i n t a k e s y st em a re i n d i ca t ed b yarrows i n the s im pl i f ie d schemat ic d iagram (Fig . 3 ) . The experimentalsystem c on si s t s of fo ur components : a water hold ing tank equ ipped wi thmanual l e v e l c o n t r o l t o m a i nt a i n d i f f e r e n t w a te r h e i g h t s , a b a ro m e t r i cl e g , a s am p l in g s t a t i o n , an d a water- re tu rn ing sys tem. ' h o s ep a ra t edsystems are used fo r a er a t io n when the system i s i n c l os ed- loo p o p e r a t i o n

    DRAIN

    ORNL-DWG 81-7866 ET D

    O X Y G E NSAMPLINGSTA TI ON

    AROMETRIC LEG

    -SECOND FLOOR

    PROCESS WATE R

    Fig. 3. Baromet ric i n ta ke s im pl i f ie d f low d iagram.

  • 8/4/2019 Ocean Thermal Vol 2

    20/67

    11

    mode, and a b u i l d i n g water l i n e w i th a h and - reg u la t ed v a lv e d i r ec t l y p ro -v id es s o u rce water i n once-through opera t ion s . The loop i s des igned toop er at e under vacuum co nd i t io ns and up t o 310 kPa.

    In t h e c lo s ed l o o p , water s t or ag e ta nk No. 1 (Fig . 3 ) was f i l l e d t ot h e d e s i r e d h e i gh t w i th a i r - s a t u r a t e d b u i l d i ng water . Through the use ofa vacuum system, water was p u l l ed up i n t o t h e b a ro m et r i c l eg . Water sam-p l e s were t ak en as i t en t e r ed t h e b a rom e t r i c l e g and ag a in a t the end ofb a ro m et r ic i n t a k e l e g a s t h e water l e f t t o go i n t o t h e t e s t column. Fromt h e t e s t column, water was r e c i r c u l a t e d i n t o t h e h ol d in g t a n k f o r c lo se d-lo o p o p e r a t i o n o r i n to a b u i l d in g d r a i n f o r op en -loo p o p e ra t i o n . Dur in gth e c los ed- loo p o p e r a t i o n , a i r was c o n t in u o us l y i n j e c t e d i n t o t h e s ys te mby an ar ra y of a i r s t o n e s (Kordon Co rp or ati on No. 62501). In t h e open-lo o p o p e r a t i o n mode, a i r - s a tu r a t e d water w a s con t inuous ly f ed f rom theb u i l d i n g water supp ly a t a r a t e eq u a l t o t h a t b e ing d ra in ed . A manuallyo p e r a t e d v a l v e l o c a t e d a t t h e t o p of h o ld in g t an k No. 1 w a s used t o main-t a i n c o n s t a n t l i q u i d l e v e l i n t h e ta nk . E xc es s water e n t e r i n g t h e t a nkw a s d ra in ed t h rou g h v a l v es l o ca t ed o n t h e s i d e of t h e t an k (F ig . 4 ) .Water f low w a s measured by a tu rb ine f lowmeter (FLW TECHNOLOGY) a s i te n t e r e d t a n k No. 2, and i t s t empera tu re was measured by thermistors(Yellow Springs Instrument Company).

    3.4 T e s t S ec ti on Packed ColumnThe primary fun ct io n of t he t e s t sec t ion co lumn i t h e b a omet r ic - leg

    experiment i s t o p r o v i d e a m eas ur ing s t a t i o n f o r t em p era ture and a v i s u a ll i q u i d f lo w l e v e l . As t h e water l e a v e s t h e b a r om e tr i c l e g , i t e n t e r s t h etop-head se c t io n o f th e t e s t se ct io n and pas ses through t he main body oft h e column where t he t e m p e r a t u r e of t h e l i q u i d i s measured . The top-headse c t io n a l so p rov ides th e connect ion to th e vacuum source . The he igh t o fwater i n th e column a l so provides head pressure for pump A. The columni s made of c l e a r p l a s t i c , and O-ring g as k e t s a re used on a l l removableconnect ions .

  • 8/4/2019 Ocean Thermal Vol 2

    21/67

    12

    F ig . 4 . Water s t o r a g e t a n k .

  • 8/4/2019 Ocean Thermal Vol 2

    22/67

    133.5 Flow Co nt ro l Water Pumps

    The water from the column was c i r c u l a t e d b y a 3.73-kW (5-hp) cen-t r i f u g a l pump ( A l l i s Chamber 042-1-99-51) i n t o tan k No. 2 , which i s usedf o r s e c o n d a r y a e r a t i o n f o r t h e c l o s e d l o o p . Water from tank No. 2 w a spumped by pump B, a 1.12-kW (1.5-hp) c e n t r i f u g a l pump, th ro ug h a t u r b i n ef low meter (1-in. Flow Technolo gy Model No. FT-16) and rot ame ter (F is ch erS e r i a l No. XII-442512) back i n t o th e lower barometric-leg holding ta nkNo. 1 f o r c losed-loop opera t i on . Water was d i sc h ar g ed t o t h e b u i l d i n gd r a i n sy st em d i r e c t l y i n s t e a d o f t o h o ld i ng t a n k No. 1 i n t he case ofopen-loop operat ion.

    3.6 Oxvgen-Measuring S t a t i o n

    The oxygen-measuring s t a t i on co ns i s t s o f a l - L f l a s k co nn ec te d t o t h et o p of th e ba ro me tr ic le g by 0.95-cm-ID Tygon hose (Fig. 1) . The f l a s k i sa ls o connected and valved t o t he vacuum system, atmosphere, and a BOD bot-t l e d r a i n p o i n t. T he se c o nn e c ti o ns g i v e t h e s t a t i o n f l e x i b i l i t y . Thevacuum l i n e e q u a l i z e s t h e p r e s su r e o f t h e f l a s k t o t h a t of t h e b a r om e t ri cl e g whi le under vacuum. The atmospheric connec t ion enabl es the watersa rnple i n t h e f l a s k t o b e bro u gh t t o a tm o s p h e r i c p re s s u re wi th o u t ad d in ga ny oxyge n t o t h e s am pl e, a nd f i n a l l y t h e v a lv e d d r a i n e n a b le s t h e f l a s k ' scon ten t t o empty in to a BOD bo t t le . Th is sanp l ing p rocedure i s s i m i l ar t ot he one employed by Knoedler and Bonil la ' i n th e i r s t udy of vacuum deaera-t i o n . The b o t t l e s can b e an aly zed by e i t h e r t h e Win kl er w e t t r i t r a t i o nmethod o r a n oxygen a na ly ze r (Yellow Sprin gs Model 57 Oxygen Analyze r).All v a l v e s a r e 318-in. tubin g-co nnect ed vacuum bel low v al ve s (Hoke ModelNo. 4213464). A l l t u b in g i s Tygon 318-in. I D and 518-in. OD .

    3.7 Vacuum SvstemI n t he gas removal sys tem, a 10.2-cm-diam (4-in.) s t e e l l i n e f ol lo we d

    by a 15.24-cm-diam (6-in.) pipe con nec ts th e to p of t h e de so rp ti on columnt o th e vacuum equipment. An ex i s t i n g two -s t ag e steam-jet e j e c t o r i n t h eb u i l d i n g s e r v e s as t h e vacuum sourc e.i t y o f removing 13.6 kg /h (3 0 lb /h ) o f water vapor and 1 .36 kg/h ( 3 lb l h)

    The e j ec to r h as a name plate capac-

  • 8/4/2019 Ocean Thermal Vol 2

    23/67

    14

    of a i r a t 1.35 kPa ab s (0.4 in . Hg ab s) . The vacuum pre ssu re i s con-t r o l l e d b y a vacuum pre ssu re reg u l a t o r . I t i s n eces s a ry t o b leed a smallamount of a i r i n to t h e vacuum p ip ing s y st em to o b t a in s a t i s f a c t o r y co n t ro lof th e vacuum p re ss ur e under varying t e s t c o n d i t i o n s .

    3.8 Barometric-Leg Water Holding TankThe barometric-leg water s t o r a g e ta n k ( F ig . 4 ) was f ab r i ca t ed f ro m

    1.27-cm stainless s t e e l p l a t e r o l l e d i n t o a drum 1.04 m i n d i am ete r and1.83 m i n h e i g h t . T h is t a n k serves a s a s t o r a ge r e s e r v o ir f o r t h e watera t f u l l a i r s a t u r a t i o n j u s t b e f o r e i t e n t e r s t h e v e r t i c a l b a ro m et r ic l e g .The tank i s e q u i p p e d w i t h t h r e e d r a i n p o r t s a t 1 1 . 4 , 76.20, and 137.2 c mfrom the bottom. Two of t h e s e t h re e a r e v a lv ed l i n e s , and t h e t h i rd i ss im p ly an o v e r fl o w p ro t ec t i o n d ra in . T hese two d ra in l i n e s en ab l e t h et an k t o m a in ta in a c o n s t a n t l e v e l , w h il e t h e o u t s i d e b u i l d i n g w a te r e n t e r st h e t an k f rom a 3.81-cm process water l i n e l o ca t ed a t t h e t o p of t h e t an kand re gu la te d by a glob e valve. The tan k i s a l s o a place of water ae ra -t i o n a nd c o n t a i n s a n a r r a y of a i r s to n es (Ko rd on Co rp o ra t i o n) t h a t a r eco nn ec ted t o t h e b u i l d in g a i r supp ly a t SO0 kPa.

    3.9 Barometric In ta ke System

    A s t an d a rd s t a r t -u p p ro ced u re w a s implemented f o r each day of ex-p e r im en ta l t e s t s . A l l d r a i n s on s t o r a g e t a n k No. 1 were c lo s ed , an d t h eb u i l d i n g water f i l l l i n e was opened. After a c l o s e l y e s t i m a t e d waterl e v e l w a s ach ieve d, t he vacuum val ve w a s opened and se t on i t s d e s i r e dp r e ss u r e f o r t h a t d a y ' s r un . As t h e b a ro m e tr i c l e g began t o d i s c h a rg ewater i n t o t h e t e s t column, pump A w a s t u rn ed o n and t h e wa te r l e v e l i nthe co lu rm was s e t to zero. In open- loop ope ra t ion s , a l l water w a s t o bed ra in ed a f t e r o ne pas s t hro ug h t h e lo o p ; t h e b u i l d in g water f i l l l i n eag a in w a s t u rn ed on and r eg u l a t e d t o m a in t a in a c o ns t a nt l e v e l i n waters t o r a g e t a n k No. 1.

  • 8/4/2019 Ocean Thermal Vol 2

    24/67

    15

    3.10 Steady-State Operat ionA f t e r s t a r t - u p , a c o n s t a n t l e v e l w a s m ain ta in ed i n b o th water t an k

    No. 1 i n t h e packed column. Temperature and vacuum pr es su re s were moni-t o red t o d e t e rmin e when s t ead y - s ta t e co n d i t i o n s ex i s t ed .

    Steady s t a t e w a s assumed when there w a s no s i g n i f i c an t chang e i n t e m -p e r a t u r e ( & 0 . l o C ) and flow r a t e changes were l e s s than + 2 % th roughou t thesystem over a 10-nin span. Once st ea dy s t a t e was achieved) t he fol low ingda t a were r eco rd ed : ( 1 ) f low r a t e t h ro u gh t h e b a rom e t r i c l eg , ( 2 ) t e m -p e r a t u r e of t h e water i n t h e ba r om e tr i c l e g , ( 3 ) p a r t s per mil l i on of oxy-g en co n t e n t of t h e water i n s t o r a g e t a nk No. 1, ( 4 ) water samples taken a si t r each ed t h e t o p o f t h e b a ro m e t r ic l e g ( 7 . 8 t o 8.8 m from the water l e ve li n t ank No. 2 ) ) and ( 5 ) t he system vacuum pre ssu re . These expe rim enta ld a t a were f e d t o a c om pu te r t o c a l c u l a t e t h e d e a e r a t i o n e f f e c t i v e n e s s o fb a r o m e t r i c i n t a k e c o n f i g u r a t i o n .

    Af t e r a l l d a t a were recorded and water samples were t ak en f o r an a ly-s i s , t h e water f low r a t e t h ro u gh t h e b a ro m e tr i c l eg w a s changed ; ad jus t -ments were made unt i l a new steady s t a t e co nd i t io n was achieved. Experi-m en ta l d a t a were aga in recorde d , and the p rocedure was repea ted .

  • 8/4/2019 Ocean Thermal Vol 2

    25/67

    16

    4. RESULTS AND DISCUSSION

    4.1 Re su lt s of Vacuum De aer at ion i n a Packed ColumnVacuum de ae ra ti on of water w a s s t ud ie d i n a 28-cm-ID tower f i l l e d

    wit h two kind s of packin gs: ceramic R as ch ig r i n g a nd p l a s t i c p a l l r i n g s .Pack ing he igh ts were var ied f rom 0 t o 90 cm , l i q u i d r a t e s from 34,000 t o146,00 0 kg/h*m2, and th e column vacuum pr es su re from 3.4 t o 34 kPa ab s.L iqu id s ample s , t ak en a t th e to p o f th e pack ing and a t t h e o u t l e t o f t h etower, were analyzed by an oxygen ana lyzer t o de termine th e conc en t ra t ionof d i sso lved oxygen .

    The f i r s t s e r i e s of r u n s ( 11 0 i n a l l ) was com p le ted, and t h e r e s u l t swere p res en t ed i n Vol . 1 of t h i s r e p o r t . 'the packing was 3.81-cm ceramic Rasch ig r i ng s , and th e measured deae ra t i onu se d f o r c a l c u l a t i o n of c o e f f i c i e n t s in c lu d ed d e a e r a t i o n t h a t t a k e s p l a c eon the packing as w e l l as between th e se nsor of th e oxygen anal yzer andt h e t o p of t he packed column. Because of th e end e f f e c t , th a t i s , t h ea d d i t i o n a l d e a e r a t i o n t h a t o cc ur s i n t h e i n l e t d i s t r i b u t o r and t h e d ea er -a t e d water r e s e r v o i r o f t h e p acked c ol um n, d a t a o b ta i n e d i n t h e f i r s ts e r i e s s ho ul d ap p l y o n l y t o t h e p a r t i c u l a r c o n d i t i o n s of t h e t e s t se tup .

    I n t h i s f i r s t se r i e s of runs ,

    A new group of ru ns (121 i n a l l ) w a s the n made i n which th e l i qu iden t e r i n g t h e p ack in g w a s sampled a t t he top o f t he pack ing by us ing th ec o l l e c t i n g f l a s k and BO D b o t t l e a s desc ribe d previous ly. These runs w e r enade with 2.54-cm p l a s t i c p a l l r i n g s ( T e st S e r i e s 2 ) and 3.81-cm p l a s t i cp a l l r i n g s ( T e st S er i es 3) . Al though th e method of co rr e l a t io n p resen tedi s b as ed on t h e f i r s t s e r i e s r u n s , t h e q u a n t i t a t i v e b a s i s f o r t h e p r ed ic -t i o n of m a ss - tr a ns f er c o e f f i c i e n t s i s t h e new group of 121 runs . Datao b ta i ne d i n t h e l a t t e r group a re p res en t ed i n T ab l es 1 through 4. Data ont h e l i q u i d f i l m c o e f f i c i e n t of t h e d e s o r p t io n of a i r from water for 2 .54-and 3.81-cm p l as t i c pa l l r i ng s are shown i n Figs . 5 and 6 . Most of t h et e s t d a t a were o b ta in ed a t t em p era tu re s wi th in a few de gr ee s of 25"C, andth e v a lu e s r ep o r t ed h ave b een co r rec t e d t o 25C by t h e u se of e m p i r i c a lr e l a t i o n . 6

    The e f f e c t of vacuum pre ssu re i s ind ica ted by the da ta of F ig . 7 ,t aken f rom T e s t S e r i e s 3 wi th 3.81-cm p l as t i c pa l l r in gs .

  • 8/4/2019 Ocean Thermal Vol 2

    26/67

    17Ta b l e 1. T e s t Series 2 (1-in. p a l l rings)n

    ' TEST L TEHP PAIR X I X I XE NTU X D SC PACKING HEIGHT

    70 1 .176E+05 82.1 5.86 4.46 4.43 1.53 .0 1 0.67 .934E-04 .351E+03 0.070 2 .176E+05 82.1 5.86 4.68 3.46 1.57 .5 0 26.07 .934E-04 .350E+03 11.0703 .172E+05 82.1 5.81 4.35 2.72 1.56 .88 37.47 .933E-04 .351E+03 22.0704 .175E+05 82.0 5.81 4.63 2.36 1.56 1.34 49.03 .932E-04 .351E+03 33.0

    705 .210E+05 81.9 5.8 3 4.83 4.39 1.57 . I4 9.11 .932E-04 .352E+03 0. 0706 .210E+05 82.0 5.8 3 4.96 3.21 1.57 - 7 2 35.28 .932E-04 .352E+03 22.070 7 .210E+05 82.0 5.83 5.08 3.46 1.57 .6 2 31.89 .932E-04 .352E+03 11.0708 .210E+05 82.1 5.8 9 4.82 2.46 1.58 1.30 48.96 .934E-04 .351E+03 33.0

    70 9 .242E+05 81.7 5.88 5 .5 1 4.60 1.58 .2 6 16.52 .929E-04 .354E+03 0.0710 .242E+05 81.6 5.97 5.63 3.74 1.61 .63 33.57 .927E-04 .355E+03 11.0711 .242E+05 81.6 5.97 5.40 3.11 1.61 .93 42.41 .927E-04 ,355Ei.03 22.071 2 .242E+05 81.7 5.88 5.59 2.75 1.58 1.23 50.81 .929E-04 .354E+03 33.0

    71 3 .273E+05 81.7 5.86 5.59 4.78 1.58 .23 14.49 .929E-04 .354E+03 0.071 4 .273Et05 81.8 5.86 5.52 3.68 1.58 .63 33.33 .930E-04 .353E+03 11.0715 .273Et05 81.7 5.86 5.31 3.07 1.58 .92 42.18 .929E-04 .354E+03 22.0716 ,273Et05 81 .8 5.86 5.51 2.80 1.58 1.17 49.18 .929E-04 .354E+03 33.0

    72 1 .179E+05 83.6 3.97 4.03 3.80 1.05 .08 5.71 .953E-04 .338E+03 0.072 2 .179E+05 83.6 3.97 3.95 2.9? 1.05 .41 24.81 .953E-04 .338E+03 11.0723 .179E+05 83.6 3.91 4.01 2.25 1.03 .90 43.89 .952E-04 .338E+03 22.0724 .179E+05 83.6 3.91 4.00 1.90 1.03 1.23 52.50 .952E-04 .338E+03 33.0

    72 5 .210E+05 83.5 3.90 5.05 4.08 1.03 .28 19.21 .952E-04 .338E+03 0.072 6 .210Et05 83 .5 3.90 5.05 3.05 1.03 .69 39.60 .952E-04 .338E+03 1 I .O72 7 .210E+05 83.4 3.92 5.12 2.30 1.04 1.17 55.08 ,950E-04 .339E+03 22.0728 .210Et05 83 .4 3.90 4.99 1.95 1.03 1.46 60.92 .951E-04 .339E+ 03 33.0

    729 .242E+05 83.8 3.90 5.08 3.95 1.03 .33 22.24 .955E-04 .336E+03 0.073 0 .242E+05 83.8 3.90 5.03 3.00 1.03 .71 40.36 .955E-04 .336E+03 11.073 1 ,242Et05 83.8 3.90 5.05 2.40 1.03 1.08 52.48 .955E-04 .336E+03 22.0732 ,242Et05 83.8 3.92 4.95 2.00 1.03 1.40 59.60 .955E-04 .336E+03 33.0

    742 .179E+05 82.0 7.70 5.60 5.16 2.07 - 1 3 7.86 .932E-04 .351E+03 0.0743 .1?9E+05 82.0 7.70 5.30 3.67 2.07 .7 0 30.75 .932E-04 .351E+03 14.0744 .179E+05 81.9 7.71 5.56 2.90 2.07 1.44 47.84 .932E-04 .352E+03 33.0

    74 5 .210E +05 82.1 7.67 5.98 5.90 2.06 .O? 1.34 .933E-04 .351E+03 0.074 6 .210E+05 82.1 7.70 5.72 3.76 2.06 .77 34.27 .934E-04 .351E+03 14.074 7 .210E+05 81.9 7.71 5.65 2.99 2.07 1.36 47.08 .931E -04 .352E+03 33.0

    74 8 .242E+05 81.6 7.72 5.99 5.02 2.08 .29 16.19 .927E-04 .355E+03 0.0749 .242E+05 81.7 7.71 5.55 3.75 2.08 .73 32.43 .929E-04 .354E+03 14.0750 .242E+05 81.7 7.71 5.85 3.12 2.08 1.29 46.67 .929E-04 .354E+03 33.0

    75 1 .271E+05 81.6 7.83 5.68 4.97 2.11 .2 2 12.50 .92?E-04 .355E+03 0. 0752 .273E+05 81.4 7.86 5.64 3.88 2.12 .69 31.21 .926E-04 .356E+03 14.0753 .273E+05 81.4 7.86 5.95 3.20 2.12 1.27 46.22 .926E-04 .356E+03 33.0

  • 8/4/2019 Ocean Thermal Vol 2

    27/67

    18

    T a b le 1 ( c o n t in u e d )TEST L TENP P A I R X I Xd XE NTU X D SC PACKING HEIGHT

    757 .200E+05 82.4 2.03 4.27 3.87 0.54 .11 9.31 .937E-04 .348E+03 0.0758 .200E +05 82.2 1.92 4.20 2.37 0.52 -69 43 .57 .935E-04 .350E+03 14.0759 .200E+05 82.3 1.92 3.96 1.50 0.51 1.25 62.12 .936E-04 .349E+O3 33.0

    760 .231E+O5 82.2 1.88 4.66 3.80 0.50 .2 3 18.45 .935E-04 .350E+03 0.0761 .231E+ 05 82.2 1.95 4.53 2.40 0.52 .76 47.02 .935E-04 .350E+03 14.0.9 5 4 . 61 1.60 0.52 1.33 65.29 .935E-04 .350E+03 33.062 .231E+05 82.2

    763 .261E+05 82.1764 .263E+05 82.1765 .261E+05 82.2

    .9 0 4.85 3.68 0.51 .31 24. 12 .934E-04 .350C+03 0.0.88 4.56 2.40 0.50 .76 47.37 .934E-04 .350E +03 14.0

    .89 4.57 1.50 0 .51 1.41 67.18 .935E-04 .350E+03 33.0

    766 .210E+05 83.1 2.07 4.43 3.70 0.55 .21 16.48 .947E-04 .341E+03 0.0767 .210E+05 82.6 2.29 4.44 2.36 0.61 .78 46.85 ,940E-04 .346E+03 14.5768 .210E+05 82.6 2.29 4.45 1.42 0.61 1.56 68.09 .940E-04 .346E+03 33.0

    769 .242E+05 82.6 2.19 4.68 3.85 0.58 .2 3 17.74 .940E-04 .346E+03 0.0770 .242E+05 82.7 2.19 4.53 2.32 0.58 .82 48.79 .941E-04 .345E+03 14.5771 .242E+05 82.7 2.29 4.46 1.50 0.61 1.46 64.37 .941E-04 .345E+03 33.0

    772 ,273Et05 81.6 2.22 4.83 3.80 0.60 .2 8 21.33 ,928E-04 .355E+03 0.0773 .273Et05 81.6 2.08 4.72 2.39 0.56 .82 49.36 .927E-04 .355E+03 14.5774 .273E+05 81.6 2.05 4.73 1.52 0 . 5 5 1.46 67.86 .928E-04 .355E+03 33.0

    775 .368Et05 81.8 2.16 4.77 3.78 0.58 .27 20.75 .929E-04 .354E+03 0.0776 .365Et05 81.7 2.04 4.76 2.50 0 .55 .7 7 47.48 .929E-04 .354E+03 14.5777 .365E+05 81.6 2.02 4.67 1.64 0.54 1.33 64.88 ,927E-04 .355E+03 3 3 . 0

    U V a r i a b l e s are e x p r es s e d i n t h e f o l l o w i n g u n i t s :L = l b / h * f t 2Temp = O FPa ir = in . HgD = f t ' / hP a c k in g h e ig h t = i n .

  • 8/4/2019 Ocean Thermal Vol 2

    28/67

    . .

    Table 2. T e s t S e r i e s 2aHT U HTU25 HU KLA L /HU K / D SCEST SERIES

    7 0 1 - 7 0 470 5 - 7 0 87 0 9 - 7 1 27 1 3 - 7 1 672 1 - 7 2 47 2 9 - 7 3 27 4 2 - 7 4 47 4 5 - 7 4 77 4 8 - 75 075 1 - 7 5 375 7 - 7 5 976 0 - 76 27 6 3 - 76576 6 - 76 87 6 9 - 7 7 17 7 2 - 7 7 4775 - 77 7

    72 5 - 728

    L

    . 1 7 5 E + 0 5

    . 2 1 0 E + 0 5, 2 4 2 E t 0 5.2 7 3 E+ 0 5. 1 7 9 E + 0 5. 2 1OE+05. 2 4 2 E + 0 5, 1 7 9 E t 0 5.2 1 0 E+ 0 5.2 4 2 E+ 0 5, 2 7 2 E t 0 5. 2 0 0 E + 0 5. 2 31 E t 0 5. 2 6 1 E + 0 5.2 1 0 E+ 0 5.2 7 3 E+ 0 5. 3 6 6 E + 0 5, 2 4 2 E t 0 5

    PAIR

    5 .8 45.655 . 9 25.863 .9 43 .9 03.917 .7 07 . 6 97.727.851 .9 61 . 9 31 .8 92 - 2 22.222 .1 12.07

    TEnP

    8 2 .18 2 .08 1 . 78 1 .883.683.583.882.082.081.781.58 2 . 38 2 . 282.282.88 2 .78 1 . 68 1 .7

    2 .0 9 32.5602 . 8 6 52 . 9 4 22 . 3 2 92 . 2 6 82 .5 5 62 . 1 1 52 .0 8 32.7562 . 6 3 92 .4 3 62 , 5 1 02.5072 .0 3 62.2282 . 3 2 92 . 6 1 0

    2 .2 3 2 .0 42 .7 2 2 .0 43.03 2.053 . 1 2 2 . 0 42 . 5 2 2.002.46 2.002 . 7 8 2.002.25 2 .0 42.21 2 .0 42 .9 2 2.052.79 2.052.60 2 . 0 32 .6 7 2 .0 32 .6 7 2 .0 32.19 2 .022 .3 9 2.022.46 2.05-.. 7 6 2 .0 5

    aV ar i ab l e s are e x p re s se d i n t h e f o l l ow i n g u n i t s :L = l b / h * f t 2Pa i r = i n . HgTemp = O FHTU = f tHTU25 = f tc1 = l bm / f t *hkLa = lb r no l e / ( h* f t 3 ) ( l b r no l e / f t3 )L/U = I / f tk/DSc = l / f t 2End Eff = i n .

    . 1 3 4 E + 0 3

    . 1 3 2 E + 0 3

    . 1 3 6 E + 0 3

    . 4 9 E + 0 3.1 2 3 E+ 0 3

    . 1 4 9 E + 0 3

    . 1 5 2 E + 0 3

    . 1 3 6 E + 0 3

    . 1 6 2 E + 0 3

    .14 1E t 0 3

    . 1 6 6 E t 0 3

    . 1 3 2 E + 0 3

    . 1 4 8 E + 0 3

    . 1 6 7 E + 0 3

    . 1 6 6 E + 0 3

    . 1 7 4 E + 0 3

    . 1 8 9 E + 0 3

    . 2 2 5 E + 0 3

    .8 5 7 E+ 0 4

    . 1 0 3 E + 0 5. 1 8 E t 0 5, 1 3 4 E t 0 5.8 9 2 E+ 0 4. 1 0 5 E + 0 5. 8 7 6 E + 0 4.l 3 E+ 0 5. 18 E + 0 5. 1 3 3 E + 0 5. 9 8 2 E + 0 4. 14 E+ 0 5. 1 2 8 E + 0 5. 1 0 4 E + 0 5. 1 2 0 E + 0 5. 1 3 3 E + 0 5. 1 7 8 E + 0 5

    . 1 2 1 E t 0 5

    ,6 4 3 E t .0 5. 6 3 4 E + 0 5.6 5 1E t 0 5. 7 1 6 E + 0 5. 5 91 E t 0 5. 7 1 4 E + 0 5.65 1E t 0 5. 7 2 9 E + 0 5.7 7 ? E+ 0 5.6 7 7 E+ 05. 7 9 8 E* 05. 6 3 2 E + 0 5. ? 1 1 E + 0 5.802E+05. 9 4 E + 0 5. 8 3 7 E + 0 5. 9 0 5 E + 0 5.1 0 8 E+ Ob

    END EFF

    0.6404.9329 . 7 7 39 .4 3 37 . 9 9 8

    1 0 . 4 3 13 . 5 3 22 . 2 2 79 .6 8 77 .3 6 34 .3 2 27 .6 5 99 .2 3 44 .9 3 56.5598.025

    1.m

    8.a 6 3

  • 8/4/2019 Ocean Thermal Vol 2

    29/67

    20

    Table 3 . OTEC gas desorption test loop Test Series 3 (1.5-in. pall rings)a

    TEST

    90 090 190290 3

    90 490 590 690 7

    90 890 991 091 191 291 391 491 5

    91 691 791 8

    91 992 092 192 292392492592 692 7

    92 892 993 093 1

    93 293 393 493 5

    93 693793 8939

    L TEflP P A I R X I XB XE # T U X u SC P A C K I N G HEIGHT

    .179E+05 71.4 1.09 3.96 3.96 0.32 .OO 0.00 .798E-04 .469E+03 0.0.179E+05 71.4 1.09 4.09 3.10 0.32 .30 24.21 .798E-04 .469E+03 11.0.179E+05 71.4 1.09 4.00 2.26 0.32 .64 43.50 ,798E-04 .469E+03 22.0.179E+05 71.5 1.09 3.79 1.60 0.32 1.00 57.78 .799E-04 .469E+03 33.0

    .368E+05 70.1 1.06 4.88 4.41 0.32 .11 9.63 .784E-04 .486E+O3 0.0.368E+05 70.1 1.06 4.87 3.51 0.32 .35 27.93 .784E-04 .486E+03 11.0.368E+05 70.2 1.22 5.10 2.75 0.36 .69 46.08 .784E-04 .485E+03 22 . 0.368E+05 70.2 1.12 4.82 2.18 0.33 .89 54.77 .784E-04 .485E+03 33.0

    .395E+05 71.4 1.09 4.64 4.11 0.32 .1 3 11.42 .798E-04 .470E+03 0.0.395E+O5 71.4 1.09 3.36 2.37 0.32 .39 29.46 .798E-04 .469E+03 11.0.395E+05 71.4 1.09 4.75 2.50 0.32 .71 47.37 .798E-04 .469E+03 22.0

    .395E+05 71.4 1.09 4.76 2.11 0.32 .91 55.67 .?98E-04 .469+03 33.0

    .210E+05 72.1 4.32 6.02 4.39 1.27 .42 27.08 .805E-04 .462E+03 11.0.210E+05 72.1 4.40 6.06 2.95 1.29 1.06 51.32 .806E-0 4 .461E+03 33.0.210E+05 73.4 4.46 5.95 4.35 1.29 .42 26. 89 .822E-04 .445E+O3 11.5.210E+05 73.4 4.58 5.91 2.96 1.33 1.03 49.92 .821E-04 .446E+03 33.0

    .242E+05 72.0 4.39 6.12 4.46 1.29 .42 27.12 .805E-04 .462E+03 11.0.242E+05 72.0 4.40 6.12 3.48 1.29 .79 43.14 .805E-04 .462E+03 22.0.242E+05 72.0 4.44 6.29 3.07 1.31 1.04 51.19 ,805E-04 .462E+03 33.0

    .315E+05.315E+05

    .315E+05.315E+05.315E+05.315E+05.315E+05.315E+05.315E+05

    73.373.473.471.271.271.273.973.873.9

    4.364.364.404.394.394.494.364.564.56

    6.396.296.016.476.396.406.106.096.04

    4.553.523.114.563.523.114.323.392.96

    1.27 .441.26 . 8 01.28 .951.30 .461.30 .831.33 1.051.26 .461.32 .831.32 1.06

    28.7944.0448.2529.5244.9151.4129.1844.3350.99

    .820E-04.821E-04

    .E21 E-04.796E-04.796E-04.?96E-04.827-04.826E-04.827E-04

    .446E+03.4 46E +03

    .446E+03.472E+03.472E+03.4?2E+03.439E+O3.440E+03.439E+03

    11.022 . 033.011.022 . 033.511.022 . 033.0

    .242E+05 72.5 8.25 6.39 5.12 2.41 .38 19.87 .811E-04 .456E+03 12.3.242E+05 72.5 8.31 6.?0 4.08 2.43 .95 39.10 .811E-04 .456E+03 33.0.242E+05 72.4 8.28 6.41 5.15 2.42 .38 19.66 ,809E-04 .457E+03 10.5.242E+05 72.4 8.28 6.55 4.43 2.42 .7 2 32.37 .809E-04 .457E+03 22.0

    .273E+05 73.4 8.26 6.31 5.12 2.40 .36 18.86 .821E-04 .446Et03 11.5.273E+05 73.4 8.38 6.40 4.00 2.43 .93 37.50 .821E-04 .446E+03 33.0

    .273E+05 72.4 8.28 6.98 5.33 2.42 .45 23.64 .810E-04 .457E+03 "1.0.273E+05 72.4 8.28 6.69 3.89 2.42 1.07 41.85 ,810E-04 .45?E+03 33.0

    .315E+05 73.6 8.38 6.72 5.15 2.43 .4 6 23.36 .824E-04 .443E+03 11 .0.315E+05 73.6 8.40 6.70 4.35 2.43 . 8 0 35.07 .824E-04 .443E+03 23.0.315E+05 72.4 8.28 6.91 5 . 11 2.42 .5 1 26.05 .809E-04 .457E+03 11.0.315E+05 72.5 8.26 7.00 3.93 2.42 1 . 1 1 43.86 .8t IE-O4 .456E+O3 34.0

  • 8/4/2019 Ocean Thermal Vol 2

    30/67

    2 1

    T a b l e 3 ( c o n t in u e d )'TEST L TENP P A I R X I X f l XE NTU 7 D SC PACKING HEIGHT

    94 0 .368E+05 73 .6 8 .4 0 6 .9 1 5 .2 0 2 .4 3 . 4 8 24.75 ,824E-04 .443E+03 11.0941 .368E+05 73 .6 8 . 4 0 6 .65 4 .36 2 .43 . 7 8 34.44 .823E-04 .443E+03 22 .094 2 .368E+05 73 .6 8 . 4 0 6 . 6 8 3 . 9 6 2 .4 3 1 .0 2 4 0 .7 2 ,823E-04 .443E+03 33 .0

    943 .158E+05 6 7 . 4 8 .38 6 . 8 1 5 . 4 0 2 .57 . 4 0 20 .70 .749E-04 .529E+U3 11.0944 .158E+05 67 .4 8 .3 8 6 .8 6 4 .4 0 2 .5 7 .8 5 3 5 .8 6 .749E-04 .529E+03 22 .0945 .158Et05 67 .4 8 . 3 8 6 . 9 0 4 .05 2 .57 1 .07 41.30 .749E-04 .529E+03 33 .5

    % a r i a b l e s a r e e xp r es s ed i n t h e f o l l o w in g u n i t s :L = l b / h * f t 2Temp = O FP a i r = i n . HgD = f t 2 / hP a c k in g h e ig h t = i n .

    The values of HTU s c a t t e r between 7 0 t o 100 c m a t the tes t ing vacuumpre ssur e range. The same co n c lu s io n was o b ta in ed f rom th e d a t a of t h ef i r s t s e r i e s w i t h 3.81-cm ceramic Rasch ig r ings . The p r a c t i c a l c o n c l u -s i o n i s t h a t HTU i s indep enden t of vacuum pre ssur e. The da ta on HTU ofde ae ra t i on i n 2.54- and 3.81-cm p l a s t i c p a l l r i n gs a re shown i n Fi gs. 8and 9 , r e s p ec t i v e ly . T hese f i g u r e s a r e p lo t t e d o n l og - lo g sca le , and thep o i n t s s c a t t e r around a s t r a i g h t l i n e up t o q u i t e hi g h v a l u e s of t h e l i q -uid f low r a t e .

    Because of channel ing of l i q u i d ne ar t h e w a l l s of t h e packed column,i t i s d e s i r ab l e t o u se an ex pe r im en ta l column wi th a r a t i o o f d i am e te r t opacking dimension of a t l e a s t 8 : l i f t h e r e s u l t s a r e to be cons idered rep-r e s e n t a t i v e of l a r g e s c a l e o p e r a t i o n ( e s p e c i a l l y i f t h e p acked d e pt h i ss u f f i c i e n t l y g r e a t t o p e r m i t channel ing t o develop) . With th e 12-in.(30-cm) tower o f t h i s inv es t i ga t i on , t he minimum r a t i o w a s exceeded fora l l p a c ki ng s u se d.

    The packed height w a s l i k e w i s e a compromise and was u s u a l l y l e s s t h a ncommon in i n d u s t r i a l p rac t i c e . A l a rg e p acked h e ig h t r e s u l t s i n more de-s o r p t i o n a nd g r e a t e r a c c ur a c y i n me as ur in g t h e r a t e o f d e a e r a t i o n , b u t t h ed r i v i n g f o r c e a t th e bottom of t h e column i s t h en v e ry small a n d d i f f i c u l t

  • 8/4/2019 Ocean Thermal Vol 2

    31/67

    0

    NN

    6PE6

    O8OPP'ZC6POO

    O

    S+ESSSSSSSSSG1O

    P

    S1S1S1-SSOIPGSP

    S1Z6PEZPOE6ZOEEZZEZELEZPEZLZPEG

    SSSSSSESSSSS

    SZ62S1L8S1LE

    A1H

  • 8/4/2019 Ocean Thermal Vol 2

    32/67

    0

    N

    w2a

    III

    I

    I

    I

    h0

  • 8/4/2019 Ocean Thermal Vol 2

    33/67

    I1

    1

    1

    1

    1

    1

    I

    c

    Xm

  • 8/4/2019 Ocean Thermal Vol 2

    34/67

    25

    ORNL-DWG 81-8430 ETDVACUUM AIR PRESSURE kPa)

    3.38 6.76 10.14 13.52 16.90 20.30 23.70 27.0 30.4087654

    3

    2

    100

    2

    102987654

    I I I I I I 3 x 101 2 3 4 5 6 7 8 9

    VACUUM AIR PRESSURE (in. Hg)Fig. 7. Eff ec t of vacuum pre ssur e on HTU a t co n s t an t t em p era tu re .

    t o measure wi th accuracy. A v e r y s h o r t p acked h e ig h t r e s u l t s i n l a r g ed r i v i n g f o r c e s a t bot h ends of t h e column, b ut th e amount of a i r trans-f e r r e d i s small and an a p p r e c i a b l e f r a c t i o n o f t h e t o t a l t r a n s f e r may t a k ep l a c e a t the top and bot tom of th e packing i n th e reg i ons o f sp r ay ands p l a s h in g . In o ur i n v e s t i g a t i o n , t h e p ack in g h e ig h t w a s v a r i e d f ro m 15 t o90 cm .

    The ef fe c t of packed height on NTU w a s i n v e s t i g a t e d i n ou r s t u d i e s bytak ing l iq u i d samples ju s t above and below th e pack ing . That end e f f e c t shave indeed been minimized i s evident f rom Fig . 10 (T es ts 701 through 704and 900 through 903); i t shows a n e g l i g i b l e v a r i a t i o n o f NTU a t zero in -t e r c e p t w i t h p ac ki ng h e i g h t s , i n d i c a t i n g u ni fo rm l i q u i d d i s t r i b u t i o n a ndl i q u i d - g a s - i n t e r f a c i a l area.

  • 8/4/2019 Ocean Thermal Vol 2

    35/67

    ORNL-DWG 81-8431 ETDLIQUID FLOW RATE [kg/(h-m2)1

    5 i o 4 6 7 a 9 i o 5 29a76

    z 5k3 4a

    *.

    z

    WLLcn2 3

    3 2

    aI-0t-

    LL

    wI

    11o4

    I 1 I I 1 I-

    00 0>0 0

    I I I2 3 4 5

    LIQUID FLOW RATE [lb/(h*ft2)1

    2

    102987654

    3 x 10

    aWLLv)zI-aaLL0t-IWWI-

    Fig . 8. Effec t of l i q u i d f low r a t e on HTU f o r 2.54-cm (1-in.)p l a s t i c pall r i n g .

    . c *

  • 8/4/2019 Ocean Thermal Vol 2

    36/67

    (vmbW

    e0X7

    1

    1

    I

    I

    I

  • 8/4/2019 Ocean Thermal Vol 2

    37/67

    28

    1.81.71.61.51.41.3z

    3 1.2aIJJ 1. 1Ug 1.02 0.9I-u. 0.80E 0.7

    0.65 0.50.40.30.20.1

    0

    z

    0

    ORNL-DWG 81-8046 ETD1 1 1TESTS 184- 186 701 70 4 900-903

    SYMBOL 0 0 a1IR PRESSURE (kPa) 29.3 19.74 3.68

    25.4 50.8PACKING HEIGHT (cm) 76.2 88.9

    Fig. 10. Rela t ionsh ip be tween NTU and packing height a t d i f f e r e n tl i q u i d f l o w r a t e s and packing.

    E x t rap o l a t i n g t h e l i n e (T es t s 1 84 t h ro ug h 1 86 ) of F ig. 1 0 t o ze ro NTUg iv es t h e h e ig h t o f ad d i t i o n a l p ack in g t h a t would b e eq u iv a l en t t o t h e ende f f e c t . T h is l i n e (T es t s 18 4 t h ro ug h 1 86 ) i s from t h e f i r s t ser ies of thet e s t s i n wh ic h en d e f f e c t w a s a problem.o u r r ecen t d a t a by p l ac in g a p a r t i t i o n i n t h e up pe r p o r t i o n of t h e t e s ts ec t i o n and by imp rov in g t h e d i s t r i b u to r s y s tem so t h a t water comes downthrough ten 15-cm-long tubes t h a t a c t ua l ly touch th e top o f th e packing.I n t h i s case, t h e l i q u id f l o ws down wi th o ut f a l l i n g t h ro u g h t h e a i r a t a l land sp reads ou t wi th no sp lash ing .

    The end ef fect w a s minimized i n

  • 8/4/2019 Ocean Thermal Vol 2

    38/67

    29

    As d e sc r i be d p r e vi o u sl y , t h e f i r s t se r i e s of 110 run s1 w a s made un-de r expe r imenta l co nd i t io ns a l lowin g measurement of some desor p t ion i n t hespra y sec t i on above t he pack ing and th e water l i n e l ead in g t o t h e column.With th e re vi se d sampling technique and improvement of the di s t r ib ut o rs y s t e m , t h e v a l u e s of the new group are bel ie ved to be more rep rese n ta-t i v e o f t he packing ef f i c i en cy under vacuum desor p t i on o f a i r .

    Data from the new group of ru n s wi th d es o rp t i o n o f a i r on 2.54- and3.81-cm pl a s t i c p a l l r i n g s a re p res en t ed i n F ig s. 11 and 12. In eachcase , the d a t a have been cor rec ted t o 25C.

    4 .2 Corre la t ion of Data

    The method of Sherwood and Holloway' on c o r r e l a t i o n of d a ta i n apacked column i s a da pt ed i n t h i s i n v e s t i g a t i o n .and HT U may be expressed a s power fu nc ti on s of L f o r d e a e r a t i o n t e s t s onvarious packing mate r i a l s a s KLa a L1-n and (HTU)L cx Ln. The val ue of nv a r i e s w i th b o th p acking s i z e and t y p e ; f o r t h e t h ree s i z e s of r i n g st e s t e d , i t i s 0.25 f o r 3.81-cm ceramic Raschig r i n g , 0.34 f o r 2.54-cmp l a s t i c p a l l r i n g , an d 0 . 2 8 f o r 3.81-cm p l a s t i c p a l l r i n g s .

    They have shown t h a t KLa

    T h e e f f ec t i v en es s o f mass t r a n s f e r c an a l s o b e c o r r e l a t e d t o S ch mi dtnumber i n t h e f o l l o win g r e l a t i o n s :

    1HTU = - ( L / ~ ) " ( S C > ~U (5)

    T h es e r e l a t i o n s a re deri ved from th e dimensi onle ss form s i m i l a r t oth a t u sed by G i l l i l a n d and Sherwood12 i n co r r e l a t i n g d a t a on v ap o r i za t i o ni n a wetted-wall column, bu t a n unknown fa c to r with t he dimension ofl e n g t h i s o m i tt e d i n t h e l e ft - h a nd s i d e and i n t h e f i r s t gr ou p o n t h er igh t -hand s i de of bo th equat ions .t i o n s a re n o t dim en s io n l e ss , and t h e p ro p o r t i o n a l i t y co n s t an t a may beexpected to vary wi th the na tu r e of th e pack ing mat er ia l and the un i t semployed.

    Because of t h i s omission, t he equa-

  • 8/4/2019 Ocean Thermal Vol 2

    39/67

    ORNL-DWG 81-8433 ETD

    9 - I -- -- -5 - -- -- -

    2 - --- *o5 - -- * --- -3c * *- -* * -

    5 - -- -- -

    2 - -1o4 I I I

    LIQU ID FLOW RATE/VISCOSITY ( l / m )

    -l

    9

    10 5

    w0

    Fig . 11. Co re la t i on of da ta on vacuum desorp t ion of a i r i n 2.54-cm(1-in.) p la s t i c p a l l r i n g .

    *

  • 8/4/2019 Ocean Thermal Vol 2

    40/67

    .

    ORNL-DWG 81-8434 ETDLI QU ID F LOW RATE/VISCOS ITY ( 1 m)

    2 x o 4 2.3 2.6 2.45 3.3

    1o59

    8

    7

    6

    5

    1o46 x

    5.6

    *- ***&-

    **

    + I-///3 7 8 LIQUID FLOW1o4ATE/VISCOSITY ( l / f t ) 1.7Fig. 12. Cor re l a t i on of da ta on vacuum desorp t ion of a i r i n 3.81-cm

    (1 .5- in . ) p la s t ic pall r i n g .

    wP

  • 8/4/2019 Ocean Thermal Vol 2

    41/67

    32

    Data from the f i r s t se r ies are co r r e l a t ed b y a va lu e of 0.50 fo r s ,i n d i c a t i n g t h a t KLa v a r i e s as t h e 0.50 power of t h e l i qu i d d i f f u s i v i t y f o rt h e 3.81-cm ceramic Raschig ring.t h a t f o r mass t r a n s f e r i n a packed column the s value i s 0.50 f o r a l ls i z e s and ty pe s of packing. Ther efore , Eqs. (4 ) and (5) would become

    Sherwood and Holloway6 have concluded

    1HTU =; L / P ) ~ ( S C ) ~ * ~ ~Table 5 summarizes values of a and n for three packing materia lsf o r which da t a are presented.

    Tab le 5. Values of a and n fo r th re ed i f f e r en t p ack in g s ( s = 0.50)aPacking ab n

    3.81-cm ceramic Raschig r i n g 19.57 0.252.54-cm p l a s t i c p a l l r i ng 113.6 0.343.81-cm pl as t i c p a l l r in g 34.86 0.28

    aThe ( 1 3 ) values a re th e s lo p e of l i n es i nFigs. 11 and 12. The a v a lu es a re t h e i n t e r c e p tof l i ne s wi th the x -axis.b e ex pressed i n m*kg*h u n i t s i f t h e se v a lu es o fa a re used.

    b A l l t h e q u a n t i t i e s i n Eqs. (6) and (7) must

    'Data presented i n Vol. 1 (Ref.1).

    4.3 Maximum Flow of Water Through Packed Column

    (7 )

    In t he vacuum deaera t io n, loadi ng i s known as t h e co n d i t io n where(1) l i q u i d ho ld up in c r eas es r ap id ly wi th l i q u id f lo w r a t e , ( 2 ) t h e f r e earea for gas flow becomes smaller , and ( 3 ) the p ressure d rop r i s e s morera pi dl y. Packed columns a re opera ted bes t below th i s load ing po in t .

  • 8/4/2019 Ocean Thermal Vol 2

    42/67

    33

    Flood ing and load ing v e lo c i t i e s i n random pack ings a re w e l l co r re -la te d by Treybal. l 3mine th e maximum l i qu id ( lo adi ng p oin t) f low r a t e s f o r each type of pack-ing.kg/h*m2) and a t t h e maximum l i q u i d f l o w ra te are l i s t e d i n T able 6.

    H i s method i s a do pt ed i n t h i s i n v e s t i g a t i o n t o d e t er -

    The corresponding HTU v a lu es a t a c o n s t a n t l i q u i d f l o w r a t e (122,000

    Table 6. Elaximum l i q u i d f l o w ra tes f o rd i f f e r en t t y p es and s i ze s of p ack in g

    Packingb

    L a Lmax

    n i u( 4Maximum l i q u i dflow, L a xS i z e(cm) [ l o 3 kg/(h'm2)]

    Ceramic Raschig 3.81 122.0 92.0 92.0r i n g 5.08 146.5 72.5' 76.5'

    P l a s t i c pall 2.54 171.0 80.8 90.23.81 220.0 88.4 103.98.89 293.0 126.5d 133.8d

    r i n g

    ~~~~ ~ ~

    &I, = 122 x lo3 [kg/(h*m2)] .'L = L a x [kg / (h*m2>1-'The HTU v a lu es p re s en t ed are from th e model of Sherwoodand Holloway.

    method shown i n t h e Appendix.v a l u e s are der ived f rom ex t r ap o l a t io n by th e

    4.4 Res u l t s o f Deae ra t i o n i n t h e Ba ro me t r ic Legof th e In t ake System

    Vacuum de ae ra ti on i n a baromet r ic water - in take system re qu i r es bub-b l es to grow i n depre ssur i z ing f low. The fo rmat ion of bubb le popu la t ioni n a f l o w f i e l d i s s t r o n g l y i nf lu e nc e d by t h e i n i t i a l n u c l e i c o n t e nt . Be-cau s e t h e re i s no s o l i d s u r f a c e o t h e r t h a n t h e p i p e w a l l for vacuum deaer-a t i o n i n a b a ro m e t r i c i n t ak e p ip e , i t i s h y p o th es i zed t h a t t h e ra te of de-a e r a t i o n may b e a f f e c t e d by t h e i n i t i a l n u c l e i c o n t e n t i n t h e i nc om in gwater as w e l l . The q u an t i t a t i v e d e t e rm in a t i o n of t h e co n cen t r a t i o n and

  • 8/4/2019 Ocean Thermal Vol 2

    43/67

    34

    s i z e d i s t r i b u t i o n of b ub bl e n u c l e i i n t h e i nc om ing water i s beyond t h es cop e of t h i s s t u d y b u t i s b ei ng s t u d i e d e ls ew h er e by H y d r o n a ~ t i c s . ~However, a q u a l i t a t i v e a t t e m p t t o c l a s s i f y t h e n u c l e i c on t en t i n t h i ss t u d y i n c l u d e d t h r e e cases: low, moderate, and high nu cl ei concentra-t i o n s .

    I n t h e case of i n i t i a l low n u c l e i c o nt e n t , t h e t e s t water i s l e f to v e r n i g h t t o e l i m i n a t e as many bubble nuclei as p o s s i b l e , and t h e t e s tl o o p can o n ly b e o p e ra t ed i n a once-through mode. In th e moderate nu cl e ic o n te n t c a s e , a e r a t i o n i s a p p l i e d o nl y a f t e r t h e b a r o m e t ri c i n t a k e t e s ti n water t a n k No. 2 (Fig . 3); a e r a t i o n i s ap p l i ed t o b o th wa t er t an kNos. 1 and 2 i n the case of h igh nuc le i con te n t exper iments . The vacuumd e a e r a t i o n i n a baromet r ic water - in take s y s t e m was t e s t e d i n a 5-cm-diam(2- in .) v e r t i c a l p ipe .s u r e .

    Water w a s l i f t ed th rough the p ipe by vacuum pres-

    The water ve lo c i ty var ied f rom 60 t o 180 cm/s. A se r i e s of r u n s f o rt h e b a r o m e tr i c i n t a k e s y s t e m w a s comple ted , and r e su l t s a re p r e s e n t e d i nTables 7 t h ro u g h 9. I n t h e s e r u n s , t h e water samples were t ak en a t t h e

    Table 7. Data of barometric system, 8.8-m intakewith moderate nucleia

    TEST L TEHP P A I R U X I XB XE x RE8 0 1 2 8 . 8 79.6 1.33 3.51 7.98 6 . 5 2 .37 18 .3 .635E+058 0 3 28.8 79.2 2 .13 2 .82 8 . 0 0 6 . 8 0 . 5 9 1 5 .0 . 5 0 8 E + 0 5805 28 .8 79.1 2.04 3.12 8 . 1 1 6.99 .56 13 .8 . 5 6 1 E+0 58 0 7 28.8 74.9 2 .49 2 .68 8 . 2 9 7 . 2 7 .71 12.3 . 4 5 6 E+0 58 0 9 2 8 . 8 77.1 1 .63 3 .37 8.14 6 .98 . 4 6 1 4 . 3 .591E+058 1 3 2 8 . 8 78.1 1 .45 3 .73 8 . 1 0 6.50 . 4 0 1 9 . 8 . 6 6 3 E+0 58 1 4 2 8 . 8 7 8 . 1 2 . 3 9 2 . 5 9 8.10 7 .00 .66 13 .6 . 4 5 9 E+0 5815 2 8 . 8 7 7 . 8 1.87 3.28 8 . 1 0 6.95 .52 14 .2 . 5 8 0 E + 0 58 1 6 28.8 78.7 1 .82 3.10 8 . 2 2 7 . 2 6 . 5 0 11.7 . 5 5 5 E+0 58 1 7 28.8 7 8 . 8 1.10 3.86 8 . 3 2 6.63 .30 20.3 . 6 9 1 E+0 58 1 9 2 8 . 8 78.9 2 .22 2.55 8.24 6.98 .61 15 .3 . 4 5 7 E+0 5

    NPD. 1 9 2 E+0 0. 1 6 2 E + 0 0. 1 4 8 E+0 0. 1 3 5 E+0 0. 2 0 8 E+0 0. 1 4 8 E+0 0. 1 5 2 E + 0 0. 1 2 4 E+0 0, 2 11 E t 0 0. 1 6 5 E+0 0

    . 1 5 1 E+0 0

    =Variables are expressed in the following units :L = ftTemp = OFPair = in. Hgv = ftlsD = ft2/h

  • 8/4/2019 Ocean Thermal Vol 2

    44/67

    Table 8. Data of

    TEST L TEHP P A I R V80 0 28.3 70.4804 28.3 66.1808 28.3 70.272 0 28.3 70.072 7 28.3 71.172 8 28.3 71.473 1 28.3 71.773 2 28.3 72.1733 28.3 73.8734 28.3 73.673 5 28.3 72.1739 28.3 74.974 7 28.3 75.7

    2.813.004.602.334.433.43.8 22.481.161.863.023.672.33

    3.954.022.283.132.902.373.755.103.353.953.024.02

    5.85

    35

    baromet r ic in ta ke wi t h no nucle i"

    X I XB XE

    8.00 7.25 .849.29 8.22 .938.78 7.97 1.388.03 7.50 .708.32 7.80 1.318.32 7.69 1.018.30 7.25 .248.30 7.53 .738.41 6.90 -348.41 7.10 .548.20 7.50 .898.12 7.49 1.058.10 7.20 .66

    x9.411.59.26.66.37.612.79.318.015.68.57.8

    11 . 1

    "Variables are ex press ed i n t h e f o l l o win g u n i t s :L = f tTemp = O FP a i r = in. Hgv = f t / sD = f t 2 / h

    RE.636Et05,367Et05,502Et05.471Et05

    .609Et05

    .386Et05,956Et05

    .856Et05.561Et05

    .616EtO5

    .649EtO5- 5 14Et05.691 E+05

    NF D. OSEtBO,128Et130.109Et00.723E-01.742E-0 1.862E-01,130EtOQ.102E t o 0.166Et00P57E-0 1.891 E - 0 1

    .187Et08

    ,121Et00

    en t r a n ce t o t h e b a ro m et r ic l eg and ag a in a t the end of barometric i n t ak e.Tables 7 and 9 are fo r t he cond i t ion of modera te nuc l e i when the i n t akeh e i g h t s are 8.8 and 7 .8 m , r e s p ec t i v e ly . T ab l e 8 shows the r e su l t s o fb a ro m e t r i c i n t ak e when few n u c l e i ex i s t i n t h e wat er . In t h i s ca s e , waterr ema in s o v e rn ig h t i n t h e t an k u n d i s tu rbed .

    The baromet r ic in take sys tem deaera t ion i s presen ted according to t hef o l l o win g eq u a t i o n s :

    PDA = a ( v ) b ,NP D = c ( v ) ~NPD = e(Relf .

    Table 10 summarizes values a through f f o r v a r i o u s i n t a k e h e i g h t s a ndamounts of nu cl ei . The per cen tage of de a e r a t i on (PDA) and normal izedpercentage deaerat ion (NPD) vs water veloci ty (V) and Reynolds number( R e ) a re shown i n F igs. 1 3 through 22 .

  • 8/4/2019 Ocean Thermal Vol 2

    45/67

    36

    TEST

    71 171271371471 571 671 771872 172272372472 572 973 073 673 774074 174 274474574674 8749750

    T ab le 9 . Data of bar ome tric syste m 7.8-m in ta kewi th m o d era te n u c l e i a

    L TENP P A I R U X I X f l XE x RE NP D25.525.525.525.525.525.525.525.525.525.525.525.525.525.525.525.525.525.525.525.525.525.525.525.525.525.5

    74.2 1.69 5.48 8.45 7.59 .49 10.278.3 4.47 2.49 7.80 7.10 1.24 9.078.5 4.29 2.90 7.71 7.28 1.19 5.678.1 3.87 3.38 7.78 7.17 1.08 7.877.1 3.12 4.14 7.80 6.95 .87 10.978.7 2.25 4.91 7.65 6.90 .62 9.878.6 1.27 5.46 7.70 6.50 .35 15.678.9 1.74 5.15 7.60 6.70 .4 8 11.876.5 3.13 3.73 8.25 7.42 .88 10.177.1 1.75 4.61 8.18 7.50 .49 8.377.2 5.05 2.38 8.20 7.63 1.42 7.077.9 4.59 3.12 8.12 7.50 1.28 7.677.6 3.56 4.14 8.10 7.45 .99 8.077.6 1.09 5.91 8.30 7.10 .31 14.577.9 2.41 5.13 8.40 7.40 .67 11.975.4 4.78 2.45 8.24 7.60 1.36 7.075.8 4.53 3.30 8.22 7.63 1.29 7.278.4 2.74 4.29 7.97 7.35 .76 7.878.4 2.02 4.98 8.16 7.10 .56 13.078.8 1.48 5.54 8.00 6.79 .41 15.177.9 1.45 5.64 8.19 7.28 .40 11.178.1 2.20 5.23 8.15 7.31 .61 10.378.3 2.83 4.56 8.21 7.39 .78 10.077.2 3.70 3.79 8.20 7.60 1.04 7.377.4 4.13 3.34 8.05 7.45 1.15 7.577.4 4.59 2.82 8.05 7.35 1.28 8.7

    a V a r i a b l e s a re e x p re s se d i n t h e f o l l o w in g u n i t s :L = f tTemp = O FP a i r = i n . Hgv = f t / sD = f t 2 / h

    .925E+05.443E+05.518Et05.600E+05.725Et05.878Et05.976Et05.924EtO5,649Et05.807E+05.418Et05.553Et05.730E+05.104Et06.909Et05.4 19EtO5.58 1Et 05.765E+05.888Et05.993E+05.998Et05.8 13E t 05,666Et05.587E+05

    .928Et05

    .496E+05

    ,108Et00. 07E t o 0.659E-01.9 l OE-01.123E t o 0.10?Et00.163E t o 0.126E t o 0. 113Et00.885E -0 1.840E-0 1.906E-0 1.915E-0 1,129Et00.930E-01.85 1E-01.860E-0 1.139E+00159E t 00. 1 1 ?E t o 0,111Et00. 1 1 O E t O O.838E-0 1.870E-01.103Et00

    ,150EtoO

  • 8/4/2019 Ocean Thermal Vol 2

    46/67

    37

    102 - I I I --- -5 -Ea2UJ 101 =-

    -- -I :z0ka-

    20 0 0 000 -- -- -n - PDA = 26.67 x lo -5 - PD A = (5.62 x lo4)

    INTA KE PIPE = 5.08-cm IDWATER TEMPERATURE = 25OC f 3OC

    0X -- ---Ix -X -- 8.4 m T A L La 2 -100 -2 I I 1

    Table 10 . Empirical valu es fo r barometric in take systemaVariables

    a b C d e fIntake system

    7 .8 m and moderate 0.340 0.691 0.843 0.525 0.03 0.523nuc le inuc le i

    no nuclei

    nucle i

    8.8 m and moderate 0.314 0.85 0.552 0.74 0.0048 0.74Variable height with 0.325 0.727 0.662 0.597 0.015 0.5998.4 m and high 0.027 1.33 0.067 0.26

    aEqs. ( 8 ) through (10).

    Fig. 13 . OTEC barometric intake configuration.

  • 8/4/2019 Ocean Thermal Vol 2

    47/67

    ORNL-DWG 81-8435 ET D

    6 x lo1102

    10

    5

    7WATER VELOCITY (crn/s)

    8 9 102 122 152- I I 1

    x xXX x x xX X

    53 4WATER VE LOClTY (ft/s)

    Fig. 14 . Percentage deae ra ton in 8.8- in t ake sys tem wi th modera ten u c l e i .

    w03

    . .

  • 8/4/2019 Ocean Thermal Vol 2

    48/67

    39

    D

    7

    BDD

    bI I I I I I I I 1 1 1 1 I I I I I

    1 1 1 1 I 1 I 1 1 1 1 I I 1 I I

    m

    d0Xc

    .-

  • 8/4/2019 Ocean Thermal Vol 2

    49/67

    ORNL-DWG 81-8437 ETDWATER VELOCITY (cm/s)

    V v vV%

    Fig. 16. V a r i a t i o n of normal ized de ae ra t ion wi th water v e l o c i t y i n8.8- i n t a k e sys tem with modera te nuc le i .

    . ? c

  • 8/4/2019 Ocean Thermal Vol 2

    50/67

    c v

    10 2

    -aez0

    -Kww

    5 10'an 5 -

    2 -

    100

    c t

    61 91.4 121.9 152.4 182.9 21 3.4- I 1 I 1 -- --

    -5 - --- -- -2 -

    * xXX -- XX- -- X 3 % X X X -- -X --

    - -- --

    I I I I L2 x 100 3 4 5 6 7

    WATER VELOCITY (ft/s)Fig. 1 7 . V a r i a t i o n of p e r c e nt a g e d e a e r a t i o n w i th water v e l o c i t y i n7 .8 - i n t a k e s y s t e m with modera te nuc le i .

  • 8/4/2019 Ocean Thermal Vol 2

    51/67

    (%)NlV1V

  • 8/4/2019 Ocean Thermal Vol 2

    52/67

    .

    7

    LD

    N

    ox

    h

    e

    I

    h

    ON

    -

    0.-

    0-

    (%INlv1Vavwt1ON

  • 8/4/2019 Ocean Thermal Vol 2

    53/67

    ORNL-DWG 81-8441 E T 0

    10 2

    Iez0FaaP 10 '5!

    -KWW0WJ2 5 -K0z

    2 -

    100

    WATER VELOCITY (cmh)91.4 121.9 152.9 182.9 21 3.91- I 1 I I--

    5 ---2 -

    -------

    I I I 1 I

    V0Va d -v v

    Fig. 20. Variation of normalized deaeration with water velocity forbarometric intake with no nu cl ei .

    c

  • 8/4/2019 Ocean Thermal Vol 2

    54/67

  • 8/4/2019 Ocean Thermal Vol 2

    55/67

    I-zK0 i30-

    DD

    I

    II

    I

    1

    I

    L

    c

    7

    In

    c

    0F

    (%INlv1

    a

    vVO

  • 8/4/2019 Ocean Thermal Vol 2

    56/67

    47

    4.5 A p p l i c at i o n t o OTEC Open-Cycle Plantand Economic Evaluation

    The ex p e r im enta l r e s u l t s and d e r iv ed d a t a f rom th e g as ab s o rp t i o nt e s t s were app l ie d to the Wes tinghouse deae ra t o r subsystem des ig n t ocompute th e de ae ra to r co st and th e pumping power fo r var iou s packings.

    T h e d eae ra to r co s t i s based on the fol lowing:z = c os t of packing, $353/m3 f o r ceramic Raschig rings and $141/m 3

    f o r p l a s t i c p a l l r i n g s ;x = co st of packing s uppo rt p l at es , $215.30/m2;y = co s t of l i q u id d i s t r i b u to r s , $269.10/m .The co s t o f t h e d eae r a to r en c lo s u re i s not inc luded i n th i s summationbecause i t i s c o n si d e r ed t o b e p a r t of t h e h u l l . E v i de n t ly , l a r g e r l i q u i d

    flow r a t e s y i e l d a l ower-co st d eae r a to r becau se t h e v a r i a t i o n o f t h e HTUw i t h l i q u i d r a t e i s s m a l l i n t h e r a ng e t e s t e d .

    The co st of th e column i n te r na l de riv ed by West inghouse i s repre-s en t ed as

    where

    E = s t a g e e f f i c i e n c y ,Whs, = w a r m seawater f low, kg/h,Lax= maximum l i q u i d flo w r a t e f o r a given packing,

    HTU = h e i g h t of t r a n s f e r u n i t , cm.

    The i t e m s t h a t c o n t r i b u t e t o t h e t o t a l d e a e r a t o r h e i g h t a nd t h e mag-n i t u d e of e a c h c o n t r i b u t i o n a re given i n th e Westinghouse s tudy. hei gh t o f major de ae ra to r componen ts exc lud ing th e packing he igh t i s147.2 cm; t h i s v al ue i s a r e a l i s t i c est imate.

    The

    The to t a l he i gh t i n cen t im ete rs of th e packed column i s t h en

    h = 147.2 + h i ,

  • 8/4/2019 Ocean Thermal Vol 2

    57/67

    48

    where the hei gh t of packing i s

    There fo re , Eq. (12) can be expressed ash = 147.2 - [(HTU)ln(l - E ) ] .

    The pumping power i n megawatts i s

    - whsw x [147.2 + (HTU)ln(l - E)-] . (15)whswriw =36.65 x 109Q 36.650

    The pump combined efficiency was assumed t o be 0.715.R e s u l t s of de ae ra ti on co st and the pumping power f o r va ri ou s packings

    and for the baromet r ic in take s y s t e m (8.4- he igh t i n t ake ) are t a b u l a t e di n Tab le 11.w a r m ( 27O C ) seawater .

    R esu l t s are shown fo r th e condi t i on of 455 x lo6 kg/h of

    Table 11. Deaerator co st and pumping power f o r var io uspackings and f or barom etric in ta ke system*B aromet ri c i n t ak e deae ra t i on e f fe c t

    Without withPacking Size(cm) h a e r a t o r Pumping &a er at or Pumpingc os t power co st power( $ x 1 0 9 (Mw) ( $ x 106)

    Ceramic Raschig 3.81 2.58 5.10 2.40 4.57Plas t i c p a l l 3.81 1.50 5.43 1.38 4.83

    r i n g 5.10 2.85 4.68 2.56 4.23

    r i n g 8. 90 1.22 6.26 1.12 5.49%arm seawater flow rate = 455 x lo6 kg/h; deae ra tor ef fe c-t i v e n e s s = 0.80.

  • 8/4/2019 Ocean Thermal Vol 2

    58/67

    49

    R e s u l t s i n d i c a t e t h a t u s e of t h e l a r g e r p l a s t i c p a l l r i n g h as a v e r yfav ora b le impact on the co s t , bu t the power consumpt ion i s increased some-what .

    T h e d eae ra to r co s t estimates and t he pumping power ne eds f o r baromet-r i c i n t ak e an d a d eae ra to r packed wi th d i f f e r en t t y p es and s i z e s o f pack-i n g were computed acc or din g t o Eqs. (8), ( l l ) , and (15) and are l i s t e d i nTable 11.

  • 8/4/2019 Ocean Thermal Vol 2

    59/67

    50

    5. CONCLUS I ON SThe fol lowing conclusions were drawn f rom the experimental s tudy for

    vacuum de ae ra t i on i n a packed column and i n a b a ro m e t r i c i n t ak e co n f ig u ra -t i o n :1 . Vacuum deaeration HTU i n fo r m a ti o n f o r two s i z e s of p l a s t i c p a l l r i n g s

    w a s o b ta in ed b ecau s e t h e r e was no mass-t ransfer /HTU in fo r mat i on i n thel i t e r a t u r e f o r th e p l a s t i c p a l l r i n g s.

    2. W foun d t h a t d e a e r a t i o n o c c u r s i n b ar o m e tr i c i n t a k e t o a packed col-umn. In th e system te s t ed , de ae ra t i on of up t o 27% w a s found for awater f low r a t e of 1.8 m / s w i t h h ig h n u c l e i c o n t e n t .i n t a k e w i l l have the advantage of ach i ev in g a p a r t i a l p r e d e a e r a t i o nand thus reduce the cos t of a f u l l d e a e r a t i o n s ys te m. D e a e r at i o n i n abaromet r i c i n ta ke may be a f f ec te d by phys i ca l parameters such as waterf low r a t e , t h e e x i s t e n c e of n u c l e i i n t h e water, and t he vacuum p res -s u r e .

    The barometric

    3 . Our s t u d y i n d i c a t e s t h a t w i th t h e b a ro m e t ri c i n t a k e d e a e r a t i o n e f f e c t ,-10% re du ct io ns b oth i n c o st and pumping power ca n be achie ved whenb a ro m e t r i c i n t ak e i s combined wi th t h e packed column.

  • 8/4/2019 Ocean Thermal Vol 2

    60/67

    51

    REFERENCES

    1. A. Golshani and F. C. Chen, OTEC Gas Desorption Studies, ORNL/'M-7438/V1 (October 1980).

    2. G. Claude, "Power from Tr op ic al Seas," Mech. Eng. 52, 1039 (Decem-ber 1930).

    3. J. T. L e w i s and W. G. Whitman, "P ri nc ip le s of Gas Absorpt ion," I d .Eng. Chem. X V I , 1215 (1924).4. R. Higbie, "The Rate of Absorption of a Pure Gas i n t o a Liquid Dur-

    ing Shor t Per iod o f Exposure , " Trans. Am. Ins t . chem. Eng. 3, 365(1935).

    5. P. V. Danckwer ts , " S ign i f ican ce of L iquid -Fi lm Coe f f i c ie n ts i n GasAbsorpt ion," Ind. Eng. &em. 43, 1460 (1951 ).

    6. T. K. Sherwood and A. L. Holloway, "Performance of Packed TowersLiquid F i l m Data f o r Sev e ra l Pack in g s , " Trans. Am. Ins t . Chem. Eng.36, 39 (1940 ).

    7. E. L. Knoedler and C. F. Bonil la , "Vacuum Degasif icat ion of Water i na Packed Column," (%em. Eng. Prog. 50 (3 ), 125-133 (19 54) .8. J. T. Chambers, Sea Water Conversion, In s t i t u t e of E n g in ee rin g Re-s e a r c h , U n i v e r s i t y of Ca li fo rn ia , Berkeley, Se ri es 75, I ssu e No. 16,

    Sept. 3, 1959.9. D. M. E is s en b e rg , Swranary of Present Status f o r Design and Analysisof Vacuum Deaerators for DistiZZation Plants, Of f i ce of Sa l i n eWater, ORNL/llI-3454 ( A p r i l 1972 ).

    10. E. A. Rasquin, G. Lynn, and D. N. Hanson, "Vacuum Degas sin g of CarbonDioxide and Oxygen from Water i n Packed Columns," Ind. Eng . &em.,Fundam. 16(1), 170-174 (1977).

    11. P. Harchand, "Recent French OTEC Work i n t h e Area of OTEC Systems,"7 t h Ocean Energy Conference, Washington, D.C., June 1980.12. E. R. G i l l i l a n d a n d T. K. Sherwood, " Di ffu si on of Vapors In t o AirSteams," Ind. Eng. &em. 26, 516 (1934).13. R. E. T rey b a l , Mass Transfer Operations, pp. 159 163, llcGraw-Hi11,

    New York, 1968.14. W. T. Lindenmuth, and H. L. Liu, Hy dro nau tic s Inc., pe rs on al commu-

    n i c a t i o n t o A. Goshani, Oak Ridge Na ti on al Laborato ry, February 1981.15. Westinghouse El e c t r i c Corp., 100 W e OTEC Alternate Power Systems,

    Fin a l Rep o r t , DOE Co nt rac t EG-77-C-05-1473 (Ha rch 1979) .

  • 8/4/2019 Ocean Thermal Vol 2

    61/67

    J

  • 8/4/2019 Ocean Thermal Vol 2

    62/67

    53

    AppendixESTINATED VALUE OF HTU FOR 8.89-cm (3.5-in.)

    PLASTIC PALL RING

    As exp la ined e a r l i e r , the r a t i o of the column d iameter t o packingdimension should be a t l e a s t 8:l. Because the diameter of the columnb e in g i n v es t i g a t ed i s 30.48 cm, 8.89-cm p l as t ic p a l l r in gs cou ld no t beused . Therefo re , exper iment a l ly ob ta ined da t a were ex t r ap o l a t ed t o es t i -mate t h e HTU f o r 8.89-cm p a l l r i n g s .

    The Sherwood and Holloway HTU v a l v e s f o r v ar i ou s s i z e s of ceramicR as ch ig r i n g s and d i f f e r e n t l i q u i d f l o w rates i n ki lograms per hour pers q u a re meter are g i v e n i n T a bl e A.1. The ra t i o of one HTU v a l u e t o t h ep r i o r v a l u e i s 1.11 (Tab le A.1). T h ere f o re , t h i s t ab l e can be ex tr ap o -l a t e d f u r t h e r by m u l t i p l y i n g t h e l a s t HTU value by 1.11, t h u s y i e l d i n gt h e n e x t HTU value when the r i ng s i ze i s incremented by 1.27 cm. Thissame method has been used t o extrapolate f o r p l a s t i c pall r ings .Table A.2 shows ex pe ri me nt al ly determ ined HTU v a l u e s f o r two r i n g s i z e sand f low ra tes .

    The HTU r a t i o f o r t he p l a s t i c p a l l r i n g s a t a flow ra te of 9.76 x l o 4kg/h*m2 i s 1.105, and t h e HTU r a t i o a t a f low ra te of 1.71 x 105 kg/h*m2i s 1.075. Using t h e s e v a l u e s , t h e HTU f o r an 8.89-cm p l a s t i c p a l l r i n gc a n b e e x t r a p o l a t e d as shown i n Table A.3.

    HTUs can be def ined by the fo l lowing equat ion :HTU = a ( L ) b , (A. 1)

    where a and b are chang ing wi th each r ing and L i s t h e l i q u i d flow ra te .Cons ider the cond i t ion o f t he 8.89-cm p a l l r in g i n Tab le A.3:

    L = 9.76 x l o 4 HTU = 123.6L = 1.71 x 105 HTU = 129.54

    Su b s t i t u t i n g t h es e v a lu es i n t o Eq. (A.1) y i e l d s t h e f o l l owin g s imu l t an eo usequat ions :

    123.6 = a(9.76 x 104)b129.54 = a(1.71 x 105)b

  • 8/4/2019 Ocean Thermal Vol 2

    63/67

    54

    Table A . l . H TU v a l u e s f o r v ar i o u ss i z e s of ceramic Rasch ig r ing

    2.54 35.11 41. 83.81 39.01 46.025.08 43.29 51.22

    1.11 1.111.11 1.11

    aL = 85.4 x l o3 kg/h*m2.'L = 17.9 x lo4 kg/hom2.

    Table A.2. HTU v a l ue s f o r p l a s t i c p a l l r i n gRin g s i ze s HT@ Rat io o f HTUb Rat io o f

    (4 (cm) HTU2/HTUla (cm) HTU2/HTUlb

    2.54 75 90.221.105 1.1053.81 82.91 97.0~ ~~ ~

    aL = 9.76 x l o 4 kg/hom2.bL = 1.71 x l o 5 kg/hom2.

    Table A.3. HT U v a l u e s f o rp l a s t i c p a l l r i n g o bt ai ne dby ex t ra po la t i on method

    5.08 91 62 104.276.35 101.23 112.17.62 111.9 120.58.89 123.6 129.54

    ~~~ ~ ~

    aL = 9.76 x lo4 kg/h*m2.bL = 1.71 x l o 5 kg/h*m2.

  • 8/4/2019 Ocean Thermal Vol 2

    64/67

    55Solving th is system of equations y ie ld s a - 47.08 and b = 0.084, givingthe follow ing equation fo r 8.89-cm pl as ti c p a l l r ings :

    HTU = 47.08(L)0*084. (A . 2)Substituting a flow rate of 2.93 x lo5 kg/hom2 i nt o Eq. (A.2) g iv es an HTUof 135 . 5 cm.

  • 8/4/2019 Ocean Thermal Vol 2

    65/67

  • 8/4/2019 Ocean Thermal Vol 2

    66/67

    57

    ORNL/TM-7438/V2D i s t . Category UC-64

    INTERNAL DISTRIBUTION1.2-6.78.910-14.15.16.17.1819

    2021.22.23.24.25.

    43.44.45.46.47.48.4 .50.

    51.52.53.54.55.

    W. R. CarverF. C. ChenN. Doming0D. M. E is s en b e rgW. FulkersonA. GolshaniH. W. HoffmanL. JungR. J. Ked1R. L. LinkousJ. F. MartinJ. W. MichelR. W. MurphyM. OlszewskiS. A. ReedR. C. RobertsonT. W. Robinson, Jr .

    26.2 7.28.29.30.31.32.33.34.3 5.36.3738.3 9.40-41.42.

    M. P. TernesH. E. Trammel1G. L. YoderJ. T. Cockburn (Consultant)R. E. Goodson (Consultant)T. J. Han ra t t y (Co n s u l t an t )T. R. LaPor te (Consu l tan t )L. F. L is ch e r (Co n s u l t an t )R. N. Lyon (Consultant)D. J. Rose (Consul tant)V. K. Smith (Consu l tan t )ORNL P a t e n t O f f i c eCen t ra l Res ea rch L ib ra ryDocument Refe ren ce Se ct onLaboratory Records DepartmentLaboratory Records , RC

    EXTERNAL DISTRIBUTIONS. Baron, Burns an d Roe, Inc ., 7 0 0 Kinderkamack Rd., O r ad el l,N J 07649E. S. Burcher, Branch Chi ef , Ocean Energy Systems Div isi on, De-partment of Energy, 600 E. St . , M J , Washington, DC 20585A. F. C h a r w a t , Dept. of Mechanics and St ru ct ur es , Uni ver s i t y ofC a l i f o r n i a , 5 7 3 1 B o e l t e r H a l l , Los Angeles, CA 90025T. Fo rt , Department of Chemical Engi nee ring , Carnegie-MellonUn iv e r s i t y , 500 Forbes Ave., Pi tt sb ur gh , PA 15213S. Gronich, Branch Chie f , Ocean Energy Systems Di vis ion , Depart-ment of Energy, 6 0 0 E. St . , W , Washington, DC 20585W. Hahn, Of fi ce of Water Resea rch and Technology, Department ofI n t e r i o r , W as hi ng to n, DC 20240F. Her bat y, Technology Management Branch, Ch icago Op er at io ns andReg io n a l Of f i ce , DOE, 9 8 0 0 South Cass Ave., Argonne, I L 6 0 4 3 9D. H. J oh ns on , So l a r E ne rg y Resea rch In s t i t u t e , 1536 Cole Blvd.,Golden, CO 80401E. H. Ki ne ls ki , Program Manager, Ocean Energy Systems Div isi on,Department of Energy, 6 0 0 E. St. , Nw , Washington, DC 20585D. C. Kung, Tech nology Management Branch, Chica go Op er at io ns andReg io n a l Of f i ce , DOE, 9800 South Cass Ave., Argonne, I L 6 0 4 3 9H. L. Liu, Hydronaut ics , I nc. , Pi nd el l School Rd., Laurel , MD20810J. J. McKetta, Dept. of Chemical Engineer ing, Uni ver s i t y ofTexas, Au s t in , TX 78712A. E. Molini , Chemical Engineer ing Dept ., Uni ver s i t y of PuertoRico, Col lege S ta t i on , MayagGez, Pue rto Rico 0 0 7 0 8

  • 8/4/2019 Ocean Thermal Vol 2

    67/67

    58

    56.57.58.5 9.60.61.62.63.64.65.

    66.67.68.6 9.70.

    71-331.

    Larry I. Moss, P.O. Box 1496, Estes Park, CQ 80517T. R. Penney, So la r Energy Research In s t i t u t e , 1536 Cole Blvd. ,Golden, CO 80401T. Rabas, Westinghouse Elec t r i c Corp., Power Ge ner ati on Divi-s i o n s , Lester, PAK. F. Read, U.S. Naval Academy, Annapolis, MD 21402S. L. Ridgeway, R&D As soc iat es, 4640 Admiralty Way, P.O. Box9695, Marina d e l Rey, CA 90291J. W. Rushing, DOE, Oak Ridge Op er at io ns , Oak Ridge, T N 37830B. Shelpuk, So la r Energy Research I n s t i t u t e , 1536 Cole Blvd. ,Golden, CO 80401L. A. Spielman, Dept. of Civ i l /Chemica l Eng ineer ing , Uni ver s i t yof Delaware, Newark, DE 19711L. J. Thibodeaux, Dept. of Chemical Engineering, Uni ver s i t y ofArk an s as , Fay e t t ev i l l e , AR 72701G. B. Wallis, School of Enginee rin g, Dartmouth Co lle ge, Hanover,NH 03755L. Wechsler , Hydronaut ics , Inc., Pi nd el l School Rd., L au re l , MD20810K. R. Weisbrod, Dept. of Chemical Engineering, The Un iv er s i ty ofI l l in ios , Champaign , I L 61801C. E. Wicks, Dept. of Chemical Engineer ing, Oregon St a t e Univer-s i t y , C o rv a ll i s , OR 97331C. Zener, Dept. of Physics , Carnegie-Mellon Un ive rs i t y , 5000For bes Ave., P it ts bu rg h, PA 15213O f f i c e of A ss is ta nt Manager f o r Energy Research and Development,DOE, ORO, Oak Ridge, TN 37830G i v e n d i s t r i b u t i o n as shown i n DOE/TIC-4500 und er ca t eg o r y UC-64(Ocean Energy Systems)