oc5 project phase ib: validation of hydrodynamic loading ... · oc5 phase ib • objective:...

18
NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. OC5 Project Phase Ib: Validation of Hydrodynamic Loading on a Fixed, Flexible Cylinder for Offshore Wind Applications DeepWind Conference – Trondheim, Norway Amy Robertson January 21, 2016

Upload: others

Post on 17-Jul-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

  • NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

    OC5 Project Phase Ib: Validation of Hydrodynamic Loading on

    a Fixed, Flexible Cylinder for Offshore Wind Applications

    DeepWind Conference – Trondheim, Norway

    Amy Robertson January 21, 2016

  • 2

    Co-Authors • Fabian F. Wendt - National Renewable Energy Laboratory, Colorado, USA • Jason M. Jonkman - National Renewable Energy Laboratory, Colorado, USA • Wojciech Popko - Fraunhofer IWES, Germany • Henrik Bredmose – Technical University of Denmark, Denmark • Michael Borg - Technical University of Denmark, Denmark • Flemming Schlutter - Technical University of Denmark, Denmark • Jacob Qvist - 4Subsea, Norway • Roger Bergua - Alstom Wind, Spain • Rob Harries - DNV GL, England • Anders Yde - Technical University of Denmark, Denmark • Tor Anders Nygaard - Institute for Energy Technology, Norway • Luca Oggiano - Institute for Energy Technology, Norway • Pauline Bozonnet - IFP Energies nouvelles, France • Ludovic Bouy - PRINCIPIA, France • Carlos Barrera Sanchez - Universidad de Cantabria – IH Cantabria, Spain • Raul Guanche García - Universidad de Cantabria – IH Cantabria, Spain • Erin E. Bachynski - MARINTEK, Norway • Ying Tu - Norwegian University of Science and Technology, Norway • Ilmas Bayati - Politecnico di Milano, Italy • Friedemann Beyer - Stuttgart Wind Energy, University of Stuttgart, Germany • Hyunkyoung Shin - University of Ulsan, Korea • Matthieu Guerinel - WavEC Offshore Renewables, Portugal • Tjeerd van der Zee - Knowledge Centre WMC, the Netherlands

  • 3

    IEA Wind Tasks 23 and 30 (OC3/OC4/OC5)

    • Verification and validation of offshore wind modeling tools are need to ensure their accuracy, and give confidence in their usefulness to users.

    • Three research projects were initiated under IEA Wind to address this need:

    OC3 = Offshore Code Comparison Collaboration (2005-2009) OC4 = Offshore Code Comparison Collaboration, Continuation (2010-2013) OC5 = Offshore Code Comparison Collaboration, Continuation, with

    Correlation (2014-2017)

  • 4

    OC5 Project Phases

    Phase I: Monopile - Tank Testing

    Phase II: Semi - Tank Testing

    Phase III: Jacket/Tripod – Open Ocean

    • OC3 and OC4 focused on verifying tools (tool-to-tool comparisons) • OC5 focuses on validating tools (code-to-data comparisons)

  • 5

    OC5 Phase Ib

    • Objective: validate hydrodynamic loads and acceleration response for a fixed, flexible cylinder

    • Test Data from Wave Loads Project: o 3-year project with goal of improving

    numerical models for wave loads on offshore wind turbines

    o Carried out collaboratively by DTU Wind Energy, DTU Mechanical Engineering, and DHI

    o Performed at shallow-water basin at DHI o Thank you to: Ole Petersen at DHI and

    Henrik Bredmose and Michael Borg at DTU for graciously supplying the data and information needed for this phase of the OC5 project.

  • 6

    Test Set-Up

    • 1:80 scale, flexible cylinder • On slope – to create steep waves • Tests done at two water depths:

    0.51 m and 0.26 m (40 and 20 m full scale)

    • Measurements used: o Wave elevation o Acceleration at top mass of cylinder o Total hydrodynamic force on cylinder

  • 7

    Tests Simulated

    • 7 Datasets were examined: o 4 regular cases

    – 2 water depths – 2 wave heights

    o 3 irregular cases – 2 water depths – 2 wave heights

    • First regular wave case used for calibration

    Test # Wave Type Water Depth (m) H/Hs (m) T/Tp (s) Gamma CA CD

    1 Regular 0.51 0.090 1.5655 1.22 1.0

    2 Regular 0.51 0.118 1.5655 1.22 1.0

    3 Irregular 0.51 0.104 1.40 3.3 1.0 1.0

    4 Irregular 0.51 0.140 1.55 3.3 1.0 1.0

    5 Regular 0.26 0.086 1.565 1.22 1.0

    6 Regular 0.26 0.121 1.565 1.22 1.0

    7 Irregular 0.26 0.133 1.560 3.3 1.0 1.0

  • 8

    Summary of Tools and Modeling Approach Participant Code Wave Model (Reg/Irr) Wave Elevation Hydro Model

    Structural Model Number DOFs

    4Subsea OrcaFlex FNPF kinematics FNPF kinematics ME FE, RDS 160 elements 960 DOFs GE SAMCEF Wind Turbines (S4WT) 5

    th Order Stokes/ Linear Airy Stretching ME FE (TS), RD 13 elements 84 DOF DNV GL-ME Bladed 4.6 6

    th and 8th Order SF/ Linear Airy Measured ME FE (TS), MD 8 (CB)

    DNV GL-PF Bladed 4.6 Linear Airy Measured 1st Order PF Rigid N/A

    DTU-HAWC2 HAWC2 6th and 8th Order SF/L. Airy & FNPF kinematics Stretching & FNPF kin. ME FE (TS), RDS

    20 elements, 126 DOF

    DTU-HAWC2-PF HAWC2 6th and 8th Order SF/L. Airy Stretching 1st Order PF FE (TS), RDS 31 elements, 192 DOF DTU-BEAM OceanWave3D FNPF kinematics FNPF kinematics ME+Rainey FE (EB), RD 160 DOFs

    IFE 3Dfloat FNPF kinematics FNPF kinematics ME FE (EB), RDS 62 elements, 378 DOF IFE-CFD STAR CCM CFD CFD-derived CFD Rigid N/A

    IFP-PRI DeeplinesWind 3rd Ord. SF/ Linear Airy Measured ME FE 200 elements

    UC-IHC IH2VOF FNPF kinematics FNPF kinematics ME Rigid N/A

    MARINTEK RIFLEX 2nd Order Stokes & FNPF

    kinematics Measured & FNPF kin. ME

    FE(E-B), RDS, FS

    167 elements, 1002 DOF

    NREL-ME FAST 2nd Order Stokes & FNPF

    kinematics Measured & FNPF kin. ME FE (TS), MD 4 (CB)

    NREL-PF FAST 2nd Order Stokes Measured 2nd Order PF Rigid N/A

    NTNU-Lin FEDEM 7.1 Linear Airy None ME FE (EB), RD 13 elements, 84 DOF

    NTNU-Stokes5 FEDEM 7.1 5th Order Stokes None ME FE (EB), RD 13 elements, 84 DOF

    NTNU-Stream FEDEM 7.1 Stream Function None ME FE (EB), RD 13 elements, 84 DOF

    PoliMi POLI-HydroWind 2nd Order Stokes None ME FE (EB), RD 23 elements, 69 DOF

    SWE SIMPACK +HydroDyn 2nd Order Stokes None ME FE (TS), MD 50

    UOU UOU + FAST 2nd Order Stokes None ME Rigid N/A

    WavEC Wavec2Wire 2nd Order Stokes /Linear Airy Measured 2nd/1st Order PF Rigid N/A

    WMC FOCUS6 (PHATAS) FNPF kinematics FNPF kinematics ME FE (TS), MD 12 (CB)

  • 9

    Calibration

    • Group calibrated CA and CD coefficients based on Test 1, to get appropriate levels of force o All participants used same values

    to have consistency in model parameters – to better see differences in modeling approach

    • A CA value of 1.22 was required, which is larger than expected o Suspect the higher measured loads

    might be due to reflected waves that were not modeled in the simulation

    212 4D M

    DF C Du u C uπρ ρ= +

    Morison’s Equation

  • 10

    Test 1 – Regular Wave – Deeper Water - Force Results

    Time (s)

    70 70.5 71 71.5 72 72.5 73 73.5 74 74.5 75

    Tota

    l for

    ce (N

    )

    -4

    -2

    0

    2

    4

    6Test 1, 0.51 m water depth, H = 0.09 m, T = 1.5655 s

    DNV-GL-ME-elvDNV-GL-PF-elvDTU-BEAM-kinDTU-HAWC2DTU-HAWC2-PFDTU-HAWC2-kinEXPERIMENTIFE-CFDIFE-kinIFP-PRI-elvMARINTEK-elvMARINTEK-kinNREL-MENREL-ME-elv1NREL-ME-elv2NREL-ME-kinNREL-PFNREL-PF-elv1NREL-PF-elv2NTNU-LinNTNU-Stokes5NTNU-StreamPOLIMISWEUOUWMC-kin4Subsea-kinGEUC-IHC-kinWavEC

    Frequency (Hz)

    0 0.5 1 1.5 2 2.5 3

    Tota

    l for

    ce (N

    )2

    /Hz

    100

    200

    300

    400

    500

    600

    700

    800

  • 11

    Test 6 – Regular Wave – Shallower Water - Force Results

    Time (s)

    70 70.5 71 71.5 72 72.5 73 73.5 74 74.5 75

    Tota

    l for

    ce (N

    )

    -10

    -5

    0

    5

    10Test 6, 0.26 m water depth, H = 0.086 m. T = 1.565 s

    DNV-GL-ME-elvDNV-GL-PF-elvDTU-BEAM-kinDTU-HAWC2DTU-HAWC2-kinEXPERIMENTIFE-kinMARINTEK-elvNREL-MENREL-ME-elv1NREL-ME-elv2NREL-ME-kinNREL-PFNREL-PF-elv1NREL-PF-elv2NTNU-LinNTNU-Stokes5NTNU-StreamPOLIMISWE4Subsea-kinGEUC-IHC-kinWavEC

    Frequency (Hz)

    0 0.5 1 1.5 2 2.5 3

    Tota

    l for

    ce (N

    )2

    /Hz

    100

    200

    300

    400

  • 12

    1st Peak Force Component

    Deeper Water Depth

    Shallower Water Depth

    Peak Force1 (N)0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

    DNV-GL-ME-elvDNV-GL-PF-elvDTU-BEAM-kin

    DTU-HAWC2DTU-HAWC2-PFDTU-HAWC2-kin

    EXPERIMENTIFE-CFD

    IFE-kinIFP-PRI-elv

    MARINTEK-elvMARINTEK-kin

    NREL-MENREL-ME-elv1NREL-ME-elv2

    NREL-ME-kinNREL-PF

    NREL-PF-elv1NREL-PF-elv2

    NTNU-LinNTNU-Stokes5NTNU-Stream

    POLIMISWEUOU

    WMC-kin4Subsea-kin

    GEUC-IHC-kin

    WavEC

    Test 1, 0.51 m water depth, H = 0.09 m, T = 1.5655 s

    Peak Force1 (N)0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

    DNV-GL-ME-elvDNV-GL-PF-elvDTU-BEAM-kin

    DTU-HAWC2DTU-HAWC2-PFDTU-HAWC2-kin

    EXPERIMENTIFE-CFD

    IFE-kinIFP-PRI-elv

    MARINTEK-elvMARINTEK-kin

    NREL-MENREL-ME-elv1NREL-ME-elv2

    NREL-ME-kinNREL-PF

    NREL-PF-elv1NREL-PF-elv2

    NTNU-LinNTNU-Stokes5NTNU-Stream

    POLIMISWEUOU

    WMC-kin4Subsea-kin

    GEUC-IHC-kin

    WavEC

    Test 2, 0.51 m water depth, H = 0.118 m, T = 1.5655 s

    Peak Force1 (N)0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

    DNV-GL-ME-elvDNV-GL-PF-elvDTU-BEAM-kin

    DTU-HAWC2DTU-HAWC2-kin

    EXPERIMENTIFE-kin

    MARINTEK-elvNREL-ME

    NREL-ME-elv1NREL-ME-elv2

    NREL-ME-kinNREL-PF

    NREL-PF-elv1NREL-PF-elv2

    NTNU-LinNTNU-Stokes5NTNU-Stream

    POLIMISWE

    4Subsea-kinGE

    UC-IHC-kinWavEC

    Test 5, 0.26 m water depth, H = 0.086 m, T = 1.565 s

    Peak Force1 (N)0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

    DNV-GL-ME-elvDNV-GL-PF-elvDTU-BEAM-kin

    DTU-HAWC2DTU-HAWC2-kin

    EXPERIMENTIFE-kin

    MARINTEK-elvNREL-ME

    NREL-ME-elv1NREL-ME-elv2

    NREL-ME-kinNREL-PF

    NREL-PF-elv1NREL-PF-elv2

    NTNU-LinNTNU-Stokes5NTNU-Stream

    POLIMISWE

    4Subsea-kinGE

    UC-IHC-kinWavEC

    Test 6, 0.26 m water depth, H = 0.121 m, T = 1.560 s

  • 13

    2nd Peak Force Component

    Deeper Water Depth

    Shallower Water Depth

    Peak Force2 (N)0 0.5 1 1.5 2 2.5 3 3.5

    DNV-GL-ME-elvDNV-GL-PF-elvDTU-BEAM-kin

    DTU-HAWC2DTU-HAWC2-PFDTU-HAWC2-kin

    EXPERIMENTIFE-CFD

    IFE-kinIFP-PRI-elv

    MARINTEK-elvMARINTEK-kin

    NREL-MENREL-ME-elv1NREL-ME-elv2

    NREL-ME-kinNREL-PF

    NREL-PF-elv1NREL-PF-elv2

    NTNU-LinNTNU-Stokes5NTNU-Stream

    POLIMISWEUOU

    WMC-kin4Subsea-kin

    GEUC-IHC-kin

    WavEC

    Test 1, 0.51 m water depth, H = 0.09 m, T = 1.5655 s

    Peak Force2 (N)0 0.5 1 1.5 2 2.5 3 3.5

    DNV-GL-ME-elvDNV-GL-PF-elvDTU-BEAM-kin

    DTU-HAWC2DTU-HAWC2-PFDTU-HAWC2-kin

    EXPERIMENTIFE-CFD

    IFE-kinIFP-PRI-elv

    MARINTEK-elvMARINTEK-kin

    NREL-MENREL-ME-elv1NREL-ME-elv2

    NREL-ME-kinNREL-PF

    NREL-PF-elv1NREL-PF-elv2

    NTNU-LinNTNU-Stokes5NTNU-Stream

    POLIMISWEUOU

    WMC-kin4Subsea-kin

    GEUC-IHC-kin

    WavEC

    Test 2, 0.51 m water depth, H = 0.118 m, T = 1.5655 s

    Peak Force2 (N)0 0.5 1 1.5 2 2.5 3 3.5

    DNV-GL-ME-elvDNV-GL-PF-elvDTU-BEAM-kin

    DTU-HAWC2DTU-HAWC2-kin

    EXPERIMENTIFE-kin

    MARINTEK-elvNREL-ME

    NREL-ME-elv1NREL-ME-elv2

    NREL-ME-kinNREL-PF

    NREL-PF-elv1NREL-PF-elv2

    NTNU-LinNTNU-Stokes5NTNU-Stream

    POLIMISWE

    4Subsea-kinGE

    UC-IHC-kinWavEC

    Test 5, 0.26 m water depth, H = 0.086 m, T = 1.565 s

    Peak Force2 (N)0 0.5 1 1.5 2 2.5 3 3.5

    DNV-GL-ME-elvDNV-GL-PF-elvDTU-BEAM-kin

    DTU-HAWC2DTU-HAWC2-kin

    EXPERIMENTIFE-kin

    MARINTEK-elvNREL-ME

    NREL-ME-elv1NREL-ME-elv2

    NREL-ME-kinNREL-PF

    NREL-PF-elv1NREL-PF-elv2

    NTNU-LinNTNU-Stokes5NTNU-Stream

    POLIMISWE

    4Subsea-kinGE

    UC-IHC-kinWavEC

    Test 6, 0.26 m water depth, H = 0.121 m, T = 1.560 s

  • 14

    3rd Peak Force Component

    Deeper Water Depth

    Shallower Water Depth

    Peak Force3 (N)0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

    DNV-GL-ME-elvDNV-GL-PF-elvDTU-BEAM-kin

    DTU-HAWC2DTU-HAWC2-PFDTU-HAWC2-kin

    EXPERIMENTIFE-CFD

    IFE-kinIFP-PRI-elv

    MARINTEK-elvMARINTEK-kin

    NREL-MENREL-ME-elv1NREL-ME-elv2

    NREL-ME-kinNREL-PF

    NREL-PF-elv1NREL-PF-elv2

    NTNU-LinNTNU-Stokes5NTNU-Stream

    POLIMISWEUOU

    WMC-kin4Subsea-kin

    GEUC-IHC-kin

    WavEC

    Test 1, 0.51 m water depth, H = 0.09 m, T = 1.5655 s

    Peak Force3 (N)0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

    DNV-GL-ME-elvDNV-GL-PF-elvDTU-BEAM-kin

    DTU-HAWC2DTU-HAWC2-PFDTU-HAWC2-kin

    EXPERIMENTIFE-CFD

    IFE-kinIFP-PRI-elv

    MARINTEK-elvMARINTEK-kin

    NREL-MENREL-ME-elv1NREL-ME-elv2

    NREL-ME-kinNREL-PF

    NREL-PF-elv1NREL-PF-elv2

    NTNU-LinNTNU-Stokes5NTNU-Stream

    POLIMISWEUOU

    WMC-kin4Subsea-kin

    GEUC-IHC-kin

    WavEC

    Test 2, 0.51 m water depth, H = 0.118 m, T = 1.5655 s

    Peak Force3 (N)0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

    DNV-GL-ME-elvDNV-GL-PF-elvDTU-BEAM-kin

    DTU-HAWC2DTU-HAWC2-kin

    EXPERIMENTIFE-kin

    MARINTEK-elvNREL-ME

    NREL-ME-elv1NREL-ME-elv2

    NREL-ME-kinNREL-PF

    NREL-PF-elv1NREL-PF-elv2

    NTNU-LinNTNU-Stokes5NTNU-Stream

    POLIMISWE

    4Subsea-kinGE

    UC-IHC-kinWavEC

    Test 5, 0.26 m water depth, H = 0.086 m, T = 1.565 s

    Peak Force3 (N)0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

    DNV-GL-ME-elvDNV-GL-PF-elvDTU-BEAM-kin

    DTU-HAWC2DTU-HAWC2-kin

    EXPERIMENTIFE-kin

    MARINTEK-elvNREL-ME

    NREL-ME-elv1NREL-ME-elv2

    NREL-ME-kinNREL-PF

    NREL-PF-elv1NREL-PF-elv2

    NTNU-LinNTNU-Stokes5NTNU-Stream

    POLIMISWE

    4Subsea-kinGE

    UC-IHC-kinWavEC

    Test 6, 0.26 m water depth, H = 0.121 m, T = 1.560 s

  • 15

    700 705 710 715 720 725 730

    Wav

    e E

    lev.

    (m)

    -0.2

    -0.1

    0

    0.1

    0.2

    EXPERIMENT

    4Subsea-kin

    DNV-GL-ME-elv

    DNV-GL-PF-elv

    DTU-BEAM-kin

    DTU-HAWC2-kin

    IFE-kin

    MARINTEK-elv

    NREL-ME-elv1

    NREL-ME-elv2

    NREL-PF-elv1

    NREL-PF-elv2

    WavEC

    700 705 710 715 720 725 730

    Tota

    l for

    ce (N

    )

    -20

    -10

    0

    10

    20

    30

    Time (s)

    700 705 710 715 720 725 730X-a

    ccel

    at 1

    65 c

    m (m

    /s2

    )

    -1

    -0.5

    0

    0.5

    Test 7 – Irregular Wave – Shallower Water

  • 16

    Irregular Waves – Exceedance Probability Plots

    Force (N)0 1 2 3 4 5 6 7 8 9 10

    Pex

    ceed

    ance

    10 -4

    10 -3

    10 -2

    10 -1

    10 0Test 3

    Acceleration (m/s 2 )

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    Pex

    ceed

    ance

    10 -4

    10 -3

    10 -2

    10 -1

    10 0

    Force (N)0 5 10 15 20 25 30

    Pex

    ceed

    ance

    10 -4

    10 -3

    10 -2

    10 -1

    10 0Test 7

    Acceleration (m/s 2 )

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

    Pex

    ceed

    ance

    10 -4

    10 -3

    10 -2

    10 -1

    10 0

    DNV-GL-ME-elvDNV-GL-PF-elvDTU-BEAM-kinDTU-HAWC2DTU-HAWC2-PFDTU-HAWC2-kinEXPERIMENTIFE-kinIFP-PRI-elvMARINTEK-elvNREL-ME-elv1NREL-ME-elv2NREL-PF-elv1NTNU-LinPOLIMISWEUOUWMC-kin4Subsea-kinGEUC-IHC-kinWavEC

  • 17

    Conclusions • Higher-order wave theory important in capturing higher-order

    components of hydrodynamic force o Extreme loads o Excitation of structural frequencies o Most important in shallow water

    • Sloped seabed creates complex wave kinematics o Standard wave theories cannot account for slope o CFD-type analysis might be needed to create wave kinematics for non-

    flat seabed conditions

    • Majority of offshore wind modeling tools do not presently address breaking waves o Complex wave theories and CFD can accurately model steep waves

    that will break o Need to model the impulsive load that a breaking wave will impart on

    the structure o Some codes are seeking to include this

  • Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute • Battelle

    Thank You!

    NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

    Amy Robertson +1 (303) 384 – 7157 [email protected]

    Slide Number 1Co-Authors IEA Wind Tasks 23 and 30 (OC3/OC4/OC5)OC5 Project PhasesOC5 Phase IbTest Set-UpTests SimulatedSummary of Tools and Modeling ApproachCalibrationTest 1 – Regular Wave – Deeper Water - Force ResultsTest 6 – Regular Wave – Shallower Water - Force Results1st Peak Force Component2nd Peak Force Component3rd Peak Force Component Test 7 – Irregular Wave – Shallower WaterIrregular Waves – Exceedance Probability PlotsConclusionsThank You!