numerical analysis of the wing tip vor8ces of a … analysis of the wing tip vor8ces of a commercial...

37
Numerical Analysis of the Wing Tip Vor8ces of a Commercial Aircra: XV Convergence ANSYS Mexico 2016 Ricardo Hernandez Rivera Ph.D. Student at the University of Guanajuato

Upload: trantu

Post on 02-Apr-2018

222 views

Category:

Documents


3 download

TRANSCRIPT

NumericalAnalysisoftheWingTipVor8cesofaCommercialAircra:

XVConvergenceANSYSMexico2016

RicardoHernandezRiveraPh.D.StudentattheUniversityofGuanajuato

Mo8va8on

[1]DiscoveryChannel,Giantoftheskies-BuildingtheAirbusA380,2006.

(a)SmokeflowvisualizaQon[2].

WingTipVortexForma8on

[2]J.Boehrer,CFDStudyofWingTipVortexGeneraQon,2005.[3]J.BerQn,AerodynamicsforEngineers,1998.

(b)WingQpvortexemergingatthewingQp[3].

Li:-InducedDrag

[3]J.BerQn,AerodynamicsforEngineers,1998.

Induceddrag

Li^ EffecQveli^

Chordline

Undisturbedfree-stream

Resultantvelocity

Descrip8on

Inthisproject, thetangenQalvelociQesand li^-induceddragsofthewingQpvorQcesofacommercialaircra^wereanalyzednumerically.

TwodifferentkindsofwingletswereadaptedtotheoriginalwinginordertoanalyzetheireffectsonthewingQpvorQces.

TovisualizethewingQpvortexformaQon.

ToanalyzethetangenQalvelociQesoftheQpvorQces.

Toevaluatetheli^anddragforces.

Objec8ves

Figura7.Generacióndelarrastreinducidoporlasustentación.

1/144aircra^plasQcmodeloftheBoeing767-300/ER.

3DModeling

WingDesign

Wingplanform.

Frontviewofthewingshowingtheangleofdihedral.

Figura7.Generacióndelarrastreinducidoporlasustentación.

WingDesign

Geometricfeaturesofthewing.

Descrip8on Variable Value

Rootchord Cr 10.9m

Rootincidenceangle αr 4°15´

Tipchord Ct 2.16m

Tipincidenceangle αt 0°

Sweepangle Λ 31°30´

Dihedralangle Φ 6°

Wingarea S 283.3m2

AspectraQo AR 8

TaperraQo λ 0.1981

Wingspan b 47.4m

SupercriQcalairfoilDFVLRR-4ofthewingroot.

SupercriQcalairfoilRAE(NPL)5212ofthewingQp.

Supercritical airfoil NPL 9510 of the horizontal stabilizer root.

Supercritical airfoil NPL de ARC CP 1372 of the horizontal stabilizer tip.

Symmetric supercritical airfoil NACA/LANGLEY N0011SC of the vertical stabilizer.

HorizontalStabilizer

Ver8calStabilizer

Figura7.Generacióndelarrastreinducidoporlasustentación.

Geometricfeaturesofthewing.

EngineCF6-80C2GeneralElectric

Front view. Side View.

Upper view. Rear view.

3DModeloftheAircra:underAnalysis

(a)

(c) (d)

(b)

ModifiedcommercialBoeing767-300/ERaircra^:(a)lowerview;(b)isometricview;(c)lateralview;(d)frontview.

B747-400Winglet

Descrip8on Variable Value

Rootchord Cr 2.15m

Tipchord Ct 0.88m

Sweepangle Λ 56.32°

AnglewiththeverQcal β 33.04°

Wingletarea S 2.8m2

TaperraQo λ 0.4074

Wingletspan b 2.12m

GeometricdataoftheB747winglet.

[4]hlps://commons.wikimedia.org

AirbusA380Winglet(TipFence)

Upperpartofthewinglet Variable Value

Rootchord Cr 1.19m

Tipchord Ct 0.29m

Sweepangle Λ 64.34°

AnglewiththeverQcal β 9.13°

TaperraQo λ 0.25

Wingletspan b 0.86m

GeometricdataoftheA380winglet.

Lowerpartofthewinglet Variable Value

Rootchord Cr 1.19m

Tipchord Ct 0.29m

Sweepangle Λ 57.89°

AnglewiththeverQcal β 23.52°

TaperraQo λ 0.25

Wingletspan b 0.61m

[5]hlps://en.wikipedia.org/wiki/Airbus_A380

FluidDomain

(a) (b)

MeshGenera8on

(a) (b)

(c) (d)

StructuredHexaMeshing

(a) (b)

(c)

StructuredHexaMeshing

(d) (e)

StructuredHexaMeshing(ScanPlane)

(f)

(g)

StructuredHexaMeshing(ScanPlane)

(h)

(i)

StructuredHexaMeshing-B747Winglet

(j) (k)

(l)

StructuredHexaMeshing-A380Winglet

(m) (n)

(o)

Considera8onsoftheAnalysis

  Steadystate.  Cruiseflight.  Compressibleflow.  Theaircra^wasconsideredarigidbody.   Turbulencemodel:shearstresstransport.  Energytransfermodel:totalenergy.

Descrip8on Analysis Elements

B767 Originalaircra^ 1,790,631

A380Winglet Aircra^withadaptaQonoftheA380winglet 2,195,241

B747Winglet Aircra^withadaptaQonoftheB747-400winglet 2,028,975

Numberofhexahedralelementsforeachcasestudied.

Property Value

Aircra^velocity 851km/h AlQtude 10.66km(35,000^)

Machnumber 0.8

Density 0.3809kg/m3

Dynamicviscosity 1.434x10-5kg/ms

Temperature 218.92K(-54.12°C)

Atmosfericpressure 0.23648atm(23.3kPa)

Speedofsound 1,068.84km/h

AirProper8es

Equation of state: ideal gas

Ideal gas equation of state gives good accuracy if:

air pressure (23.3 kPa) < air critic pressure (pc=3770 kPa) air temperature (218.92 K) > air critic temperature (Tc=133 K)

BoundaryCondi8ons

Inlet: velocity = 851 km/h. Static temperature: 219 K.

Outlet: static pressure = 0 Pa.

Adiabatic walls with free slip. Adiabatic walls with no slip.

Inlet: velocity = 1,322 km/h. Static temperature: 214 K.

Outlet: static pressure = 0 Pa.

Inlet: velocity = 1,730 km/h. Static temperature: 505 K.

BoundaryCondi8onsoftheEngine

  Incompressibleflow:convergencecriteria:1x10-5.  Compressibleflow:convergencecriteria:2x10-5.

HistoryofConvergence

AccumulatedTimeStep

Varia

bleVa

lue

(a) (b)

(c) (d)

Sta8cPressure(Pa)–B747Winglet

(a) (b)

(c) (d).

Sta8cPressure(Pa)–A380Winglet

VelocityVectors(m/s)

2DStreamlines(m/s)

(a) 1.5 m downstream from wing tip. (b) 11.5 m downstream from wing tip.

(c) 21.5 m downstream from wing tip. (d) 31.5 m downstream from wing tip.

VelocityComponent“w”inZAxis(m/s)

(a) 1.5 m downstream from wing tip. (b) 11.5 m downstream from wing tip.

(c) 21.5 m downstream from wing tip. (d) 80 m downstream from wing tip.

StreamlinesoftheWingTipVor8ces(m/s)

(a)

(b)

StreamlinesoftheWing(m/s)

(a) Original Aircraft. (b) B747 Winglet.

(c) A380 Winglet.

MaximumTangen8alVeloci8esdownstreamoftheWingTipVor8ces(m/s)

Distance (m)

Velo

city

(m/s

) OriginalAircra^B747WingletA380Winglet

The maximum tangential velocity of an Airbus A340 for cruise speed is about 60 m/s at the wing tip [6].

[6]Adib,InteracQonbetweentheWingTrailingVortexandtheEnginePlume,2006.

Li:andDragForces

The drag of both wings is about 50% of the total drag of the aircraft. The lift-induced drag is about 40% of the total drag of the aircraft for cruise speed [3].

The maximum weight of the original aircraft is 175.54 ton [7].

The lift of both wings of the original aircraft is 1,651.9kN (168.38 ton), about 96% of the maximum weight.

Descrip8on Aircra: Wing

Drag(kN) Drag(kN) Li:(kN) Es8matedϵ

Originalaircra^ 190.00 100.70 1,651.90 2.63° Aircra^withtheA380winglet 185.20 90.80 1,677.60 2.53° Aircra^withtheB747winglet 183.40 87.80 1,691.50 2.48°

[3]J.BerQn,AerodynamicsforEngineers,1998.[7]hlp://www.airliners.net/aircra^-data/

Winglets reduce the pressure gradients in the wing tip. As a consequence, the strength of the vortex is slightly decreased.

The B747-400 winglet: •  decrease the angle of downwash up to 5.7% •  increased the lift up to 2.39% •  decreased the total aircraft drag up to 3.47% •  decreased the vortex core velocity up to 15.38%

The A380 winglet: •  decrease the angle of downwash up to 3.8% •  increased the lift up to 1.55% •  decreased the total aircraft drag up to 2.52% •  decreased the vortex core velocity up to 5.76%

Conclusions

Thanks