nstx_u design point study active h2o cooling pulse length 60 sec

16
NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec C Neumeyer 5/19/6

Upload: shayla

Post on 09-Jan-2016

19 views

Category:

Documents


2 download

DESCRIPTION

NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec. C Neumeyer 5/19/6. Physics Assumptions. Engineering Assumptions. TF Inner Leg Cooling. 200kA/turn 5 kA/cm^2 5.75m 10m/s fW=0.15. TF Outer Leg Cooling. 2” x 6” 3kA/cm^2 6.9m 10m/s fW=0.075. PF Cooling. R=2m - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec

NSTX_U Design Point StudyActive H2O CoolingPulse Length 60 sec

C Neumeyer

5/19/6

Page 2: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec

Physics Assumptions

A 1.6-2.0

R0+a_100 1.473m10cm inboard of antenna guards

R0 0.903m Per abovekappa kappa*a=1.3m Fixed heightdelta 0.6 Fixedqcyl 2.5 FixedConfinement Ti=Te, HH98=1.3 Fixed

Solenoid Flux85% Hirshman-Neilson flux, ramp-up only

85% factor matches formula to Menard data

Paux <=4*8+6=38MW Beta limited

PF Currents

Scaled from Menard equilibrium @ 1.5MA (A=1.65)

Page 3: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec

Engineering AssumptionsTF Inner Leg Heating Jcu <= 6kA/cm^2 H20 case not optimizedTF Inner Leg Stress Radial stress <=138MPA

TF Outer Leg Heating Jcu <= 3kA/cm^2New outer leg <= 2*CSA of existing

TF Outer Leg Stress Not ModeledOH Heating G-function adiabaticOH Stress Hoop stress <=138MPA Need to include axial

PF Heating Jcu <= 2.5kA/cm^2

Assume conductor area per turn 1.5*CSA of existing PF coils, 10 turns per cooling path, 15kA per turn

PF Stress Not ModeledPFC Heating Not ModeledPFC Stress Not ModeledTransrex Capacity 15kA/PSS, 3.25kA rms rms is limiting

MG

TF/PF/OH Loads W<=4.5GJ, CCV on

during pulse

GridNBI/MG/BOP Loads

P<=200MW

Cooling Water Systems

Total flow requirement based on total energy dissipation, rep rate

limited by 20MW heat removal

100-10=90C rise in all systems

Page 4: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec

TF Inner Leg Cooling

TF Inner Leg Cooling

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

0.1 0.2 0.3 0.4 0.5

fW

Tcu_max (degC)

Tcu_max

Pdiss

Temperatures at Outlet of TF Inner Leg

0

20

40

60

80

100

120

0.00 20.00 40.00 60.00 80.00 100.00

Time (sec)

Temp (C)

TW10

TC10

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

200kA/turn5 kA/cm^25.75m10m/sfW=0.15

200kA/turn5 kA/cm^25.75m10m/sfW=0.15

Page 5: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec

TF Outer Leg Cooling

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

Temperatures at Outlet of TF Outer Leg

0

20

40

60

80

100

120

0.00 20.00 40.00 60.00 80.00 100.00

Time (sec)

Temp (C)

TW10

TC10

2” x 6” 3kA/cm^26.9m10m/sfW=0.075

2” x 6” 3kA/cm^26.9m10m/sfW=0.075

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.fW 0.075 0.075np_w 1 2v_w 10 5 m/sFlow 3313 3313 GPMTcu_max 65.5 97.3 degCP 22.5 23.8 MW

TF Outer Leg Cooling

0

50

100

150

200

250

300

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250

fW

Tcu_max & MW Dissipation

Tcu_maxPdiss

Page 6: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec

PF Cooling

R=2mI=15kAJ=2.5kA/cm^2Turn H and W are 1.25 times existing PF coils10 turns/cooling path10m/s

R=2mI=15kAJ=2.5kA/cm^2Turn H and W are 1.25 times existing PF coils10 turns/cooling path10m/s

PF Cooling

0.0

50.0

100.0

150.0

200.0

250.0

300.0

0.100 0.200 0.300 0.400 0.500

fW

Tcu_max & MW Dissipation

Tcu_max

Pdiss

Page 7: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec

Divertor Cooling

P_div_tot 38 MW#Sub-paths 2T_inlet 10 degCT_outlet 100 degCdT 90 degCHeat Transfer Rate 264 Watt/GPM-degCMass Flow 800 GPM

5.05E-02 m^3/sFlow Velocity 7.5 m/sFlow Area 0.0067 m^2Hydraulic Dia 0.093 m

3.644 inReynolds Number 6.94E+05 N-sec/m^2Friction Factor 0.012Manifold Radius 0.5 mEff Path Length 0.79 mdP 0.43 psi

4” dia pipes are adequate for divertor supply/returnmanifolds (assume full power capacity on top and bottom)

Page 8: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec

Fit inside VVNSTX & NSTX-U Shapes

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

r(m)

z(m)

z_hdwe

z_95

z_100

A=1.6

A=1.65

A=1.7

A=1.8

A=1.9

A=2

Supply

Return

Inner_div

4” OD pipes60mm W brush divertor4” OD pipes60mm W brush divertor

Page 9: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec

Facility CoolingWmg 4500 MGPgrid 200 MWtpulse 60 secWtotal 16500 MJPpulse 275 MWTmin water 10 degCTmax water 100 degCdelta T water 90 degCHeat removal rate 264 Watt/GPM-degCFlow 11574 GPMPcooling between pulse 20 MWTrep, min 825 secExisting water tank 33000 galHeat capacity 15846 J/gal-degCdelta T 32 degC

TFTR ratings (may not be available anymore TBD)…Water tank = 33000 gallons (adequate)Cooling power = 20MW (adequate)Component cooling = 3300 GPM (~ 1/4 of requirement)

Page 10: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec

Power Supplies

Use PS at 15kA per PSS (continuous rating of SCRs)Rep rate limited to ~ 1200s min due to 3.25kA rms rating

FCPC Xfmr Thermal Response

35

45

55

65

75

85

95

0 5000 10000 15000 20000 25000 30000

Time (sec)

T (degC)

T_oil

T_winding

FCPC Cable Thermal Response

35

45

55

65

75

85

95

0 5000 10000 15000 20000 25000 30000

Time (sec)

T (degC)

Xfmrs OK(8 hrs)Xfmrs OK(8 hrs) 5 parallel 750MCM per PSS5 parallel 750MCM per PSS

~ 50 parallel 1000MCM cables req’d for 200kA-60s/1200s

Page 11: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec

Approach

Maximize Ip allowing solver to adjust of Jcu in inner and outer legs of TF subject to outer legs <= 2*CSA of existing

Page 12: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec

Ip vs. A

Ip [MA]

2.7

2.8

2.9

3.0

3.1

3.2

3.3

1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2

Page 13: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec

Bt vs. A

Bt [T]

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2

Page 14: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec

Solenoid Flux vs. A

Flux_total

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2

Page 15: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec

P_aux vs. A

P_aux[MW]

20.0

21.0

22.0

23.0

24.0

25.0

26.0

27.0

28.0

1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2

Page 16: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec

Conclusions

How about….

A = 1.75Ip = 3.0MABt = 1.5T

oh = 1.5V-sP_aux = 30MW