nstx_u design point study active h2o cooling pulse length 60 sec c neumeyer 5/19/6

16
NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec C Neumeyer 5/19/6

Upload: robert-hensley

Post on 12-Jan-2016

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec C Neumeyer 5/19/6

NSTX_U Design Point StudyActive H2O CoolingPulse Length 60 sec

C Neumeyer

5/19/6

Page 2: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec C Neumeyer 5/19/6

Physics Assumptions

A 1.6-2.0

R0+a_100 1.473m10cm inboard of antenna guards

R0 0.903m Per abovekappa kappa*a=1.3m Fixed heightdelta 0.6 Fixedqcyl 2.5 FixedConfinement Ti=Te, HH98=1.3 Fixed

Solenoid Flux85% Hirshman-Neilson flux, ramp-up only

85% factor matches formula to Menard data

Paux <=4*8+6=38MW Beta limited

PF Currents

Scaled from Menard equilibrium @ 1.5MA (A=1.65)

Page 3: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec C Neumeyer 5/19/6

Engineering AssumptionsTF Inner Leg Heating Jcu <= 6kA/cm^2 H20 case not optimizedTF Inner Leg Stress Radial stress <=138MPA

TF Outer Leg Heating Jcu <= 3kA/cm^2New outer leg <= 2*CSA of existing

TF Outer Leg Stress Not ModeledOH Heating G-function adiabaticOH Stress Hoop stress <=138MPA Need to include axial

PF Heating Jcu <= 2.5kA/cm^2

Assume conductor area per turn 1.5*CSA of existing PF coils, 10 turns per cooling path, 15kA per turn

PF Stress Not ModeledPFC Heating Not ModeledPFC Stress Not ModeledTransrex Capacity 15kA/PSS, 3.25kA rms rms is limiting

MG

TF/PF/OH Loads W<=4.5GJ, CCV on

during pulse

GridNBI/MG/BOP Loads

P<=200MW

Cooling Water Systems

Total flow requirement based on total energy dissipation, rep rate

limited by 20MW heat removal

100-10=90C rise in all systems

Page 4: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec C Neumeyer 5/19/6

TF Inner Leg Cooling

TF Inner Leg Cooling

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

0.1 0.2 0.3 0.4 0.5

fW

Tcu_max (degC)

Tcu_max

Pdiss

Temperatures at Outlet of TF Inner Leg

0

20

40

60

80

100

120

0.00 20.00 40.00 60.00 80.00 100.00

Time (sec)

Temp (C)

TW10

TC10

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

200kA/turn5 kA/cm^25.75m10m/sfW=0.15

200kA/turn5 kA/cm^25.75m10m/sfW=0.15

Page 5: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec C Neumeyer 5/19/6

TF Outer Leg Cooling

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

Temperatures at Outlet of TF Outer Leg

0

20

40

60

80

100

120

0.00 20.00 40.00 60.00 80.00 100.00

Time (sec)

Temp (C)

TW10

TC10

2” x 6” 3kA/cm^26.9m10m/sfW=0.075

2” x 6” 3kA/cm^26.9m10m/sfW=0.075

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.fW 0.075 0.075np_w 1 2v_w 10 5 m/sFlow 3313 3313 GPMTcu_max 65.5 97.3 degCP 22.5 23.8 MW

TF Outer Leg Cooling

0

50

100

150

200

250

300

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250

fW

Tcu_max & MW Dissipation

Tcu_maxPdiss

Page 6: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec C Neumeyer 5/19/6

PF Cooling

R=2mI=15kAJ=2.5kA/cm^2Turn H and W are 1.25 times existing PF coils10 turns/cooling path10m/s

R=2mI=15kAJ=2.5kA/cm^2Turn H and W are 1.25 times existing PF coils10 turns/cooling path10m/s

PF Cooling

0.0

50.0

100.0

150.0

200.0

250.0

300.0

0.100 0.200 0.300 0.400 0.500

fW

Tcu_max & MW Dissipation

Tcu_max

Pdiss

Page 7: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec C Neumeyer 5/19/6

Divertor Cooling

P_div_tot 38 MW#Sub-paths 2T_inlet 10 degCT_outlet 100 degCdT 90 degCHeat Transfer Rate 264 Watt/GPM-degCMass Flow 800 GPM

5.05E-02 m^3/sFlow Velocity 7.5 m/sFlow Area 0.0067 m^2Hydraulic Dia 0.093 m

3.644 inReynolds Number 6.94E+05 N-sec/m^2Friction Factor 0.012Manifold Radius 0.5 mEff Path Length 0.79 mdP 0.43 psi

4” dia pipes are adequate for divertor supply/returnmanifolds (assume full power capacity on top and bottom)

Page 8: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec C Neumeyer 5/19/6

Fit inside VVNSTX & NSTX-U Shapes

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

r(m)

z(m)

z_hdwe

z_95

z_100

A=1.6

A=1.65

A=1.7

A=1.8

A=1.9

A=2

Supply

Return

Inner_div

4” OD pipes60mm W brush divertor4” OD pipes60mm W brush divertor

Page 9: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec C Neumeyer 5/19/6

Facility CoolingWmg 4500 MGPgrid 200 MWtpulse 60 secWtotal 16500 MJPpulse 275 MWTmin water 10 degCTmax water 100 degCdelta T water 90 degCHeat removal rate 264 Watt/GPM-degCFlow 11574 GPMPcooling between pulse 20 MWTrep, min 825 secExisting water tank 33000 galHeat capacity 15846 J/gal-degCdelta T 32 degC

TFTR ratings (may not be available anymore TBD)…Water tank = 33000 gallons (adequate)Cooling power = 20MW (adequate)Component cooling = 3300 GPM (~ 1/4 of requirement)

Page 10: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec C Neumeyer 5/19/6

Power Supplies

Use PS at 15kA per PSS (continuous rating of SCRs)Rep rate limited to ~ 1200s min due to 3.25kA rms rating

FCPC Xfmr Thermal Response

35

45

55

65

75

85

95

0 5000 10000 15000 20000 25000 30000

Time (sec)

T (degC)

T_oil

T_winding

FCPC Cable Thermal Response

35

45

55

65

75

85

95

0 5000 10000 15000 20000 25000 30000

Time (sec)

T (degC)

Xfmrs OK(8 hrs)Xfmrs OK(8 hrs) 5 parallel 750MCM per PSS5 parallel 750MCM per PSS

~ 50 parallel 1000MCM cables req’d for 200kA-60s/1200s

Page 11: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec C Neumeyer 5/19/6

Approach

Maximize Ip allowing solver to adjust of Jcu in inner and outer legs of TF subject to outer legs <= 2*CSA of existing

Page 12: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec C Neumeyer 5/19/6

Ip vs. A

Ip [MA]

2.7

2.8

2.9

3.0

3.1

3.2

3.3

1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2

Page 13: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec C Neumeyer 5/19/6

Bt vs. A

Bt [T]

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2

Page 14: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec C Neumeyer 5/19/6

Solenoid Flux vs. A

Flux_total

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2

Page 15: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec C Neumeyer 5/19/6

P_aux vs. A

P_aux[MW]

20.0

21.0

22.0

23.0

24.0

25.0

26.0

27.0

28.0

1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2

Page 16: NSTX_U Design Point Study Active H2O Cooling Pulse Length 60 sec C Neumeyer 5/19/6

Conclusions

How about….

A = 1.75Ip = 3.0MABt = 1.5T

oh = 1.5V-sP_aux = 30MW