nqes in organic h-bonded ferroelectrics · 2017. 5. 15. · h-bonded ferroelectrics s. horiuchi and...

15
Thor Wikfeldt Science Institute, Univ. of Iceland Nordita, Stockholm NQEs in Organic H-bonded Ferroelectrics k OO k HH k OO k HH V(s) s

Upload: others

Post on 26-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Thor WikfeldtScience Institute, Univ. of IcelandNordita, Stockholm

    NQEs in Organic H-bonded Ferroelectrics

    kOO

    kHH

    kOO

    kHH

    V(s)

    s

    http://meetings.aps.org/Meeting/MAR12/Event/164320http://meetings.aps.org/Meeting/MAR12/Event/164320http://meetings.aps.org/Meeting/MAR12/Event/164320http://meetings.aps.org/Meeting/MAR12/Event/164320

  • Ferroelectrics

    S. Horiuchi and Y. Tokura Nature Mat. 7, 357 (2008)

    Inorganic

    OrganicS. Horiuchi et al. Nature 463, 789 (2010)

    • Polarity reversal (FeRAM), optoelectronics, pyroelectricity, piezoelectricity• Organic ferroelectrics: low mass, cheap, flexible, non-toxic

  • H-bonded ferroelectrics

    S. Horiuchi and Y. Tokura Nature Mat. 7, 357 (2008)

    Inorganic

    OrganicS. Horiuchi et al. Nature 463, 789 (2010)

    • Unresolved fundamental questions‣ Nature of ferroelectric-paraelectric transition at TC:

    displacive vs order-disorder, cooperative effects, domain dynamics

    ‣ Isotope effects, TC shifts by ~100 K upon deuteration: quantum tunneling or geometrical isotope effect?

    • Polarity reversal (FeRAM), optoelectronics, pyroelectricity, piezoelectricity• Organic ferroelectrics: low mass, cheap, flexible, non-toxic

  • H-bonded ferroelectrics

    • Squaric acid (H2SQ) is an ideal simple model system• Croconic acid (H2CR) potentially useful high-T ferroelectric

    cb

    a

    S. Horiuchi et al. Nature 463, 789 (2010)

    • Simulate H2SQ and H2CR by density functional theory and PIMD!K.T. Wikfeldt & A. Michealides, JCP 140, 041103 2014

  • DFT: Importance of dispersion interactions

    Dion et al. PRL 92 246401 (2004)Klimes et al. J. Phys. Cond. Matt. 22, 022201 (2010)

    Squaric acid Croconic acid

    • PBE overestimates interlayer separation by 10-15%• vdW-functionals more accurate, perform similarly

  • Proton transfer barriers - squaric

    Functional PBE vdW-DF optPBEvdW vdW-DF2 MP2 RPA

    Barrier (meV) 18 31 66 87 110 148

    • Compare DFT barriers with higher-level theory: - random phase approximation (RPA) - Møller-Plesset 2nd order perturbation theory (MP2)

    0 10 20 30 40 50 60 70 80 90

    0 0.2 0.4 0.6 0.8 1 1.2 1.4

    E [m

    eV/p

    roto

    n]

    d [Å]

    vdW-DF2

  • Proton transfer barriers - squaric

    Functional PBE vdW-DF optPBEvdW vdW-DF2 MP2 RPA

    Barrier (meV) 18 31 66 87 110 148

    • Compare DFT barriers with higher-level theory: - random phase approximation (RPA) - Møller-Plesset 2nd order perturbation theory (MP2)

    0 10 20 30 40 50 60 70 80 90

    0 0.2 0.4 0.6 0.8 1 1.2 1.4

    E [m

    eV/p

    roto

    n]

    d [Å]

    vdW-DF2

  • 0

    20

    40

    60

    80

    100

    0 0.5 1 1.5 2 2.5 3 3.5

    E [m

    eV/p

    roto

    n]

    d [Å]

    vdW-DF2PBE

    optPBE-vdW

    • Both H-bonding chains must reverse to reach second ground state!

    Proton transfer barriers - croconic

  • Ab initio path-integral molecular dynamics

    • Feynman’s path integrals powerful approach to simulate nuclear quantum effects

  • Quantum effects on H-bond geometry

    0 100 200 300 400 500 600 700T [K]

    vdW-DF2

    PBE 2.46 2.48 2.50 2.52 2.54 2.56 2.58 2.60 2.62 2.64 2.66

    d OO [

    Å]

    expt(H2SQ)

    expt(D2SQ)

    H2SQD2SQMD

    dOH

    dOO

    Semmingsen et al. J. Chem. Phys., 66, 4405, (1977) McMahon et al. Z. Kristallogr. 195, 231 (1991)

    Squaric acid

    • What is the mechanism behind geometrical isotope effects?

  • Proton/deuteron ordering

    • Larger delocalization of H than D, stronger attraction, shorter H-bonds

    100K 200K 300K 400K 500K

    -0.4 -0.2 0 0.2 0.4-0.4 -0.2 0 0.2 0.4δ [Å] δ [Å]

    0

    1

    2

    3

    4

    5

    P(δ)

    0 2 4 6 8

    10

    H2SQ D2SQ

    MD

    P(δ)

    (a) (b)

    0 0.4 0.2

    Squaric acid

    X. Z. Li, B. Walker & A. Michaelides, PNAS 108, 6369 (2011)

  • Proton/deuteron ordering

    • Ordering behavior affected, ~200 K diff between H2SQ and D2SQ • Experiments: TC(H2SQ) = 373 K, TC(D2SQ) = 520 K

    100K 200K 300K 400K 500K

    -0.4 -0.2 0 0.2 0.4-0.4 -0.2 0 0.2 0.4δ [Å] δ [Å]

    0

    1

    2

    3

    4

    5

    P(δ)

    0 2 4 6 8

    10

    H2SQ D2SQ

    MD

    P(δ)

    (a) (b)

    0 0.4 0.2

    Squaric acid

  • Proton/deuteron ordering

    • Does quantum tunneling play a role?

    100K 200K 300K 400K 500K

    -0.4 -0.2 0 0.2 0.4-0.4 -0.2 0 0.2 0.4δ [Å] δ [Å]

    0

    1

    2

    3

    4

    5

    P(δ)

    0 2 4 6 8

    10

    H2SQ D2SQ

    MD

    P(δ)

    (a) (b)

    0 0.4 0.2

    Squaric acid

  • Quantum tunneling

    RG

    -0.4-0.2 0.0 0.2

    0.06 0.08 0.1

    0.12 0.14

    1000 2000 3000

    R g [

    Å]δ c

    [Å]

    -0.3 -0.2 -0.1 0 0.05 0.06 0.07 0.08 0.09

    0.1 0.11 0.12 0.13 0.14 0.15

    -0.3 -0.2 -0.1 0

    100K200K500K

    δc [Å] δc [Å]

    [Å]

    H2SQ D2SQ

    PIMD step

    (a) (b)

    RgRg

    4000

    0.4

    H2SQ200 K

    H1H2H3

    δc0

    Rg

    RgH1 H3H2

  • • vdW functionals crucial for interlayer interactions and proton transfer barriers in H-bonded ferroelectrics. vdW-DF2 appears best

    • Two uncoupled H-bonding chains in squaric acid, 1-D problem • Coupled H-bonding chains in croconic acid • Squaric acid PIMD reproduces geometrical isotope effects and Tc shift• Quantum tunneling contributes directly to geometrical effect by

    tunneling of H/D into central barrier

    • Combined thermal excitations and tunneling in collective H atom jumps in paraelectric phase

    • Future work: PIMD momentum distributions vs experiment, simple Hamiltonian model for larger and longer simulations of H-bond chains

    Summary

    This work published in: K.T. Wikfeldt & A. Michealides, JCP 140, 041103 2014